METRICAL PROPERTIES OF FUNCTIONS OF CONSECUTIVE DIGITS IN LÜROTH SERIES

Dmitry Kleinbock
Department of Mathematics, Brandeis University, Waltham, Massachusetts
kleinboc@brandeis.edu
Yuqing Zhang ${ }^{1}$
Department of Basic Courses, Wuhan Donghu University, Hubei, China
yuqingnanjing@gmail.com

Received: 12/4/23, Accepted: 6/25/24, Published: 7/8/24

Abstract

Recently, the growth of the products of Lüroth quotients $d_{i}(x)$ in the Lüroth expansion of a real number x was studied in connection with improvements to Dirichlet's theorem. In this paper, for a non-decreasing positive measurable function $F\left(x_{1}, \ldots, x_{m}\right)$ and a function $\phi: \mathbb{N} \rightarrow \mathbb{R}_{>0}$, we consider the following set: $\mathcal{E}_{F}(\phi)=\left\{x \in[0,1]: F\left(d_{n}(x), \ldots, d_{n+m-1}(x)\right) \geq \phi(n)\right.$ for infinitely many $\left.n \in \mathbb{N}\right\}$,

and obtain its Lebesgue measure $\lambda\left(\mathcal{E}_{F}(\phi)\right)$. As an application of our result, we consider the case when $F\left(x_{1}, \ldots, x_{m}\right)=x_{1}+\cdots+x_{m}$.

1. Introduction

Every $x \in(0,1]$ can be uniquely expressed in the form of a Lüroth series
$x=\frac{1}{d_{1}(x)}+\frac{1}{d_{1}(x)\left(d_{1}(x)-1\right) d_{2}(x)}+\frac{1}{d_{1}(x)\left(d_{1}(x)-1\right) d_{2}(x)\left(d_{2}(x)-1\right) d_{3}(x)}+\ldots$,
where $d_{n}(x) \in \mathbb{N}, d_{n}(x) \geq 2, n=1,2,3, \ldots$ Lüroth series can be studied through the Lüroth map \mathcal{L}, whose definition will be addressed in Section 2.

Let λ denote the Lebesgue measure on \mathbb{R}. H. Jager and C. de Vroedt [3] showed that \mathcal{L} is measure-preserving and ergodic. Also, they noted that the Lüroth quotients $d_{1}(x), d_{2}(x), \ldots$ can be viewed as random variables and are independent.

Throughout this paper, let $\Psi: \mathbb{N} \rightarrow \mathbb{R}_{>0}$ be a positive function. We consider the Lebesgue measure of the following set:

$$
\mathcal{E}(\Psi):=\left\{x \in(0,1]: d_{n}(x) \geq \Psi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

${ }^{1}$ Corresponding author

The following theorem is the Lüroth series analogue of the Borel-Bernstein Theorem for continued fractions.

Theorem 1 ([3]). The Lebesgue measure of $\mathcal{E}(\Psi)$ is given by

$$
\lambda(\mathcal{E}(\Psi))=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{n=1}^{\infty} \Psi(n)^{-1}<\infty \\
1 & \text { if } & \sum_{n=1}^{\infty} \Psi(n)^{-1}=\infty
\end{array}\right.
$$

Brown-Sarre, Robert, and Hussain [2] considered a weighted product of consecutive Lüroth digits: given $m \in \mathbb{N}$ and $\mathbf{t}=\left(t_{0}, \ldots, t_{m-1}\right) \in \mathbb{R}_{>0}^{m}$, they defined

$$
\mathcal{E}_{\mathbf{t}}(\Psi):=\left\{x \in(0,1]: \prod_{i=0}^{m-1} d_{n+i}^{t_{i}}(x) \geq \Psi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

and proved the following dichotomy statement for the Lebesgue measure of $\mathcal{E}_{\mathbf{t}}(\Psi)$.
Theorem $2([2])$. Let $m \in \mathbb{N}, \Psi: \mathbb{N} \rightarrow \mathbb{R}_{>0}$ and $\mathbf{t}=\left(t_{0}, \ldots, t_{m-1}\right) \in \mathbb{R}_{>0}^{m}$. If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \Psi(n)>1 \tag{1}
\end{equation*}
$$

then

$$
\lambda\left(\mathcal{E}_{\mathbf{t}}(\Psi)\right)=\left\{\begin{array}{ccc}
0 & \text { if } & \sum_{n=1}^{\infty} \frac{(\log \Psi(n))^{\ell(\mathbf{t})-1}}{\Psi(n)^{1 / T}}<\infty \\
1 & \text { if } & \sum_{n=1}^{\infty} \frac{(\log \Psi(n))^{\ell(\mathbf{t})-1}}{\Psi(n)^{1 / T}}=\infty
\end{array}\right.
$$

where

$$
\begin{equation*}
T:=\max \left\{t_{0}, t_{1}, \ldots, t_{m-1}\right\}, \quad \ell(\mathbf{t}):=\#\left\{j \in\{0, \ldots, m-1\}: t_{j}=T\right\} \tag{2}
\end{equation*}
$$

A similar result for weighted products of multiple partial quotients in continued fractions was obtained earlier in [1].

In this paper, for a fixed $m \in \mathbb{N}$, we consider positive non-decreasing measurable m-variable function $F\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ defined on $[2, \infty) \times[2, \infty) \times \ldots \times[2, \infty)$. The function F is said to be non-decreasing if for all fixed $a_{i}, b_{i}\left(a_{i} \geq 2, b_{i} \geq 2,1 \leq i \leq\right.$ m), the following condition holds:

$$
a_{i} \leq b_{i} \text { for all } i, 1 \leq i \leq m \Rightarrow F\left(a_{1}, a_{2}, \ldots, a_{m}\right) \leq F\left(b_{1}, b_{2}, \ldots, b_{m}\right)
$$

We define
$\mathcal{E}_{F}(\Psi)=\left\{x \in[0,1): F\left(d_{n}, \ldots, d_{n+m-1}\right) \geq \Psi(n)\right.$ for infinitely many $\left.n \in \mathbb{N}\right\}$.
It is clear that $\mathcal{E}_{F}(\Psi)$ generalizes $\mathcal{E}_{\mathbf{t}}(\Psi)$ in Theorem 2 , with

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\prod_{i=1}^{m} x_{i}^{t_{i}} \tag{3}
\end{equation*}
$$

Our first theorem gives a general zero - one law for the sets $\mathcal{E}_{F}(\Psi)$. Let $\mathbb{D}=\mathbb{N}_{\geq 2}$, and define

$$
\begin{equation*}
H(x)=\sum_{\substack{F\left(x_{1}, x_{2}, \ldots, x_{m}\right) \geq x, x_{1}, \ldots, x_{m} \in \mathbb{D}}} \prod_{i=1}^{n} \frac{1}{x_{i}\left(x_{i}-1\right)} . \tag{4}
\end{equation*}
$$

Theorem 3. Let $\Psi: \mathbb{N} \rightarrow \mathbb{R}_{>0}$. Suppose $F\left(x_{1}, \ldots, x_{m}\right)>0$ for $x_{1}, \ldots, x_{m} \in \mathbb{D}$, and let $H(x)$ be defined as in (4). Then

$$
\lambda\left(\mathcal{E}_{F}(\Psi)\right)= \begin{cases}0 & \text { if } \sum_{n=1}^{\infty} H(\Psi(n))<\infty \\ 1 & \text { if } \sum_{n=1}^{\infty} H(\Psi(n))=\infty\end{cases}
$$

Proof of Theorem 2 assuming Theorem 3. Let $t:=\min \left\{t_{0}, t_{1}, \ldots, t_{m-1}\right\}$. According to [2, Lemma 3.4], if $m \in \mathbb{N}, \mathbf{t} \in \mathbb{R}_{>0}^{m}$, and $g \geq 2^{m t}$, then

$$
\sum_{\substack{d_{0}^{t_{0}} \ldots d_{m-1}^{t_{m}} \geq \\ d_{1} \ldots, d_{m} \in \mathbb{D}}} \prod_{j=1}^{m} \frac{1}{d_{1}, \ldots, d_{m}\left(d_{j}-1\right)} \asymp_{m, \mathbf{t}} \frac{\log ^{\ell(\mathbf{t})-1} g}{g^{1 / T}}
$$

where T and $\ell(\mathbf{t})$ are as in (2). Thus, if we assume that $\Psi(n)>2^{m t}$ for all large enough $n \in \mathbb{N}$ and take F as in (3), it follows that

$$
H(\Psi(n)) \asymp_{m, \mathbf{t}} \frac{(\log \Psi(n))^{\ell(\mathbf{t})-1}}{\Psi(n)^{1 / T}}
$$

which makes the convergence/divergence conditions of Theorems 2 and 3 coincide.
It remains to consider the case when there are infinitely many $n \in \mathbb{N}$ such that $1<\Psi(n) \leq 2^{m t}$. Then, in view of (1), we can choose a real number y and an increasing sequence of natural numbers $\left(n_{j}\right)_{j \geq 1}$ such that

$$
\begin{equation*}
1<y<\Psi\left(n_{j}\right) \leq 2^{m t} \quad \text { for all } \quad j \in \mathbb{N} \tag{5}
\end{equation*}
$$

Then

$$
\log ^{\ell(\mathbf{t})-1} y<\log ^{\ell(\mathbf{t})-1} \Psi\left(n_{j}\right) \quad \text { and } \quad 2^{-m t / T} \leq \Psi\left(n_{j}\right)^{-1 / T} \quad \text { for all } \quad j \in \mathbb{N},
$$

and therefore,

$$
\sum_{j=1}^{\infty} \frac{\log ^{\ell(\mathbf{t})-1} \Psi\left(n_{j}\right)}{\Psi\left(n_{j}\right)^{1 / T}}=\infty
$$

Meanwhile, for any $x \in(0,1]$ and any $n \in \mathbb{N}$, we have $\prod_{i=0}^{m-1} d_{n+i}^{t_{i}}(x) \geq 2^{m t}$, and thus from (5) we have $\mathcal{E}_{\mathbf{t}}(\Psi)=(0,1]$. Hence Theorem 2 follows from Theorem 3.

For computations it is convenient to replace the summation in (4) with integration. For that, one needs to impose some regularity conditions on F. Namely, suppose that

$$
\begin{equation*}
\sup _{x_{i} \geq 2,1 \leq i \leq m} \frac{F\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{F\left(\left\lfloor x_{1}\right\rfloor,\left\lfloor x_{2}\right\rfloor, \ldots,\left\lfloor x_{m}\right\rfloor\right)}=M<\infty . \tag{6}
\end{equation*}
$$

Set

$$
\begin{equation*}
G(x)=\int_{\substack{F\left(x_{1}, \ldots, x_{m}\right) \geq x, x_{1} \geq 2, \ldots, x_{m} \geq 2}} \cdots \int_{1} \frac{1}{x_{1}^{2} \cdots x_{m}^{2}} d x_{1} \cdots d x_{m} \tag{7}
\end{equation*}
$$

Theorem 4. Let $\Psi: \mathbb{N} \rightarrow \mathbb{R}_{>0}$. Suppose $F\left(x_{1}, \ldots, x_{m}\right)>0$ for $x_{i} \geq 2,1 \leq i \leq m$, and that F is non-decreasing and satisfies (6). Let $G(x)$ be defined as in (7). Then

$$
\lambda\left(\mathcal{E}_{F}(\Psi)\right)= \begin{cases}0 & \text { if } \sum_{n=1}^{\infty} G(\Psi(n))<\infty \\ 1 & \text { if } \sum_{n=1}^{\infty} G(M \Psi(n))=\infty\end{cases}
$$

where M is as in (6).
As an example, this theorem can be applied to the function

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{m}\right)=x_{1}+\ldots+x_{m} \tag{8}
\end{equation*}
$$

in the following way: if $\Psi: \mathbb{N} \rightarrow \mathbb{R}_{\geq m}$ and $F(x)$ is defined as in (8), then

$$
\lambda\left(\mathcal{E}_{F}(\Psi)\right)=\left\{\begin{array}{ccc}
0 & \text { if } & \sum_{n=1}^{\infty} \frac{1}{\Psi(n)}<\infty \tag{9}\\
1 & \text { if } & \sum_{n=1}^{\infty} \frac{1}{\Psi(n)}=\infty
\end{array}\right.
$$

Indeed, one can show that for any $m \in \mathbb{N}$ and $a \geq m$,

$$
\int_{\substack{x_{1}+x_{2}+\ldots+x_{m} \geq a, x_{1} \geq 1, \ldots, x_{m} \geq 1}} \frac{1}{x_{1}^{2} \cdots x_{m}^{2}} d x_{1} \cdots d x_{m} \asymp_{m} \frac{1}{a}
$$

(the upper bound is derived in $[6,(3.2)]$, and the lower bound can be established by a similar method).

We would like to remark though that (9) can be easily shown without using Theorem 4. Namely, if $\sum_{n \in \mathbb{N}} \frac{1}{\Psi(n)}$ converges, then the same is true for
$\sum_{n \in \mathbb{N}} \frac{1}{\min (\Psi(n), \ldots, \Psi(n-m+1))}$. The set

$$
\left.\left\{x \in(0,1]: d_{n}+\ldots+d_{n+m-1}>\Psi(n)\right\} \text { for infinitely many } n\right\}
$$

is contained in

$$
\left\{x \in(0,1]: d_{n}>\min (\Psi(n), \ldots, \Psi(n-m+1)) \text { for infinitely many } n\right\}
$$

which has measure 0 from Theorem 1. On the other hand, if $\sum_{n=1}^{\infty} \frac{1}{\Psi(n)}=\infty$, then by the divergence case of Theorem 1, for Lebesgue-a.e. x, one has $d_{n}(x) \geq \Psi(n)$ for infinitely many $n \in \mathbb{N}$, and hence the same is true for $d_{n}(x)+\ldots+d_{n+m-1}(x)$.

Figure 1: The Lüroth map

2. Lüroth Series

Let $d_{1}:(0,1] \rightarrow \mathbb{D}=\mathbb{N}_{\geq 2}$ be defined as $d_{1}(x)=\left\lfloor\frac{1}{x}\right\rfloor+1$. Then d_{1} assigns to each $x \in(0,1]$ an integer greater than 1 . The Lüroth map $\mathcal{L}(x):[0,1] \rightarrow[0,1]$ is defined by

$$
\mathcal{L}(x)= \begin{cases}d_{1}(x)\left(d_{1}(x)-1\right) x-\left(d_{1}(x)-1\right) & \text { if } x \in(0,1] \\ 0 & \text { if } x=0\end{cases}
$$

Figure 1 shows the graph of the Lüroth map. It is constructed similarly to the Gauss map used to define continued fractions. However the Gauss map is piecewise fractional-linear, while the Lüroth map has linear branches. This makes the analysis of Lüroth series easier than that of continued fractions.

For $x \in(0,1]$ and $n \in \mathbb{D}$, we set $d_{n}(x)=d_{1}\left(\mathcal{L}^{n-1}(x)\right)$, where the exponent $n-1$ denotes the $(n-1)$-th iteration. We call \mathcal{L} a shift operator. If x has Lüroth digits $\left(c_{1}, c_{2}, \ldots\right)$, then $\mathcal{L}(x)$ has Lüroth digits $\left(c_{2}, c_{3}, \ldots\right)$. For $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{D}^{n}$, we define the cylinder of level n based at \mathbf{c} as

$$
I_{n}(\mathbf{c}):=\left\{x \in(0,1]: d_{1}(x)=c_{1}, \ldots, d_{n}(x)=c_{n}\right\}
$$

We set $I_{n}(\mathbf{c})$ to be the set of all real numbers in $(0,1]$ whose Lüroth expansion begin with $\left(c_{1}, \ldots, c_{n}\right)$.

For each $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{D}^{n}$, set

$$
\left\langle c_{1}, \ldots, c_{n}\right\rangle:=\frac{1}{c_{1}}+\frac{1}{c_{1}\left(c_{1}-1\right) c_{2}}+\ldots+\frac{1}{c_{1}\left(c_{1}-1\right) c_{2}\left(c_{2}-1\right) \ldots c_{n-1}\left(c_{n-1}-1\right) c_{n}}
$$

Proposition 1 ([2]). For every $n \in \mathbb{N}$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{D}^{n}$, we have

$$
I_{n}(\mathbf{c})=\left(\left\langle c_{1}, \ldots, c_{n}\right\rangle,\left\langle c_{1}, \ldots, c_{n}-1\right\rangle\right),
$$

and therefore

$$
\begin{equation*}
\lambda\left(I_{n}(\mathbf{c})\right)=\prod_{j=1}^{n} \frac{1}{c_{j}\left(c_{j}-1\right)} . \tag{10}
\end{equation*}
$$

3. Proof of Theorem 3

In this section, our arguments largely follow those of Huang, Wu, and Xu [4]. Fix an $m \in \mathbb{N}$. Let $n \in \mathbb{N}$. Suppose that F is a positive non-decreasing m-variable measurable function. Define

$$
A_{n}=\left\{x \in(0,1]: F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n)\right\} .
$$

It is clear that $x \in \mathcal{E}_{F}(\Psi)$ if and only if $\mathcal{L}^{n-1}(x) \in A_{n}$ for infinitely many $n \in \mathbb{N}$. Clearly A_{n} can be written as a union of a collection of m-th order cylinders:

$$
A_{n}=\bigcup_{\substack{F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n) \\ d_{1}, \ldots, d_{m} \in \mathbb{D}}} I_{m}\left(d_{1}, \ldots, d_{m}\right) .
$$

Therefore,

$$
\lambda\left(A_{n}\right)=\sum_{\substack{F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n) \\ d_{1}, \ldots, d_{m} \in \mathbb{D}}} \lambda\left(I_{m}\left(d_{1}, \ldots, d_{m}\right)\right) .
$$

From (10), we have

$$
\begin{equation*}
\lambda\left(A_{n}\right)=\sum_{\substack{F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n) \\ d_{1}, \ldots, d_{m} \in \mathbb{D}}} \prod_{k=1}^{m} \frac{1}{d_{k}\left(d_{k}-1\right)} . \tag{11}
\end{equation*}
$$

The following theorem is Lemma 3.2 of [2].
Theorem 5. Fix $m \in \mathbb{N}$. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of at most countable unions of cylinders of level m. We have

$$
\lambda\left(\limsup _{n \rightarrow \infty} \mathcal{L}^{-n}\left[A_{n}\right]\right)= \begin{cases}0 & \text { if } \sum_{n=1}^{\infty} \lambda\left(A_{n}\right)<\infty \\ 1 & \text { if } \sum_{n=1}^{\infty} \lambda\left(A_{n}\right)=\infty\end{cases}
$$

Proof of Theorem 3. By (11), the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} H((\Psi(n)) \tag{12}
\end{equation*}
$$

converges (respectively, diverges) if and only if so does the series $\sum_{n=1}^{\infty} \lambda\left(A_{n}\right)$. By Theorem 5, this implies that the series (12) converges (respectively, diverges) if and only if the set

$$
\left\{x \in(0,1]: \mathcal{L}^{n}(x) \in A_{n} \text { for infinitely many } n \in \mathbb{N}\right\}
$$

has zero (respectively, full) measure. The latter, since \mathcal{L} is measure-preserving, amounts to saying that $\left.\lambda\left(\mathcal{E}_{F} \Psi\right)\right)$ is equal to zero (respectively, one).

In order to prove Theorem 4, we give the upper and lower bounds for $\lambda\left(A_{n}\right)$.
Theorem 6. For $n \in \mathbb{N}$, we have $\lambda\left(A_{n}\right) \leq 3^{m} G(\Psi(n))$.
Proof. It is clear that

$$
\frac{1}{d_{k}\left(d_{k}-1\right)} \leq \frac{3}{d_{k}\left(d_{k}+1\right)}, \quad d_{k} \geq 2
$$

From (11), we have

$$
\begin{aligned}
\lambda\left(A_{n}\right) & \leq 3^{m} \sum_{\substack{F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n) \\
d_{1}, \ldots, d_{m} \in \mathbb{D}}} \frac{1}{d_{k}\left(d_{k}+1\right)}=3^{m} \sum_{\substack{F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n) \\
d_{1}, \ldots, d_{m} \in \mathbb{D}}} \prod_{k=1}^{m} \int_{d_{k}}^{d_{k}+1} \frac{1}{x_{k}^{2}} d x_{k} \\
& =3^{m} \sum_{\substack{F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n) \\
d_{1}, \ldots, d_{m} \in \mathbb{D}}} \int_{d_{1}}^{d_{1}+1} \ldots \int_{d_{m}}^{d_{m}+1} \frac{1}{x_{1}^{2} \ldots x_{m}^{2}} d x_{1} \ldots d x_{m} .
\end{aligned}
$$

The domain of the above integration is

$$
\begin{equation*}
Q_{1}=\left\{\left[d_{1}, d_{1}+1\right) \times \cdots \times\left[d_{m}, d_{m}+1\right): F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n), d_{1}, \ldots, d_{m} \in \mathbb{D}\right\} \tag{13}
\end{equation*}
$$

which is a subset of

$$
\left\{\left(x_{1}, \ldots, x_{m}\right): x_{1} \geq 2, \ldots, x_{m} \geq 2, F\left(x_{1}, \ldots, x_{m}\right) \geq \Psi(n)\right\}
$$

since F is non-decreasing. Therefore,

$$
\lambda\left(A_{n}\right) \leq 3^{m} \int \cdots \int_{\substack{F\left(x_{1}, \ldots, x_{m}\right) \geq \Psi(n), x_{1} \geq 2, \cdots, x_{m} \geq 2}} \frac{1}{x_{1}^{2} \cdots x_{m}^{2}} d x_{1} \cdots d x_{m}=3^{m} G(\Psi(n))
$$

Theorem 7. For $n \in \mathbb{N}$, we have $\lambda\left(A_{n}\right) \geq G(M \Psi(n))$, where M is defined in (6).
Proof. From (11) we have

$$
\begin{align*}
\lambda\left(A_{n}\right) & =\sum_{\substack{F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n) \\
d_{1}, \ldots, d_{m} \in \mathbb{D}}} \prod_{k=1}^{m} \frac{1}{d_{k}\left(d_{k}-1\right)} \geq \sum_{\substack{F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n) \\
d_{1}, \ldots, d_{m} \in \mathbb{D}}} \prod_{k=1}^{m} \int_{d_{k}}^{d_{k}+1} \frac{1}{x_{k}^{2}} d x_{k} \tag{14}\\
& =\int \cdots \int_{Q_{1}} \frac{1}{x_{1}^{2} \cdots x_{m}^{2}} d x_{1} \cdots d x_{m}
\end{align*}
$$

where Q_{1} is defined in (13). Let

$$
Q_{2}=\left\{\left(x_{1}, \ldots, x_{m}\right): x_{1} \geq 2, \ldots, x_{m} \geq 2, F\left(x_{1}, \ldots, x_{m}\right) \geq M \Psi(n)\right\}
$$

Then $Q_{2} \subset Q_{1}$. To see this, note that if $\left(x_{1}, \ldots, x_{m}\right) \in Q_{2}$, then $F\left(x_{1}, \ldots, x_{m}\right) \geq$ $M \Psi(n)$. From (6), we have

$$
F\left(\left\lfloor x_{1}\right\rfloor, \ldots,\left\lfloor x_{m}\right\rfloor\right) \geq \Psi(n)
$$

Therefore,

$$
\left(x_{1}, \ldots, x_{m}\right) \in\left[\left\lfloor x_{1}\right\rfloor,\left\lfloor x_{1}\right\rfloor+1\right) \times \cdots \times\left[\left\lfloor x_{m}\right\rfloor,\left\lfloor x_{m}\right\rfloor+1\right) \subset Q_{1}
$$

From (14), we have

$$
\mathcal{L}\left(A_{n}\right) \geq \int \cdots \int_{Q_{2}} \frac{1}{x_{1}^{2} \cdots x_{m}^{2}} d x_{1} \cdots d x_{m}
$$

From (7), we have $\lambda\left(A_{n}\right) \geq G(M \Psi(n))$.
Proof of Theorem 4. Set

$$
\mathcal{R}_{n}=\left\{\left(d_{1}, \ldots, d_{m}\right) \in \mathbb{D}^{m}: F\left(d_{1}, \ldots, d_{m}\right) \geq \Psi(n)\right\}
$$

and let $A_{n}=\bigcup_{\mathbf{d} \in \mathcal{R}_{n}} I_{m}(\mathbf{d})$.
If $\sum_{n=1}^{\infty} G(\Psi(n))^{n}<\infty$, then by Theorem 6 , we have

$$
\sum_{n=1}^{\infty} \lambda\left(A_{n}\right)<\infty
$$

By Theorem $5, \lambda\left(\left\{x \in(0,1]: \mathcal{L}^{n}(x) \in A_{n}\right.\right.$ for infinitely many $\left.\left.n \in \mathbb{N}\right\}\right)=0$. Therefore,

$$
\lambda\left(\mathcal{E}_{F}(\Psi)\right)=\lambda\left(\left\{x \in(0,1]: \mathcal{L}^{n-1}(x) \in A_{n} \text { for infinitely many } n \in \mathbb{N}\right\}\right)
$$

Since \mathcal{L} is measure-preserving, we have $\lambda\left(\mathcal{E}_{F}(\Psi)\right)=0$.
On the other hand, if $\sum_{n=1}^{\infty} G(M \Psi(n))=\infty$, then by Theorem 7 , we have

$$
\sum_{n=1}^{\infty} \lambda\left(A_{n}\right)=\infty
$$

By Theorem $5, \lambda\left(\left\{x \in(0,1]: \mathcal{L}^{n}(x) \in A_{n}\right.\right.$ for infinitely many $\left.\left.n \in \mathbb{N}\right\}\right)=1$. From the fact that \mathcal{L} is measure-preserving, we have $\lambda\left(\mathcal{E}_{F}(\Psi)\right)=1$.

Acknowledgements. The authors are thankful to the referee for a careful reading of the paper and for suggesting an idea to derive (9) from Theorem 1. Dmitry Kleinbock was supported by NSF grant DMS-2155111. The research of Yuqing Zhang is supported by National Natural Science Foundation of China grant 12101468.

References

[1] A. Bakhtawar, M. Hussain, D. Kleinbock, and B. Wang, Metrical properties for the weighted products of multiple partial quotients in continued fractions, Houston J. Math, to appear.
[2] A. Brown-Sarre, G. Robert, and M. Hussain, Metrical properties of weighted products of consecutive Lüroth digits, preprint, arXiv:2306.06886.
[3] H. Jager and C. de Vroedt, Lüroth series and their ergodic properties, Nederl. Akad. Wetensch. Proc. Ser. A 72 (31) (1969), 31-42.
[4] L. Huang, J. Wu, and J. Xu, Metric properties of the product of consecutive partial quotients in continued fractions, Israel J. Math 238 (2) (2020), 901-943.
[5] D. Kleinbock and N. Wadleigh, A zero-one law for improvements to Dirichlet's theorem, Proc. Amer. Math. Soc 146 (5) (2018), 1833-1844.
[6] Y. Zhang, Metrical properties for functions of consecutive multiple partial quotients in continued fractions, Int. J. Number Theory, to appear.

