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Abstract

We make explicit a theorem of Fromm and Goldmakher, which states that one can

improve Burgess’ bound for short character sums simply by improving the leading

constant in the Pólya–Vinogradov inequality. Towards achieving this, we establish

explicit versions of several estimates related to the mean values of real multiplicative

functions and the Dickman function.

1. Introduction

Given a non-principal Dirichlet character χ (mod q), it is often the case that we

need to consider the size of the corresponding character sum,

Sχ(t) =
∑
n≤t

χ(n). (1)

Owing to the orthogonality relation on residues modulo q, one only ever needs to

consider the case that the character sum is short, i.e., t ≤ q. In this case, we have

the trivial estimate,

|Sχ(t)| ≤ t.

There are two standard non-trivial estimates for the size of Equation (1). First,

the Pólya–Vinogradov inequality, Sχ(t) ≪ √
q log q (henceforth referred to as the

“P–V inequality”). Second, Burgess’ bound, Sχ(t) ≪ t1−
1
r q

r+1

4r2
+ϵ, for ϵ > 0 and any

integer r > 2 if q is square-free and r = 2, 3 for a general q. If the modulus q is a

prime, then both of these estimates can be used to show that

Sχ(t) = o (t) , (2)
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for t ≫ qα for certain small explicit α > 0. One might consider the Burgess’

bound to be a better result, however, unless the character sum is particularly long.

Specifically, P–V inequality implies that Equation (2) holds for t > q
1
2+ϵ, while

Burgess’ bound implies that Equation (2) holds for t > q
1
4+o(1). The proof of the

Burgess’ bound also relies on advanced results due to Weil [23], while the standard

proof of the P–V inequality is substantially easier. Finally, one of the best-known

P–V inequalities is proved using the effective range of Burgess’ bound, see [14].

Conversely, when working with explicit versions of these estimates, any improve-

ment to the leading constant in the P–V inequality will immediately yield improve-

ments in the leading constant for Burgess’ bound (see, for example, [21] and [7]).

Fromm and Goldmakher [9] have recently established that, in fact, improvements to

the P–V inequality can be used to extract improvements to the effective range (with

respect to t) in Burgess’ bound. Precisely, they establish the following relationship.

Theorem 1. ([9, Theorem A]) Suppose the P–V inequality can be improved to

Sχ(t) = o (
√
qlog q)

for all even primitive quadratic χ (mod q). Then

Sξ(t) = o (t)

for all t ≫ϵ p
ϵ for all odd primitive quadratic ξ (mod p).

Based on a suggestion Fromm and Goldmakher made in their paper, we will prove

the following explicit version of Theorem 1. The interested reader may also consider

the work of Mangerel [15], for a different approach to the relationship between P–V

inequality and Burgess’ bound.

Theorem 2. Suppose the P–V inequality can be improved to

Sχ(t) ≤ (c1 + o (1))
√
q log q,

for all even primitive quadratic χ (mod q). Then for all odd primitive quadratic

characters ξ (mod p) we have Sξ(t) < ct for t > pϵ(c1,c), with ϵ(c1, c) = 4π c1
δ(c)3/2

+

ot(1) and δ(c) as in Lemma 1, such that δ(c) ≤ 2/7.

The above result is particularly interesting, as it the first to show that a Burgess’

bound-like result depends in a meaningful way on the leading constant in the P–

V inequality. In Table 1, we compare ϵ(c1, c) for various c using the best known

constant in the P–V inequality and several powers of 10. From Table 1, one sees

that ϵ(c1, c) roughly decays in magnitude as c1 does. However, even to obtain an

improvement over the trivial bound would require significant improvements over

the best available choices of c1. One should expect this behaviour, since one also

expects to be able to take c1 tending to 0. Additionally, since the best c1 in the P–V
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c = 0.99 0.5 0.25 0.025
c1 δ(c) = 1.56 · 10−10 δ(c) = 5.51 · 10−11 1.92 · 10−11 5.78 · 10−13

1 9.15 · 1015 4.35 · 1016 2.12 · 1017 4.05 · 1019
(2π2)−1 4.64 · 1014 2.21 · 1015 1.08 · 1016 2.05 · 1018

10−5 9.15 · 1010 4.35 · 1011 2.12 · 1012 4.05 · 1014
10−10 9.15 · 105 4.35 · 106 2.12 · 107 4.05 · 109
10−15 9.15 43.5 212 4.05 · 104
10−20 8.45 · 10−14 4.35 · 10−4 2.12 · 10−3 0.405

Table 1: Sample values for ϵ(c1, c).

inequality is obtained via Burgess’ bound, one does not expect to have ϵ(c1, c) < 0.25

for all c while c1 is fixed. While there is room for improvement in ϵ(c1, c), we believe

that our result has significance as the first of its kind. This is also part of the

reason, together with the heavy analytic machinery employed, why ϵ(c1, c) is not

yet optimal. We hope this result will increase the interest in the explicit correlation

between P–V and Burgess’ bound.

As an aside, note that in Theorem 2, we have still included some o (1) terms. This

is because many of the best known P–V results appear in this form. This choice

also makes the exposition more concise. Further attempts in line with this article,

in particular those using completely explicit P–V results like [8] or [2], should be

able to make the result completely explicit.

In order to obtain Theorem 2, we must establish some notation. Let

Mf (x) :=
1

x

∑
n≤x

f(n) and Lf (x) :=
1

log x

∑
n≤x

f(n)

n
.

The result that allowed Fromm and Goldmakher to obtain Lemma A 1 is a corre-

lation between the two functions defined above. This correlation assures us that if

Mf (x) is bounded away from zero, then Lf (x) will be as well (for certain f). The

proof of Theorem 2 relies on establishing an explicit version of Lemma B in [9].

Lemma 1. Given c > 0 and x0 = x0(c) ≥ 1 such that

|Mf (x)| ≥ c ⇒ Lf (x) ≥ δ(c),

with

δ(c) := 0.2 exp

(
− 1

K
log

(
9.75 · 105

c

)(
1.42

(
9.75 · 105

c

) 1
2K

+ 1/2

))
+ ox(1),

for all completely multiplicative functions f : Z → [−1, 1], x > x0, K ≈ 0.3286.

This result allows us to prove Theorem 2.



INTEGERS: 24 (2024) 4

Proof of Theorem 2. Here we follow the proof of Theorem A in [9]. Using Lemma

2.1 [9] and assuming |Mξ(x)| ≥ c, we obtain infinitely many characters χ such that

|Sχ(N)| ≥

(√
lδ(c)ϵ

2πφ(l)
+ o (1)

)
√
q log q,

with l the least prime larger than 2
δ(c) which satisfies l ≡ 3 (mod 4). We therefore

have a contradiction if
√
lδ(c)ϵ

2πφ(l) > c1, i.e., when ϵ > 2πc1
φ(l)√
lδ(c)

. We can further

simplify this by observing that we trivially have φ(l) ≤ l, that is an optimal result

for large l. Using the version of Bertrand’s postulate for primes in arithmetic

progressions in [3], with the assumption 2
δ(c) ≥ 7, we have that l ≤ 4

δ(c) . Note that

assuming a smaller upper bound for δ(c) and using Corollary 6 in [1], it is possible

to reduce the constant 4 to 2 + o(1). As this would lengthen the exposition, we

decided not to do so to keep the result as concise as possible. Thus, we obtain

ϵ > 4π
c1

δ(c)
3
2

.

The proof of Lemma 1 will require two results, which will make up the bulk of

this article. The easier of these is the following explicit version of Theorem 2 in

[13] applied to (1 ∗ f)(n) (another non-explicit version of this result can be found

in [10]). First, for a given multiplicative function f , let us define

u :=
∑
p≤x

1− f(p)

p
.

We now introduce a completely multiplicative function f , as defined in (1.1) of [13],

such that for x > 2, with some positive constants K, K1 and k2 < 2, holds{
1 ≤ f(p) ≤ K (p ≤ x),

1 ≤ f(pm) ≤ K1K
m
2 (p ≤ x, m ≥ 2).

(3)

Theorem 3. Let f be a completely multiplicative function as in (3). Then, we have

1

x

∑
n≤x

(1 ∗ f)(n) ≥ (0.2 + o (1)) log x e
−u

(
1.42e

u
2 + 1

2

)
+ o (1) .

The second result, which is the harder to prove, is an explicit version of Theorem

III.4.14 in Tenenbaum’s book [20]. In our current application, we focus on functions

g(n) which are quadratic Dirichlet characters, but there are variants of this theorem

which cover a much larger class of functions (for example, see the main theorem of

[12]).
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Theorem 4. Let K be the unique solution to

1

2π

∫ 2π

0

|cos(t)−K| dt = 1−K.

Note that K ≈ 0.3286. If f is a real, completely multiplicative function, we have,

uniformly for x ≥ 1,

|Mf (x)| ≤ (9.75 · 105 + o (1)) exp

−K
∑
p≤x

1− f(p)

p

+ o (1) .

We can now easily prove Lemma 1.

Proof of Lemma 1. Here, we follow the proof of Lemma B in [9]. Theorem 4 gives(
|Mf (x)|+ o (1)

9.75 · 105 + o (1)

)− 1
2K

≥ e
u
2 and

1

K
log

(
|Mf (x)|+ o (1)

9.75 · 105 + o (1)

)−1

≥ u. (4)

It is easy to see that

Lf (x) =
1

x log x

∑
n≥x

(1 ∗ f)(n) + o (1) ,

and, by Theorem 3, we obtain

Lf (x) ≥ (0.2 + o (1)) e−u(1.42eu/2+1/2) log x+ o (1) . (5)

The result follows by substituting Equation (4) into Equation (5) and remembering

that |Mf (x)| ≥ c.

In Section 2 we will prove Theorem 3. In Section 3 we will prove a partially

explicit version of an upper bound for the mean value of multiplicative functions,

that works as an intermediate result for Theorem 4. In Section 4, we introduce

some explicit bounds related to prime numbers; applying these results, to those

obtained in the previous sections, we conclude with a proof of Theorem 4. To ease

the understanding of the relationships between the results we introduce a scheme;

see Figure 1.

2. Lower Bound for the Mean Value Theorem for a Non-Negative Mul-
tiplicative Function

The aim of this section is to prove Theorem 3. We start by giving an explicit lower

bound for the Dickman function, ρ(x), defined by

xρ′(x) + ρ(x− 1) = 0,
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Theorem 2

Theorem 1

Lemma 9 & 10Theorem 3 Theorem 4

Theorem 2 Theorem 5

Theorem 3

Lemma 8

Lemma 7

Proposition
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Lemma 6

Equation (19) &
Equation (21)

Lemma 5

Lemma 4,
Equation (9) &
Equation (11)

Figure 1: Relationship between the results.

with initial conditions ρ(x) = 1 for 0 ≤ x ≤ 1. Note that we will follow Buchstab’s

approach from [4] for large x, alongside computations for small x.

Lemma 2. Assuming x ≥ 1, we have

ρ(x) ≥ x−1.42x. (6)

Proof. Using the the built-in Dickman function in Sage, we determine that for

1 ≤ x ≤ 130 we can take as an exponent 1.15. Note that we are limited to this

interval due to the computational complexity. We can thus use the following result

due to Buchstab [4], that tells us that for x ≥ 6 and δ = 1
log x+1+ log x

x

< 1
3 , we have

ρ(x) ≥ exp

(
−x

(
1 +

1

log x

)(
log(x+ δ) + log

1

δ
− 1

)
− 2 log x

)
, (7)

and the result follows taking x ≥ 130.

It is worth noting that, by [4], the right size for the constant in the exponent of

Equation (6) is 1 + o(1). Since we want a uniform result, a lower bound for the
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1 + o(1) term appears, by computation, to be 1.15. Obtaining this result appears

difficult as Equation (7) does not give a good estimate for small values of x. One

might get around this by obtaining an explicit version of other estimates for ρ(x),

such as the one in [5], but we have not pursued this here. We can now prove

Theorem in 3.

Proof of Theorem 3. This is Theorem 2 in [13] with K = 2, K2 = 1.1 and z = 2,

used together with max (0, 1− (1 ∗ f)(p)) ≤ 1−f(p)
2 and Lemma 2. We also need to

note that∏
p≤x

(
1− 1

p

)(
1 +

(1 ∗ f)(p)
p

+
(1 ∗ f)(p2)

p2
· · ·
)

=
∏
p≤x

1− 1
p

1− (1∗f)(p)
p

≥ e−u exp

∑
p≤x

1

p

 exp

∑
p≤x

(
log

(
1− 1

p

)
+

1

p

) .

We can conclude using Theorem 5 and Corollary 1 in [19], which gives

exp

∑
p≤x

(
log

(
1− 1

p

)
+

1

p

) = exp(M − γ) ≥ exp(−0.32),

with M the Meissel–Mertens constant and γ the Euler–Mascheroni constant.

3. A Partially Explicit Upper Bound for the Mean Value of Multiplica-
tive Functions

In this section, we aim to prove an explicit version of a theorem of Montgomery in

[16], regarding the mean value of multiplicative functions. He restricted his interest,

as will we, to completely multiplicative functions. The more general case involves

technical changes (see [20]) which make the leading constant increase significantly.

We start by introducing for clarity a well-known, but useful, result.

Lemma 3. Assuming s = 1 + α+ iτ , with α ↘ 0 and |τ | ≤ 1/2, we have∣∣∣∣ζ ′ζ (s)

∣∣∣∣ ≤ 1

|s− 1|
+O(1).

Proof. By the Euler–Maclaurin formula, we have

∑
n≤N

1

ns
=

∫ N

1

1

xs
dx+

1

2

(
1

Ns
+ 1

)
− s

∫ N

1

1

xs+1

(
{x} − 1

2

)
dx.
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Thus, taking N → ∞, ∣∣∣∣∣
∞∑
n

1

ns
−
∫ ∞

1

1

xs
dx

∣∣∣∣∣ ≤ 1

2
(1 + |s|).

Now, it follows from ∫ ∞

1

(log x)ℓ

xs
dx =

ℓ!

(s− 1)ℓ+1

that ∣∣∣∣ζ(s)− 1

(s− 1)

∣∣∣∣ ≤ 1

2
(1 + |s|).

Proceeding in the same way, we obtain∣∣∣∣ζ ′(s) + 1

(s− 1)2

∣∣∣∣ ≤ 1

2
(1 + |s|).

The result easily follows remembering that α ↘ 0.

Everything is in place to prove an explicit version of the inequality in [16]. Note

that our result appears slightly different when compared with the cited one, as we

have tailored the optimization of the constant for the current application.

Theorem 5. Let g be a completely multiplicative function such that |g(n)| ≤ 1. Set

G(x) :=
∑
n≤x

g(n), F (s) :=

∞∑
n=1

g(n)n−s.

We define

H(α)2 :=
∑
k∈Z

1

(k − 1/2)2 + 1
max

σ=1+α
|τ−k|≤ 1

2

|F (s)|2.

Then, for x ≥ x0 large enough,

G(x) ≤ (3.14 + o (1))
x

log x

∫ 1

1/ log x

H(α)
dα

α
+Ox0

(
x√
log x

)
.

Proof. We now establish, for x ≥ x0, the following result:∫ x

√
x

|G(t)|
t2

dt ≤

(√
9.45

2
+ o (1)

)
H

(
2

log x

)
+O

(√
log x

)
. (8)

By the Cauchy–Schwarz inequality, with α = 2/ log x,∫ x

√
x

|G(t)|
t2

dt ≤

(∫ x

1

(|G(t)| log t)2

t3+2α
dt

∫ x

√
x

1

log2 t t1−2α
dt

)1/2

.
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We can observe that, with n ∈ N,

∫ x

√
x

1

log2 t t1−2α
dt ≤

n−1∑
j=0

∫ x
1
2 (

j+1
n

+1)

x
1
2 (

j
n

+1)

1

log2 t t1−2α
dt

≤ 1

log2 x

n−1∑
j=0

4(
j
n + 1

)2 ∫ x
1
2 (

j+1
n

+1)

x
1
2 (

j
n

+1)

1

t1−2α
dt

≤ 1

log2 x α
(e

2
n − 1)2e2

n−1∑
j=0

e2j/n

( j
n + 1)2

≤ 1

log2 x α
(e

2
n − 1)2n

∫ 2

1

e2y

y2
dy ≤ 4 · 9.45

log2 x α
.

Defining K(t) :=
∑

n≤t g(n) log n, then

G(t) log t−K(t) ≪ t.

Thus, taking α = 2/ log x, the proof of Equation (8) reduces to that of∫ x

1

|K(t)|2

t3+2α
dt ≤

(
1

2
+ o (1)

)
H(α)2

α
.

The equation ∫ ∞

0

K(eu)e−uσe−iurdu =
−F ′(s)

s
(σ > 1)

allows us to write Plancherel’s formula as∫ x

1

|K(t)|2

t3+2α
dt =

1

2π

∫ ∞

−∞

∣∣∣∣F ′(1 + α+ iτ)

1 + α+ iτ

∣∣∣∣2 dτ.
We assume T arbitrary large. For |τ | > T we have, by (4.46) in [20],∫

|τ |>T

∣∣∣∣F ′(1 + α+ iτ)

1 + α+ iτ

∣∣∣∣2 dτ ≪ 1

T
+

1

α3T 2
.

We now estimate the contribution in the complementary range |τ | ≤ T . We write∫
|τ |≤T

∣∣∣∣F ′(1 + α+ iτ)

1 + α+ iτ

∣∣∣∣2 dτ ≤
∑
|k|≤T

1

1 + (k − 1/2)2

∫ k+1/2

k−1/2

|F ′(1 + α+ iτ)|2 dτ.

The right-hand side integral does not exceed

max
σ=1+α

|τ−k|≤1/2

|F (s)|2
∫ k+1/2

k−1/2

∣∣∣∣F ′

F
(1 + α+ iτ)

∣∣∣∣2 dτ.
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We can observe that ∣∣∣∣F ′

F
(s)

∣∣∣∣2 ≤
∣∣∣∣ζ ′ζ (s)

∣∣∣∣2 ,
and, choosing x ≥ x0 to have α = 2/ log x small enough, by Lemma 3 we obtain∫ k+1/2

k−1/2

∣∣∣∣F ′

F
(1 + α+ iτ)

∣∣∣∣2 dτ ≤
∫ 1/2

−1/2

∣∣∣∣ζ ′ζ (1 + α+ iτ)

∣∣∣∣2 dτ
≤
∫ 1/2

−1/2

1

α2 + τ2
dτ +O(1) =

π

α
+O(1).

Thus, Equation (8) is obtained taking T → ∞. We now introduce (4.39) from [20]:

|G(x)| ≤ x

log x

∫ x

1

|G(t)|
t2

dt+O

(
x

log x

)
.

With the above result and using Equation (8) we can now finish the proof as follows:∫ x

e2

|G(t)|
t2

dt ≤ 1

log 2

∫ x

e2

|G(t)|
t2

∫ t2

t

dy

y log y
dt

≤ 1

log 2

∫ x2

e2

dy

y log y

∫ y

√
y

|G(t)|
t2

dt

≤ 1

log 2

(√
9.45

2
+ o (1)

)∫ 1

1/ log x

H (α)

α
dα+Ox0

(√
log x

)
.

4. Explicit Mean Value Estimates for Real Multiplicative Functions

In this section we aim to prove Theorem 4. We will first, in Subsections 4.1 and

4.2, introduce some useful explicit results and then tackle Theorem 4 in Subsection

4.3.

4.1. Prime Counting Estimates

Take π(x) to be the prime counting function. We provide two versions of the Prime

Number Theorem (PNT), the first good for small x and the second for large x.

Assuming x ≥ 59, by [19] we have

x

log x

(
1 +

1

2 log x

)
≤ π(x) ≤ x

log x

(
1 +

3

2 log x

)
. (9)



INTEGERS: 24 (2024) 11

Defining

li(x) =

∫ x

0

1

ln y
dy (10)

and taking x ≥ 229, by Corollary 2 [22], we have

|π(x)− li(x)| ≤ x
0.2795

(log x)3/4
exp

(
−
√

log x

6.455

)
. (11)

Note that there is a better version of the PNT due to Platt and Trudgian [18].

However, we will turn the above result into a uniform one and the improvement

obtained using Platt and Trudgian’s result is not clear and would make the following

exposition longer and more complicated. We also note that another way to improve

the result could be using the improved zero-free region for the Riemann zeta function

given in [17]. We now provide some useful bounds on li(x).

Lemma 4. For x ≥ 2 we have

li(x) ≥ x

log x

(
1 +

1

log x

)
.

Proof. By repeatedly integrating Equation (10) by parts, we have

li(x) =
x

log x
+

x

log2 x
+

∫ x

0

2

ln3 y
dy,

and the result follows by observing that the last integral is positive for x ≥ 2.

From [1, Lemma 5.9] we have, for x ≥ 1865,

li(x) ≤ x

log x

(
1 +

3

2 log x

)
+ li(2). (12)

We can now prove the main lemma.

Lemma 5. For all x ≥ 2 we have

|π(x)− li(x)| ≤ 0.4897
x

log x
, (13)

|π(x)− li(x)| ≤ 1.3597
x

log2 x
, (14)

and

|π(x)− li(x)| ≤ 0.1522x exp

(
−
√

log x

6.455

)
. (15)



INTEGERS: 24 (2024) 12

Proof. We first prove Equation (13) and Equation (14). For 2 ≤ x ≤ 105, we obtain

these inequalities by computation. Assuming x ≥ 105, we obtain these inequalities

using Equation (9), Lemma 4, and Equation (12).

Now, we prove Equation (15). For 2 ≤ x ≤ 103, we obtain the inequality by

computation. Assuming x ≥ 103 we obtain the inequality using Equation (11).

Let f be a 2π-periodic function of bounded variation on [0, 2π]. Writing S(f) :=

supt|f(t)|, V (f) :=
∫ 2π

0
|d{f(t)}|, we can now prove the following results. Assuming

w > 1, by Equation (13) we obtain∣∣∣∣ |π(x)− li(x)|f(τ log t)
t

∣∣∣∣z
w

≤ 0.9794

logw
S(f), (16)

and, by Equation (14),∣∣∣∣∫ z

w

|π(x)− li(x)|f(τ log t)
t2

dt

∣∣∣∣ ≤ 1.3597

logw
S(f). (17)

By Equation (15) we obtain∣∣∣∣∫ z

w

R(t)

t
d{f(τ log t)}

∣∣∣∣ ≤ 0.1522

∫ τ log z

τ logw

exp

(
−
√

v

6.455τ

)
|df(v)|

≤ 0.1522

∫ τ logw+2π

τ logw

∞∑
k=0

exp

(
−
√

v + 2πk

6.455τ

)
|df(v)|

≤ 0.1522V (f)

∞∑
k=0

exp

(
−
√

τ logw + 2πk

6.455τ

)
.

(18)

We focus on the two following cases. For 0 < τ ≤ 1, w = exp( cτ ), with c ≥ 1, and

l(c, τ, x) := exp

(
−
√

c+ 2πk

6.455τ

)
,

we obtain

∞∑
k=0

l(c, τ, k) ≤
k1∑
k=0

l(c, τ, k) +

∫ ∞

k1

l(c, τ, x)dx

≤
k1∑
k=0

l(c, τ, k) + l(c, τ, k1)

√
6.455

√
2πk1 + c+ 6.455

π
= Ok1,c(1),

(19)

where Ok1,c(1) will be computed later, optimizing on k1 and c. For τ ≥ 1,

logw = (1 + ϵ)6.455 log2(τ + 3), (20)
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h(ϵ, τ, x) := exp

(
−
√
(1 + ϵ) log2(τ + 3) +

2πx

6.455τ

)
,

with ϵ > 0, we obtain

∞∑
k=0

h(ϵ, τ, k) ≤
k2∑
k=0

h(ϵ, τ, k) +

∫ ∞

k2

h(ϵ, τ, x)dx ≤ Oϵ,k2
(1), (21)

with

Oϵ,k2
(1) =

k2∑
k=0

h(ϵ, τ, k) + h(ϵ, τ, k2) ·

√
6.455τ

√
2πk2 + τ(1 + ϵ)6.455 log2(τ + 3) + 6.455τ

π
,

where the Oϵ,k2
(1) will be computed later optimizing on k2 and ϵ. The above upper

bounds Equation (19) and Equation (21) will be used in the next section to prove

an explicit version of Lemma III.4.13 of [20]. It is interesting to note that within

this non-explicit result, a stronger version of Equation (11) was used, to assure that

Equation (19) and Equation (21) would converge for any w ≥ 0. As there is no

explicit version of this stronger PNT, we have that the two series converge only for

certain values of w. This will come with a loss in a term in Lemma 7, and therefore

balancing it with the above sums will be fundamental.

4.2. Some Useful Lemmas

The bulk of the proof of Theorem 4 can be contained in the following lemmas, which

encapsulate explicit versions of Lemma III.4.13 of [20].

Lemma 6. Let f be a 2π-periodic function of bounded variation on [0, 2π] with

mean value

f :=
1

2π

∫ 2π

0

f(t) dt.

For all real numbers τ , w, z such that τ ̸= 0, 1 < w < z, we have∑
w<p≤z

1

p
f(τ log p) = f log

(
log z

logw

)
+ Eτ (w).

Writing S(f) := supt|f(t)| and V (f) :=
∫ 2π

0
|d{f(t)}|, for 0 < |τ | ≤ 1, w = exp( cτ )

|Eτ (w)| ≤
( π

2c
+ 0.1522Ok1,c(1)

)
V (f) +

2.3391

c
S(f), (22)
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with Ok1,c(1) defined in Equation (19), while for |τ | ≥ 1, w = exp((1+ϵ)6.455 log2(τ+

3)), with ϵ > 0,

|Eτ (w)| ≤
(
π

2

1

τ logw
+ 0.1522Ok2,ϵ(1)

)
V (f) +

2.3391

(1 + ϵ)6.455 log2(τ + 3)
S(f),

(23)

with Ok2,ϵ(1) defined in Equation (21).

Proof. It is sufficient to prove this for τ > 0. Define R(t) := π(t)− li(t). By partial

summation, we have∑
w<p≤z

1

p
f(τ log p) =

∫ z

w

f(τ log t)

t log t
dt+

R(t)f(τ log t)

t

∣∣∣∣z
w

−
∫ z

w

R(t) d

(
f(τ log t)

t

)

= f log

(
log z

logw

)
+

∫ τ log z

τ logw

(
f(t)− f

) dt
t
+

R(t)f(τ log t)

t

∣∣∣∣z
w

−
∫ z

w

R(t)

t
d{f(τ log t)}+

∫ z

w

R(t)f(τ log t)

t2
dt. (24)

For the second term of Equation (24), we have from Equation 3.6 of [11] that,

for any real a and b, ∣∣∣∣∣
∫ b

a

(
f(t)− f

)
dt

∣∣∣∣∣ ≤ π

4
V (f). (25)

By the second mean value theorem for integrals, there exists a c ∈ (τ logw, τ log z]

so that∫ τ log z

τ logw

(
f(t)− f

) dt
t

=
1

τ logw

∫ c

τ logw

(f(t)− f)dt+
1

τ log z

∫ τ log z

c

(f(t)− f)dt.

(26)

Combining Equation (25) and Equation (26) we determine∣∣∣∣∣
∫ τ log z

τ logw

(
f(t)− f

) dt
t

∣∣∣∣∣ ≤ π

2

V (f)

τ logw
.

The third term of Equation (24) was previously estimated in Equation (16), the

fourth in Equation (18), Equation (19) and Equation (21), and the fifth in Equation

(17). Combining these results together, we have Equation (22) and Equation (23).

Recall Mertens’ second theorem in the following forms. Proposition 1 is given as

a corollary of [19, Theorem 1].

Proposition 1. Let x > 1. We have∑
p≤x

1

p
= log log x+M +M ′(x),
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where M ≈ 0.2614 . . . and

|M ′(x)| ≤ 1

log2(x)
.

Proposition 2. Let x ≥ 2. We have

log log x+ 0.2614 ≤
∑
p≤x

1

p
≤ log log x+ 0.8666.

Proof. The bounds follow from Theorem 5 in [19] and some simple computations.

Note that the upper bound is optimal, with equality occurring at x = 2.

We also introduce a helpful estimate.

Proposition 3. Let x > 1. We have∑
p≤x

log2 p

p
≤ (1 + 10−8)

log2 x

2
.

Proof. For 1 < x < 355991, one may verify that∑
p≤x

log2 p

p
≤ log2 x

2
.

When x ≥ 355991, we begin by applying partial summation to the sum in question:∑
p≤x

log2 p

p
=π(x)

log2 x

x
+

∫ 355991

2

π(t)

(
log2 t− 2 log t

t2

)
dt

+

∫ x

355991

π(t)

(
log2 t− 2 log t

t2

)
dt.

(27)

One may compute the first integral exactly and find that it is bounded by 65.204.

For the other instances of π(t), it is suitable to use [6, Theorem 1.10.7], which states

that, for t ≥ 355991,

π(t) ≤ t

log t

(
1 +

1

log t
+

2.51

log2 t

)
. (28)

Taking Equation (28) in Equation (27) and simplifying, one arrives at∑
p≤x

log2 p

p
≤ log2 x

2
(1 + ϵ(x)) ,

where

ϵ(x) ≤ 1.02 log log x

log2 x
− 8.808

log2 x
+

15.06

log3 x
.

We observe that ϵ(x) < 0 until x > ee
8.634

, and then ϵ(x) takes a maximum at

x0 ≈ ee
9.134

. At this maximum, ϵ(x0) ≤ 10−8, establishing the result.
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We can now obtain an important explicit estimate.

Lemma 7. Define f(t) := |cos(t)−K|, where K is defined in Theorem 4. Uniformly

for 0 < α ≤ 1, τ ∈ R, we have∑
p≤exp(1/α)

f(τ log p)

p
≤ (1−K) log

1

α
+ (2 + 2K) log log(|τ |+ 3) + C0,

where C0 = 7.28.

Proof. We may assume τ > 0. Start by considering τ ≤ α. We observe that the

Taylor expansion of cosx yields

|f(τ log p)− (1−K)| ≤ 1

2
(τ log p)2.

Hence, ∑
p≤w

f(τ log p)

p
≤ (1−K)

∑
p≤w

1

p
+

τ2

2

∑
p≤w

log2 p

p
. (29)

Applying Propositions 1 and 3 to Equation (29), we obtain∑
p≤exp(1/α)

f(τ log p)

p
≤ (1−K)

(
log

1

α
+M +M ′(exp(1/α))

)
+

(1 + 10−8)

4

( τ
α

)2
.

Let c > 1 be a constant that will be chosen later. When τ
c ≤ α ≤ 1, we have∑

p≤exp(1/α)

f(τ log p)

p
≤ (1−K) log

1

α
+ (1−K)(M + 1) +

(1 + 10−8)c2

4
. (30)

Now, we consider α < τ
c ≤ 1. If w = exp( cτ ), then Equation (29) yields∑

p≤w

f(τ log p)

p
≤ (1−K) (log logw +M +M ′(w)) +

(1 + 10−8)

4

≤ (1−K) log logw + (1−K)(M + 1) +
(1 + 10−8)c2

4
.

(31)

Noting that f = 1−K, S(f) = 1+K, and V (f) = 4, we can now take z = exp(α−1)

in Lemma 6. This yields∑
w<p≤z

f(τ log p)

p
≤ (1−K)

(
log

1

α
− log logw

)
+ |Eτ (w)|, (32)

where Eτ (w) is taken from Equation (22). Combining Equation (31) and Equation

(32) gives∑
p≤exp(1/α)

f(τ log p)

p
≤ (1−K) log

1

α
+(1−K)(M+1)+

(1 + 10−8)c2

4
+|Eτ (w)|. (33)
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For our choice of c, we focus on minimizing (1+10−8)c2

4 + |Eτ (w)|. Taking k1 = 0,

we find that the best choice of c is 2.67 and this leads to Equation (33) becoming∑
p≤exp(α−1)

f(τ log p)

p
≤ (1−K) log

1

α
+ 7.28. (34)

If |τ | > 1, we first consider the case that (1 + ϵ)6.455 log2(|τ | + 3) ≤ 1
α . Taking

w as in Equation (20) and z = exp(α−1) in Lemma 6, we obtain∑
w<p≤z

f(τ log p)

p
≤ (1−K) (log(1/α)− log logw) + Eτ (w), (35)

where |Eτ (w)| is bounded in Equation (23) (and therefore depends on choices of ϵ

and k2). It follows trivially from Proposition 1 and f(τ log p) ≤ 1 +K that

∑
p≤w

f(τ log p)

p
≤ (1 +K)

(
log logw +M +

1

((1 + ϵ)6.455)
2
log4(|τ |+ 3)

)
.

(36)

Taking Equation (35) and Equation (36) together, with our choice for w, yields∑
p≤exp(α−1)

f(τ log p)

p
≤(1−K) log

1

α
+ 4K log log(|τ |+ 3) + 2K log((1 + ϵ)6.455)

+ (1 +K)

(
M +

1

((1 + ϵ)6.455)
2
log4(|τ |+ 3)

)
+ Eτ (w).

(37)

We need to optimize the last three terms of Equation (37) with respect to ϵ and k2.

For fixed ϵ and τ , it appears that Ok2,ϵ(1) as defined in Equation (21) is decreasing

in k2, but the savings are slight for large enough k2. Therefore, in the interest

of simpler computations, we choose k2 = 3 · 105. Some rough optimization over

the terms involving ϵ in Equation (37) shows that ϵ = 3.61 gives a relatively small

maximum over these terms as a function of τ . Making this choice of ϵ and bounding

the terms by their maximum in τ , we determine that∑
p≤exp(α−1)

f(τ log p)

p
≤ (1−K) log

1

α
+ 4K log log(|τ |+ 3) + 3.25. (38)

The final case to consider is |τ | > 1 and (1 + ϵ)6.455 log2(|τ | + 3) > 1
α . In this

case the sum in question is bounded by the sum estimated in Equation (36), given

our choice of ϵ, this gives∑
p≤exp(α−1)

f(τ log p)

p
≤ (2 + 2K) log log(|τ |+ 3) + 4.87. (39)
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Taking Equation (34) as the worst case between Equation (30), Equation (34),

Equation (38) and Equation (39), completes the proof.

Here is interesting to note that, as it will be clear from the following results, the

constant C0 is the main contributor to the size of the constant in Theorem 4, and

thus of δ(c). Thus, reducing C0 would be a good starting point to improve Theorem

2.

Lemma 8. For α ∈ [0, 1], define λ := λ(α) to be the real number satisfying∑
p≤exp(α−1)

1− g(p)

p
= λ

∑
p≤exp(α−1)

1

p
.

Then,

ℜ
∑

p≤exp(α−1)

g(p)

p1+iτ
≤(1−Kλ) log(

1

α
) + (2 + 2K)(log log |τ |+ 3)

+ C0 + (K −Kλ)(M +M ′(exp(1/α))),

for any τ ∈ R.

Proof. Consider the identity

ℜ
(
g(p)

piτ

)
= g(p)(cos(τ log p)−K) +Kg(p)

≤ |cos(τ log p)−K| = f(τ log p) +Kg(p).

The definition of λ implies that∑
p≤exp(α−1)

g(p)

p
= (1− λ)

(
log

1

α
+M +M ′(exp(1/α))

)
. (40)

Therefore,

ℜ

 ∑
p≤exp(α−1)

g(p)

p1+iτ

 ≤
∑

p≤exp(α−1)

f(τ log p)

p
+K

∑
p≤exp(1/α)

g(p)

p
.

The result follows by applying Lemma 7 and Equation (40) to the terms above.

Let F (s) be the Dirichlet series corresponding to g(n). We have the following

bound.

Lemma 9. For ℜ(s) > 1, we have

|F (s)| ≤ exp(ν2) · exp

{
ℜ

(∑
p

g(p)

ps

)}
,

where ν2 = γ −M ≤ 0.316.
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Proof. Since g(n) is completely multiplicative, we have that

F (s) =
∏
p

(
1− g(p)

ps

)−1

.

Therefore,

|F (s)| =

∣∣∣∣∣exp
(
−
∑
p

log

(
1− g(p)

ps

))∣∣∣∣∣ .
Applying the Taylor expansion of log(1− x) to the inside of the above sum, gives

|F (s)| =

∣∣∣∣∣exp
(∑

p

∞∑
k=1

1

k

(
g(p)

ps

)k
)∣∣∣∣∣

=

∣∣∣∣∣exp
(∑

p

g(p)

ps

)∣∣∣∣∣ ·
∣∣∣∣∣exp

( ∞∑
k=2

1

k

∑
p

g(p)k

pks

)∣∣∣∣∣ .
(41)

The sum in the right-most term can be bounded above by the “prime” zeta function

P (s) :=
∑
p

1

ps
,

which converges for ℜ(s) > 1. Therefore, we have∣∣∣∣∣
∞∑
k=2

1

k

∑
p

g(p)k

pks

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
k=2

P (ks)

k

∣∣∣∣∣ ≤∑
k=2

P (k)

k
= γ −M. (42)

The equality in Equation (42) follows from the definition of B, since

γ −M =
∑
p

− log

(
1− 1

p

)
− 1

p
=
∑
p

∞∑
k=2

1

kpk
=

∞∑
k=2

P (k)

k
.

Inserting Equation (42) into Equation (41) yields the desired result.

The following result will be used in bounding the sum over primes in Lemma 9.

Lemma 10. Uniformly for 0 < α ≤ 1, we have

∞∑
exp(α−1)

1

p1+α
≤ 0.9235 =: v1.

Proof. By partial summation we have

∞∑
exp(α−1)

1

p1+α
= −π(exp(α−1)) exp(−(1 + α−1)) + (1 + α)

∫ ∞

exp(α−1)

π(x)

x2+α
dx.



INTEGERS: 24 (2024) 20

Using (3.6) from [19], we then obtain

∞∑
exp(α−1)

1

p1+α
≤ (1 + α)1.2551

∫ ∞

exp(α−1)

1

x1+α log x
dx ≤ (1 + α)1.2551

e
,

the result now follows taking the maximum over α ∈ (0, 1].

Note that using a better explicit version of the PNT could improve the above re-

sult, as this improvement appears to be minor we decided, for the sake of simplicity,

for the above version.

4.3. Proof of Theorem 4

We are now able to prove Theorem 4.

Proof of Theorem 4. Consider F (1 + α + it), where 0 < α ≤ 1 and t ∈ R. By

Lemma 9, we have

|F (1 + α+ it)| ≤ exp(ν2) · exp

{
ℜ

(∑
p

g(p)

p1+α+it

)}
. (43)

We break the sum over primes in Equation (43) at exp(α−1), yielding the bound∣∣∣∣∣ℜ
(∑

p

g(p))

p1+α+it

)∣∣∣∣∣ =
∣∣∣∣∣∣ℜ
 ∑

p≤exp(α−1)

g(p)

p1+α+it

+ ℜ

 ∑
p>exp(α−1)

g(p)

p1+α+it

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

p≤exp(α−1)

g(p)

p1+α+it

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
p>exp(α−1)

1

p1+α

∣∣∣∣∣∣ . (44)

Simply ignoring pα in the first sum on the right of Equation (44) and applying

Lemma 10 to the second sum, we obtain∣∣∣∣∣ℜ
(∑

p

g(p)

p1+α+it

)∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
p≤exp(α−1)

g(p)

p1+it

∣∣∣∣∣∣+ ν1. (45)

Now, we may apply Lemma 8 to the remaining sum in Equation (45) and place this

estimate in Equation (43) to establish

|F (1 + α+ iτ)| ≤ exp(C0 + ν1 + ν2 + (K −Kλ)(M + 1)). (46)

Write C := C0 + ν1 + ν2 +K(M + 1). Recalling Theorem 5, we see that Equation

(46) implies

H2(α) ≤ exp(2C)α2Kλ−2
∑
k∈Z

log2+2K(|k|+ 4)

(k − 1/2)2 + 1
.
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The integer sum above is a computable constant. Calling its square root ν3, gives

H(α) ≤ ν3 exp(C)αKλ−1, (47)

and we can note that ν3 ≤ 4.36. Now, if Λ := Λ(x) is defined by∑
p≤x

1− g(p)

p
= Λ

∑
p≤x

1

p
, (48)

then, for 1/log x ≤ α ≤ 1,∑
p≤exp(α−1)

1− g(p)

p
≥
∑
p≤x

1− g(p)

p
−

∑
exp(α−1)<p≤x

2

p

≥ (Λ− 2)
∑
p≤x

1

p
+ 2

∑
p≤exp(α−1)

1

p
.

Recalling the definition of λ in Lemma 8 and using Proposition 2, we easily obtain

αλ ≤ α2(log x)2−Λe3(0.867−0.261) ≤ α2(log x)2−Λe1.82,

which, when applied to Equation (47), implies

H(α) ≤ ν3 exp(C)e1.82Kα2K−1(log x)(2−Λ)K .

Taking this estimate for H(α) in Theorem 5, we find that |G(x)| is at most

(
3.14ν3 exp(C)e1.82K + o (1)

) x(log x)(2−Λ)K

log x

∫ 1

1/log x

α2K−2 dα+Ox0

(
x√
log x

)
=

(
3.14ν3 exp(C)e1.82K

1− 2K
+ o (1)

)
x(log x)(2−Λ)K

log x

(
log x1−KΛ − log x2−Λ

)
+Ox0

(
x√
log x

)
.

Collecting all the constants up to this point and calling them a (≈ 5.5 · 105), we
arrive at the bound

|G(x)| ≤ (a+ o (1))
x

log x
(log x)1−2K+(2−Λ)K +Ox0

(
x√
log x

)
= (a+ o (1))x(log x)−ΛK +Ox0

(
x√
log x

)
.

(49)

It follows from Equation (48) that

Λ =

∑
p≤x

1−g(p)
p − ΛM − ΛM ′(x)

log log x
,
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and that for x < 2, we can take Λ = 0. For x ≥ 2, we have Λ ≤ 2. Furthermore,

one may verify that |M ′(x)| < 0.6051 for 2 ≤ x < 4 and |M ′(x)| ≤ 1
ln2 4

< 0.6051

for x > 4. Therefore, we may write

a(log x)−ΛK = a exp(KΛM) exp (KΛM ′(x)) exp

−K
∑
p≤x

1− g(p)

p


≤ a exp (2KM + 1.21K) exp

−K
∑
p≤x

1− g(p)

p


= 9.75 · 105 exp

−K
∑
p≤x

1− g(p)

p

 .

(50)

Taking Equation (50) in Equation (49) completes the proof.
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