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Abstract
Let ¢(n) be the Euler totient function and o(n) denote the sum of divisors of n. In
this note, we obtain explicit upper bounds on the number of positive integers n < x
such that ¢(o(n)) > cn for any ¢ > 0. This is a refinement of a result of Alaoglu
and Erdoés.

1. Introduction

For any positive integer n, let ¢(n) be the Euler-totient function given by
1
o(n) = nH 1- L)

where p runs over distinct primes dividing n. Let o(n) be the sum of divisors of n,

which is given by
1 _pk+1
d|n

pFn

Here the notation p¥||n means that p* is the largest power of p dividing n. In 1944,
L. Alaoglu and P. Erdés introduced the study of compositions of such arithmetic
functions. In particular, they showed that for any real number ¢ > 0,

#{n<z:¢(c(n)) >cn}t =o(x) and #{n<z:0(p(n)) <cn}=o(z).
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In [3], F. Luca and C. Pomerance obtained finer results on the distribution of
o(¢p(n)). The objective of this paper is to study the distribution of ¢(o(n)).

Denote by log,, the k-fold iterated logarithm loglog - - -log (k-times). We show the
following result.

Theorem 1. For every ¢ > 0,
2

#{ngx;¢(g(n))2m}<”+o<( zlogg w )

~ belog, @ log x)@ log,

where the implied constant only depends on c.

This implies that except for O (M) integers less than x, ¢(o(n)) < cn

for any ¢ > 0. It is possible to replace the constant ¢ above by a slowly decaying
function. For a non-decreasing real function f, define

ﬂ@ﬂz{néxuﬂd@)zﬂ%}.

Then, we prove the following.

Theorem 2. Suppose f : Rt — Rt is a non-decreasing function satisfying

f(z) = o(logy x).

|&wn=0<”“”+ vlogy 7 >=d@

logsz ~ (log x) Togs @ log,

Then,

as x — oo. In other words, for almost all positive integers n, ¢p(o(n)) < %

Choosing f(z) = logg « in Theorem 2, we obtain the following corollary, which
is an improvement of the result of Alaoglu and Erdés [2].

Corollary 1. Except for O (w) positive integers n < x,

log, x

n

¢(a(n)) <

~ loggn’

2. Preliminaries

A necessary component of our proof is to estimate the number of positive integers
not greater than x which do not have certain prime factors. Such an estimate
requires an application of Brun’s sieve. For our purpose, we invoke the following
result by P. Pollack and C. Pomerance [4, Lemma 3].
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Lemma 1. Let P be a set of primes and for x > 1, let

1
Alz) =) -
p<x p
peP
Then uniformly for all choices of P, the proportion of n < x free of prime factors
from P is O (e’A(’J)).
We also recall the famous Siegel-Walfisz theorem (see [5, Corollary 11.21]).
Lemma 2 (Siegel-Walfisz). For (a,q) = 1, let w(x;q,a) denote the number of
primes p < x such that p = a(mod q). Let A > 0 be given. If ¢ < (logx)?, then

. _ liz)
m(x;q,a) = 5(0) + 0 (:17 exp(—c«/]ogx)) ,

where the implied constant only depends on A and li(z) := f; 1olgt dt.

For any prime p, define

Sp(x) :=#{n<z:pto(n)}
The main ingredient in the proof of Theorem 1, which is also interesting in its own

right, is an upper bound for S, (x).

Lemma 3. For any prime p and x > eP

B loglog x =
Sp(xz) =0 <w <1ng ) ) ,

where the implied constant is absolute.

Proof. Note that for any prime ¢ = —1 mod p, all n such that g||n satisfy p | o(n).
Thus, to obtain an upper bound for S,(z), it suffices to estimate the number of
n < x such that either ¢ { n or ¢? | n for a subset of primes ¢ = —1(mod p). By
Lemma 2, for z > eP, we have

n(z;p,—1) = (p—1)logz +0 ((logx)Q) ’

where the implied constant is absolute. Now suppose z is sufficiently large such
that logx > eP. Applying partial summation, we obtain

1 ip,—1 1 ip,—1 z t;p,—1
Z - 7T(.’I,‘,p, ) . 77( ogr;p, ) +/ 7T'( D,y )dt
1

q T log = t2

logz<g<z ogx

g=—1( mod p)

1 v 1 1
= — ——dt+ 0O
p—1 Jiog, tlogt logy

1 1
=1 (logy x — logs ) + O <log2x> .
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Now, applying Lemma 1 with P being the set of primes ¢ = —1 mod p and logz <
q < x, we obtain that the number of n < x free of prime factors from P is

0 (33 (log2 x)’”) -
log x

Since
1
#{n <x:q*|n for prime ¢ = —1 mod p and logz < ¢ < z} < x Z 7<1m ,
logz<qg<z q 08
we have the lemma. O

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Note that

slom=aim I (1-7)

p
plo(n)
Denote by P(y) := [] p, the product of all primes < y. If P(y)|o(n), then

N 1
otet) =oto) T (1-3)
<o) <

where the last inequality follows from Merten’s theorem (see [5, Theorem 2.7 (e)]),

namely
1 1
H 1— ) < .
o<y ( P logy

Thus, for any ¢ > 0, the inequality ¢(o(n)) < cn holds if P(y) | o(n), o(n) < dn,
and (logy)~t < ¢/6. We know that (see [1, Theorem 3.4])

2
Za(n) =13 + O (xlogx).

n<x

Using partial summation, we get

2

Z#z%m—&—O(logzx).

n<x
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Hence,
1 o(n)
#{n<z:0(n)>dn}= Z 1§5 —
n<x n<x
o(n)>on
2 log” x
Therefore,
2 1 2
#{ngxza(n)<6n}2x(l—g§)+0(Ogéx). (1)
From Lemma 3, we also have
#{n<w:Ply)ton)} <Y |Sy(@)]
P<y
oy (los22\" ¥ |
log x logy
Hence,
logoz\ v y
<z: > - .
#n<a P<y>|a<n>}_x<1 0<(10gx) 1Ogy>> @
Choosing

y=Ilogsx and & =clogyx

in (1) and (2), we obtain

#{nSx:¢(U(n))<cn}2x_7r2m+0<( xlogs T )

1
belog, @ log ) ™s¥ log, &
Hence,
§ 1
#{nﬁwqu(a(n))ch}ng_i_O T008 ’
6clog, x (log x)™es7 log, x
which proves Theorem 1. 0

Proof of Theorem 2. We use the exact same method as in the proof of Theorem 1,

with the choices
log,

/(@)

y=logsz and =

in (1) and (2). This gives

#{n<x;¢(o(n))<n}>x_0<xf(x)+ zlogy x )

logy x (log x) a5 @ log, =

This proves Theorem 2. O
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4. Concluding Remarks

The study of composition of multiplicative arithmetic functions seems to be a diffi-
cult theme in general. This has also received scant attention, except for a very few
instances such as [2] and [4]. For example, it is not clear if ¢(o(n)) has a normal
order. It would be desirable to develop a unified theory for such functions and per-
haps construct families of multiplicative functions whose compositions have a finer
distribution.
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