ON THE DISTRIBUTION OF $\phi(\sigma(N))$

Anup B. Dixit
Institute of Mathematical Sciences (HBNI), Chennai, Tamil Nadu, India. anupdixit@imsc.res.in
Saunak Bhattacharjee
Indian Institute of Science Education and Research Tirupati, Andhra Pradesh, India.
saunakbhattacharjee@students.iisertirupati.ac.in

Received: 3/22/24, Accepted: 6/19/24, Published: 7/8/24

Abstract

Let $\phi(n)$ be the Euler totient function and $\sigma(n)$ denote the sum of divisors of n. In this note, we obtain explicit upper bounds on the number of positive integers $n \leq x$ such that $\phi(\sigma(n))>c n$ for any $c>0$. This is a refinement of a result of Alaoglu and Erdős.

1. Introduction

For any positive integer n, let $\phi(n)$ be the Euler-totient function given by

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

where p runs over distinct primes dividing n. Let $\sigma(n)$ be the sum of divisors of n, which is given by

$$
\sigma(n)=\sum_{d \mid n} d=n \prod_{p^{k} \| n}\left(\frac{1-p^{k+1}}{1-p}\right) .
$$

Here the notation $p^{k} \| n$ means that p^{k} is the largest power of p dividing n. In 1944, L. Alaoglu and P. Erdős introduced the study of compositions of such arithmetic functions. In particular, they showed that for any real number $c>0$,

$$
\#\{n \leq x: \phi(\sigma(n)) \geq c n\}=o(x) \quad \text { and } \quad \#\{n \leq x: \sigma(\phi(n)) \leq c n\}=o(x)
$$

[^0]In [3], F. Luca and C. Pomerance obtained finer results on the distribution of $\sigma(\phi(n))$. The objective of this paper is to study the distribution of $\phi(\sigma(n))$.

Denote by $\log _{k}$ the k-fold iterated logarithm $\log \log \cdots \log (k$-times). We show the following result.

Theorem 1. For every $c>0$,

$$
\#\{n \leq x: \phi(\sigma(n)) \geq c n\} \leq \frac{\pi^{2} x}{6 c \log _{4} x}+O\left(\frac{x \log _{3} x}{(\log x)^{\frac{1}{\log _{3} x}} \log _{4} x}\right)
$$

where the implied constant only depends on c.
This implies that except for $O\left(\frac{x}{\log \log \log \log x}\right)$ integers less than $x, \phi(\sigma(n))<c n$ for any $c>0$. It is possible to replace the constant c above by a slowly decaying function. For a non-decreasing real function f, define

$$
P_{f}(x):=\left\{n \leq x: \phi(\sigma(n)) \geq \frac{n}{f(n)}\right\}
$$

Then, we prove the following.
Theorem 2. Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a non-decreasing function satisfying

$$
f(x)=o\left(\log _{4} x\right) .
$$

Then,

$$
\left|P_{f}(x)\right|=O\left(\frac{x f(x)}{\log _{4} x}+\frac{x \log _{3} x}{(\log x)^{\frac{1}{\log _{3} x}} \log _{4} x}\right)=o(x)
$$

as $x \rightarrow \infty$. In other words, for almost all positive integers $n, \phi(\sigma(n))<\frac{n}{f(n)}$.
Choosing $f(x)=\log _{5} x$ in Theorem 2, we obtain the following corollary, which is an improvement of the result of Alaoglu and Erdős [2].

Corollary 1. Except for $O\left(\frac{x \log _{5} x}{\log _{4} x}\right)$ positive integers $n \leq x$,

$$
\phi(\sigma(n)) \leq \frac{n}{\log _{5} n}
$$

2. Preliminaries

A necessary component of our proof is to estimate the number of positive integers not greater than x which do not have certain prime factors. Such an estimate requires an application of Brun's sieve. For our purpose, we invoke the following result by P. Pollack and C. Pomerance [4, Lemma 3].

Lemma 1. Let P be a set of primes and for $x>1$, let

$$
A(x)=\sum_{\substack{p \leq x \\ p \in P}} \frac{1}{p} .
$$

Then uniformly for all choices of P, the proportion of $n \leq x$ free of prime factors from P is $O\left(e^{-A(x)}\right)$.

We also recall the famous Siegel-Walfisz theorem (see [5, Corollary 11.21]).
Lemma 2 (Siegel-Walfisz). For $(a, q)=1$, let $\pi(x ; q, a)$ denote the number of primes $p \leq x$ such that $p \equiv a(\bmod q)$. Let $A>0$ be given. If $q \leq(\log x)^{A}$, then

$$
\pi(x ; q, a)=\frac{l i(x)}{\phi(q)}+O(x \exp (-c \sqrt{\log x}))
$$

where the implied constant only depends on A and $l i(x):=\int_{2}^{x} \frac{1}{\log t} d t$.
For any prime p, define

$$
S_{p}(x):=\#\{n \leq x: p \nmid \sigma(n)\}
$$

The main ingredient in the proof of Theorem 1, which is also interesting in its own right, is an upper bound for $S_{p}(x)$.

Lemma 3. For any prime p and $x \geq e^{p}$

$$
S_{p}(x)=O\left(x\left(\frac{\log \log x}{\log x}\right)^{\frac{1}{p-1}}\right)
$$

where the implied constant is absolute.
Proof. Note that for any prime $q \equiv-1 \bmod p$, all n such that $q \| n$ satisfy $p \mid \sigma(n)$. Thus, to obtain an upper bound for $S_{p}(x)$, it suffices to estimate the number of $n \leq x$ such that either $q \nmid n$ or $q^{2} \mid n$ for a subset of primes $q \equiv-1(\bmod p)$. By Lemma 2, for $x>e^{p}$, we have

$$
\pi(x ; p,-1)=\frac{x}{(p-1) \log x}+O\left(\frac{x}{(\log x)^{2}}\right)
$$

where the implied constant is absolute. Now suppose x is sufficiently large such that $\log x>e^{p}$. Applying partial summation, we obtain

$$
\begin{aligned}
\sum_{\substack{\log x<q<x \\
q \equiv-1(\bmod p)}} \frac{1}{q} & =\frac{\pi(x ; p,-1)}{x}-\frac{\pi(\log x ; p,-1)}{\log x}+\int_{\log x}^{x} \frac{\pi(t ; p,-1)}{t^{2}} d t \\
& =\frac{1}{p-1} \int_{\log x}^{x} \frac{1}{t \log t} d t+O\left(\frac{1}{\log _{2} x}\right) \\
& =\frac{1}{p-1}\left(\log _{2} x-\log _{3} x\right)+O\left(\frac{1}{\log _{2} x}\right)
\end{aligned}
$$

Now, applying Lemma 1 with P being the set of primes $q \equiv-1 \bmod p$ and $\log x<$ $q<x$, we obtain that the number of $n \leq x$ free of prime factors from P is

$$
O\left(x\left(\frac{\log _{2} x}{\log x}\right)^{\frac{1}{p-1}}\right)
$$

Since
$\#\left\{n \leq x: q^{2} \mid n\right.$ for prime $q \equiv-1 \bmod p$ and $\left.\log x<q<x\right\} \ll x \sum_{\log x<q<x} \frac{1}{q^{2}} \ll \frac{x}{\log x}$, we have the lemma.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Note that

$$
\phi(\sigma(n))=\sigma(n) \prod_{p \mid \sigma(n)}\left(1-\frac{1}{p}\right)
$$

Denote by $P(y):=\prod_{p \leq y} p$, the product of all primes $\leq y$. If $P(y) \mid \sigma(n)$, then

$$
\begin{aligned}
\phi(\sigma(n)) & =\sigma(n) \prod_{p \mid \sigma(n)}\left(1-\frac{1}{p}\right) \\
& \leq \sigma(n) \prod_{p \leq y}\left(1-\frac{1}{p}\right)<\frac{\sigma(n)}{\log y}
\end{aligned}
$$

where the last inequality follows from Merten's theorem (see [5, Theorem 2.7 (e)]), namely

$$
\prod_{p \leq y}\left(1-\frac{1}{p}\right)<\frac{1}{\log y}
$$

Thus, for any $c>0$, the inequality $\phi(\sigma(n))<c n$ holds if $P(y) \mid \sigma(n), \sigma(n)<\delta n$, and $(\log y)^{-1} \leq c / \delta$. We know that (see [1, Theorem 3.4])

$$
\sum_{n \leq x} \sigma(n)=\frac{\pi^{2}}{12} x^{2}+O(x \log x)
$$

Using partial summation, we get

$$
\sum_{n \leq x} \frac{\sigma(n)}{n}=\frac{\pi^{2}}{6} x+O\left(\log ^{2} x\right)
$$

Hence,

$$
\begin{aligned}
\#\{n \leq x: \sigma(n) \geq \delta n\} & =\sum_{\substack{n \leq x \\
\sigma(n) \geq \delta n}} 1 \leq \frac{1}{\delta} \sum_{n \leq x} \frac{\sigma(n)}{n} \\
& =\frac{\pi^{2}}{6 \delta} x+O\left(\frac{\log ^{2} x}{\delta}\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\#\{n \leq x: \sigma(n)<\delta n\} \geq x\left(1-\frac{\pi^{2}}{6 \delta}\right)+O\left(\frac{\log ^{2} x}{\delta}\right) \tag{1}
\end{equation*}
$$

From Lemma 3, we also have

$$
\begin{aligned}
\#\{n \leq x: P(y) \nmid \sigma(n)\} & \leq \sum_{p \leq y}\left|S_{p}(x)\right| \\
& =O\left(x\left(\frac{\log _{2} x}{\log x}\right)^{\frac{1}{y}} \frac{y}{\log y}\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\#\{n \leq x: P(y) \mid \sigma(n)\} \geq x\left(1-O\left(\left(\frac{\log _{2} x}{\log x}\right)^{\frac{1}{y}} \frac{y}{\log y}\right)\right) \tag{2}
\end{equation*}
$$

Choosing

$$
y=\log _{3} x \quad \text { and } \quad \delta=c \log _{4} x
$$

in (1) and (2), we obtain

$$
\#\{n \leq x: \phi(\sigma(n))<c n\} \geq x-\frac{\pi^{2} x}{6 c \log _{4} x}+O\left(\frac{x \log _{3} x}{(\log x)^{\frac{1}{\log _{3} x}} \log _{4} x}\right)
$$

Hence,

$$
\#\{n \leq x: \phi(\sigma(n)) \geq c n\} \leq \frac{\pi^{2} x}{6 c \log _{4} x}+O\left(\frac{x \log _{3} x}{(\log x)^{\frac{1}{\log _{3} x}} \log _{4} x}\right)
$$

which proves Theorem 1.
Proof of Theorem 2. We use the exact same method as in the proof of Theorem 1, with the choices

$$
y=\log _{3} x \quad \text { and } \quad \delta=\frac{\log _{4} x}{f(x)}
$$

in (1) and (2). This gives

$$
\#\left\{n \leq x: \phi(\sigma(n))<\frac{n}{f(n)}\right\} \geq x-O\left(\frac{x f(x)}{\log _{4} x}+\frac{x \log _{3} x}{(\log x)^{\frac{1}{\log _{3} x}} \log _{4} x}\right)
$$

This proves Theorem 2.

4. Concluding Remarks

The study of composition of multiplicative arithmetic functions seems to be a difficult theme in general. This has also received scant attention, except for a very few instances such as [2] and [4]. For example, it is not clear if $\phi(\sigma(n))$ has a normal order. It would be desirable to develop a unified theory for such functions and perhaps construct families of multiplicative functions whose compositions have a finer distribution.

Acknowledgements. We thank Professor Jean-Marc Deshouillers for several fruitful discussions. We also thank the referee for comments on an earlier version of this paper.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New YorkHeidelberg, 1976.
[2] L. Alaoglu and P. Erdos, A conjecture in elementary number theory, Bull. Amer. Math. Soc. 50, (1944), 881-882.
[3] F. Luca and C. Pomerance, On some problems of Makowski-Schinzel and Erdős concerning the arithmetical functions ϕ and σ, Colloq. Math. 92, no. 1, (2002), 111-130.
[4] P. Pollack and C. Pomerance, Phi, primorials, and Poisson, Illinois J. Math. 64, no. 3, (2020), 319-330.
[5] H. L. Montgomery, R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, Cambridge, 2007.

[^0]: DOI: 10.5281/zenodo. 12685741

