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Abstract

In this paper, the Diophantine equation nx + (5p)y = z2, where n is a positive

integer, p is a prime number, and x, y, z are non-negative integers, is investi-

gated. We show that if n ≡ 1 (mod 4) and p ≡ 1 (mod 4), then the equation

has no non-negative integer solution. If n = 2 and p ≡ 3 (mod 4), then all non-

negative integer solutions of the equation are (p, x, y, z) ∈ {(3, 6, 2, 17), (p, 3, 0, 3)}∪{
(p, 0, 1,

√
5p+ 1) :

√
5p+ 1 ∈ Z

}
. If n ≡ 3 (mod 60) or n ≡ 27 (mod 60), and

p ≡ 7 (mod 12) with gcd(n, p) = 1 and gcd(n, 5p − 1) = 1, then all non-negative

integer solutions of the equation are (x, y, z) ∈
{
(0, 1,

√
5p+ 1) :

√
5p+ 1 ∈ Z

}
∪{

(1, 0,
√
n+ 1) :

√
n+ 1 ∈ Z

}
.

1. Introduction

Recently, the Diophantine equations of the type nx +5y = z2, where n is a positive

integer and x, y, z are non-negative integers, have been studied by many researchers.

Some of these can be seen in [1], [3], [5], [6], [8], [10], [11], [12], [14], [15], [16], [20]

and [21]. Furthermore, in 2014, Sroysang [17, 19] proved that the Diophantine equa-

tions 3x+85y = z2 and 3x+45y = z2 have the unique non-negative integer solution

(x, y, z) = (1, 0, 2). He [18] also showed that the Diophantine equation 4x+10y = z2

has no non-negative integer solution. In 2019, Burshtein [4] established that the Dio-

phantine equation 7x+10y = z2 has no positive integer solution. In 2022, Biswas [2]

showed that the Diophantine equation 3x+35y = z2 has only two non-negative inte-

ger solutions (x, y, z) ∈ {(1, 0, 2), (0, 1, 6)}. In the same year, Thongnak, Chuayjan

and Kaewong [22] proved that the Diophantine equation 2x + 15y = z2 has exactly

three non-negative integer solutions (x, y, z) ∈ {(3, 0, 3), (0, 1, 4), (6, 2, 17)}.
In this paper, we will study the Diophantine equation

nx + (5p)y = z2, (1)
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where n is a positive integer, p is a prime number, and x, y, z are non-negative

integers. Our main results will be stated and proved in Section 3.

2. Preliminaries

In the beginning of this section, we present an important theorem, which is the

result of research by Euler [13, p. 118] and Chao [7].

Theorem 1. The Diophantine equation u2−1 = vq has the unique integer solution

(u, v, q) = (3, 2, 3), where u, v, and q are positive integers with q ≥ 3.

Lemma 1. Let y = 0. If n = 2, then Equation (1) has the unique non-negative

integer solution (x, y, z) = (3, 0, 3). If n ̸= 2, then (x, y, z) is a non-negative integer

solution of Equation (1) if and only if (x, y, z) ∈
{
(1, 0,

√
n+ 1) :

√
n+ 1 ∈ Z

}
.

Proof. Let x and z be non-negative integers such that nx + 1 = z2 or z2 − 1 = nx.

It is easy to check that z > 1, n > 1, and x ≥ 1. If x = 1, then z2 = n + 1 and so

z =
√
n+ 1. Thus (x, y, z) = (1, 0,

√
n+ 1), where

√
n+ 1 is an integer. If x = 2,

then z = 1 and n = 0, a contradiction. If x ≥ 3, then n = 2 and (x, y, z) = (3, 0, 3),

by Theorem 1.

By Lemma 1, we have the following corollary.

Corollary 1. If x = 0, then (x, y, z) is a non-negative integer solution of Equation

(1) if and only if

(x, y, z) ∈
{
(0, 1,

√
5p+ 1) :

√
5p+ 1 ∈ Z

}
.

Lemma 2. Let n ≡ 2 (mod 5) or n ≡ 3 (mod 5). If y > 0 and Equation (1) has

a non-negative integer solution, then x is even.

Proof. Let x, y, z be non-negative integers and (x, y, z) be a solution of Equation

(1). Since y > 0, we get (5p)y ≡ 0 (mod 5). Assume that x is odd. Then x = 2k+1,

for some non-negative integer k. Since n ≡ 2 (mod 5) or n ≡ 3 (mod 5), we have

n2 ≡ −1 (mod 5) and so nx = n2k+1 ≡ 2(−1)k (mod 5). Then nx ≡ 2 (mod 5) or

nx ≡ −2 (mod 5). From Equation (1), it follows that z2 ≡ 2 (mod 5) or z2 ≡ −2

(mod 5). This is impossible since z2 ≡ 0 (mod 5) or z2 ≡ 1 (mod 5) or z2 ≡ 4

(mod 5). Hence, x is even.

Lemma 3. Let n ≡ 3 (mod 4) and p ≡ 3 (mod 4). If Equation (1) has a non-

negative integer solution, then x and y have opposite parity.



INTEGERS: 24 (2024) 3

Proof. Let x, y and z be non-negative integers and (x, y, z) be a solution of Equation

(1). Since n ≡ 3 (mod 4) and p ≡ 3 (mod 4), we have z2 = nx + (5p)y ≡ (−1)x +

(−1)y (mod 4). Since n and 5p are odd, we get that z is even and so z2 ≡ 0 (mod 4).

Then (−1)x + (−1)y ≡ 0 (mod 4). Hence, x and y have opposite parity.

3. Main Results

Now, we prove our results.

Theorem 2. If n ≡ 1 (mod 4) and p ≡ 1 (mod 4), then Equation (1) has no

non-negative integer solution.

Proof. Assume that x, y, z are non-negative integers and (x, y, z) is a solution of

Equation (1). Since n ≡ 1 (mod 4) and p ≡ 1 (mod 4), we have nx ≡ 1 (mod 4)

and (5p)y ≡ 1 (mod 4). Then z2 = nx + (5p)y ≡ 2 (mod 4). This is impossible

since z2 ≡ 0 (mod 4) or z2 ≡ 1 (mod 4).

By Theorem 2, we have the following result of Moonchaisook et al. [9].

Corollary 2 ([9]).The Diophantine equation (5n)x + (4mp+ 1)y = z2 has no non-

negative integer solution, where p is an odd prime and m,n are positive integers.

Theorem 3. If n = 2 and p ≡ 3 (mod 4), then (p, x, y, z) is a non-negative integer

solution of Equation (1) if and only if

(p, x, y, z) ∈ {(3, 6, 2, 17), (p, 3, 0, 3)} ∪
{
(p, 0, 1,

√
5p+ 1) :

√
5p+ 1 ∈ Z

}
.

Proof. Let x, y, z be non-negative integers and (x, y, z) be a solution of Equation

(1). Then 2x + (5p)y = z2.

Case 1. y = 0. By Lemma 1, we get (p, x, y, z) = (p, 3, 0, 3).

Case 2. y > 0. By Lemma 2, we get x is even. If x = 0, then we get (p, x, y, z) =

(p, 0, 1,
√
5p+ 1), where

√
5p+ 1 is an integer, by Corollary 1. Next, we consider

x ≥ 2. Then 2x + (5p)y is odd and so z2 ≡ 1 (mod 4). Since p ≡ 3 (mod 4), we

get z2 = 2x + (5p)y ≡ 0 + (−1)y (mod 4). Then 1 ≡ 0 + (−1)y (mod 4) and so y

is even. Then y = 2h, for some positive integer h. It follows that z2 − (5p)2h = 2x

and so

(z − (5p)h)(z + (5p)h) = 2x.

There exists a non-negative integer w such that

z − (5p)h = 2w (2)
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and

z + (5p)h = 2x−w. (3)

From Equation (2) and Equation (3), we get x > 2w and

2(5p)h = 2w(2x−2w − 1).

Since p is a prime number with p ≡ 3 (mod 4), we have w = 1 and 2x−2−1 = (5p)h.

If x = 2, then (5p)h = 0, a contradiction. Thus x ≥ 4 and so x = 2k, for some

positive integer k ≥ 2. Then
(
2k−1

)2 − 1 = (5p)h. If h = 2, then k = 1 and 5p = 0,

a contradiction. Assume that h ≥ 3. By Theorem 1, it follows that 5p = 2. This

is impossible. Thus h = 1. This implies that y = 2 and (2k−1 − 1)(2k−1 + 1) = 5p.

Since p is a prime number with p ≡ 3 (mod 4), we consider the following subcases:

Case 2.1. 2k−1 − 1 = 5 and 2k−1 + 1 = p. Then p = 7 and so 2k−1 = 6, a

contradiction.

Case 2.2. 2k−1 − 1 = p and 2k−1 + 1 = 5. Then p = k = 3 and so x = 6. Then

z2 = 26 + 152 or z = 17. Thus (p, x, y, z) = (3, 6, 2, 17).

Case 2.3. 2k−1 − 1 = 1 and 2k−1 + 1 = 5p. Then 5p = 3, a contradiction.

Case 2.4. 2k−1 − 1 = 5p and 2k−1 + 1 = 1. Then 5p < 1, a contradiction.

By Theorem 3, if p = 3, then we have the following result of Thongnak, Chuayjan

and Kaewong [22].

Corollary 3 ([22]). The Diophantine equation 2x + 15y = z2 has exactly three

non-negative integer solutions (x, y, z), namely, (3, 0, 3), (0, 1, 4) and (6, 2, 17).

Theorem 4. If n ≡ 3 (mod 60) or n ≡ 27 (mod 60), and p ≡ 7 (mod 12) with

gcd(n, p) = gcd(n, 5p − 1) = 1, then (x, y, z) is a non-negative integer solution of

Equation (1) if and only if

(x, y, z) ∈
{
(0, 1,

√
5p+ 1) :

√
5p+ 1 ∈ Z

}
∪
{
(1, 0,

√
n+ 1) :

√
n+ 1 ∈ Z

}
.

Proof. Let x, y, z be non-negative integers and (x, y, z) be a solution of Equation

(1). Since n ≡ 3 (mod 60) or n ≡ 27 (mod 60), it implies that n ≡ 0 (mod 3),

n ≡ 3 (mod 4) and n ≡ 2 (mod 5) or n ≡ 3 (mod 5).

Case 1. y = 0. Since n ̸= 2, we get (x, y, z) = (1, 0,
√
n+ 1), where

√
n+ 1 is an

integer, by Lemma 1.

Case 2. y > 0. Since n ≡ 2 (mod 5) or n ≡ 3 (mod 5), it follows by Lemma 2

that x = 2k for some non-negative integer k. If k = 0, then we get (x, y, z) =

(0, 1,
√
5p+ 1), where

√
5p+ 1 is an integer, by Corollary 1. Next, we consider

k > 0. Since p ≡ 3 (mod 4), n ≡ 3 (mod 4) and x is even, we obtain that y is odd,
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by Lemma 3. From Equation (1), we get z2 − n2k = (5p)y and so

(z − nk)(z + nk) = (5p)y.

There exist non-negative integers u and v such that

z − nk = 5u · pv (4)

and

z + nk = 5y−u · py−v. (5)

From Equation (4) and Equation (5), we get

2 · nk = 5y−u · py−v − 5u · pv. (6)

Case 2.1. y − v = 0. From Equation (6), we have

2 · nk = 5y−u − 5u · py. (7)

Case 2.1.1. y − u = 0. Then 2 · nk = 1− (5p)y < 0, a contradiction.

Case 2.1.2. u = 0. Since p > 5, we have 2 · nk = 5y − py < 0, a contradiction.

Case 2.1.3. y−u > 0 and u > 0. From Equation (7), we get 5 | n, a contradiction

since n ≡ 2 (mod 5) or n ≡ 3 (mod 5).

Case 2.2. v = 0. From Equation (6), we have

2 · nk = 5y−u · py − 5u. (8)

Case 2.2.1. y − u = 0. From Equation (8), we get 2 · nk = py − 5y. Since k > 0,

we have nk ≡ 0 (mod 3) and so py − 5y = 2 ·nk ≡ 0 (mod 3). Then py − (−1)y ≡ 0

(mod 3). Since y is odd, we get py + 1 ≡ 0 (mod 3). It is impossible since p ≡ 1

(mod 3).

Case 2.2.2. u = 0. From Equation (8), we get

2 · nk = (5p)y − 1 = (5p− 1)((5p)y−1 + (5p)y−2 + · · ·+ 1).

Since k > 0 and 5p− 1 > 2, there exists a prime q such that q | n and q | (5p− 1)

which is impossible since gcd(n, 5p− 1) = 1.

Case 2.2.3. y − u > 0 and u > 0. From Equation (8), we get 5 | n which is

impossible since n ≡ 2 (mod 5) or n ≡ 3 (mod 5).

Case 2.3. y−v > 0 and v > 0. From Equation (6), we get p | n which is impossible

since gcd(n, p) = 1.
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By Theorem 4, if n = 3 and p = 7, then we have the following result of Biswas

[2].

Corollary 4 ([2]).The Diophantine equation 3x + 35y = z2 has only two non-

negative integer solutions (x, y, z), namely, (1, 0, 2) and (0, 1, 6).

Acknowledgement. The author would like to thank the reviewers for a careful

reading of this manuscript and the useful comments. This work was supported by

the Research and Development Institute and the Faculty of Science and Technology,

Thepsatri Rajabhat University, Thailand.

References

[1] D. Acu, On a Diophantine equation 2x + 5y = z2, Gen. Math. 15(4) (2007), 145-148.

[2] D. Biswas, Does the solution to the non-linear Diophantine equation 3x + 35y = z2 exist?, J.
Sci. Res. 14(3) (2022), 861-865.

[3] N. Burshtein, On solutions to the Diophantine equations 5x + 103y = z2 and 5x + 11y = z2

with positive integers x, y, z, Ann. Pure Appl. Math. 19(1) (2019), 75-77.

[4] N. Burshtein, On solutions to the Diophantine equation 7x+10y = z2 when x, y, z are positive
integers, Ann. Pure Appl. Math. 20(2) (2019), 75-77.

[5] N. Burshtein, On the class of the Diophantine equations 5x+(10K+M)y = z2 and 5x+5y = z2

with positive integers x, y, z when M = 1, 3, 7, 9, Ann. Pure Appl. Math. 21(2) (2020), 77-86.

[6] I. Cheenchan, S. Phona, J. Ponggan, S. Tanakan and S. Boonthiem, On the Diophantine
equation px + 5y = z2, SNRU J. Sci. Technol. 8(1) (2016), 146-148.

[7] K. Chao, On the Diophantine equation x2 = yn + 1, xy ̸= 0, Sci. Sinica 14 (1965), 457-460.

[8] M. Khan, A. Rashid and S. Uddin, Non-negative integer solutions of two Diophantine equations
2x + 9y = z2 and 5x + 9y = z2, J. Appl. Math. Phys. 4 (2016), 762-765.

[9] V. Moonchaisook, W. Moonchaisook and K. Moonchaisook, On the Diophantine equation
(5n)x + (4mp+ 1)y = z2, Int. J. Res. Innov. Appl. Sci. 6(7) (2021), 55-58.

[10] J.F.T. Rabago, More on Diophantine equations of type px + qy = z2, Int. J. Math. Sci.
Comput. 3(1) (2013), 15-16.

[11] B.R. Sangam, On the Diophantine equations 3x+6y = z2 and 5x+8y = z2, Ann. Pure Appl.
Math. 22(1) (2020), 7-11.

[12] C. Saranya and G. Yashvandhini, Integral solutions of an exponential Diophantine equation
25x +24y = z2, Int. J. Sci. Res. in Mathematical and Statistical Sciences 9(4) (2022), 50-52.

[13] R. Schoof, Catalan’s conjecture, Springer-Verlag, London, 2008.

[14] B. Sroysang, On the Diophantine equation 3x + 5y = z2, Int. J. Pure Appl. Math. 81(4)
(2012), 605-608.



INTEGERS: 24 (2024) 7

[15] B. Sroysang, On the Diophantine equation 5x + 7y = z2, Int. J. Pure Appl. Math. 89(1)
(2013), 115-118.

[16] B. Sroysang, On the Diophantine equation 5x + 23y = z2, Int. J. Pure Appl. Math. 89(1)
(2013), 119-122.

[17] B. Sroysang, More on the Diophantine equation 3x + 85y = z2, Int. J. Pure Appl. Math.
91(1) (2014), 131-134.

[18] B. Sroysang, More on the Diophantine equation 4x + 10y = z2, Int. J. Pure Appl. Math.
91(1) (2014), 135-138.

[19] B. Sroysang, On the Diophantine equation 3x + 45y = z2, Int. J. Pure Appl. Math. 91(2)
(2014), 269-272.

[20] B. Sroysang, On the Diophantine equation 5x + 43y = z2, Int. J. Pure Appl. Math. 91(4)
(2014), 537-540.

[21] B. Sroysang, On the Diophantine equation 5x + 63y = z2, Int. J. Pure Appl. Math. 91(4)
(2014), 541-544.

[22] S. Thongnak, W. Chuayjan and T. Kaewong, On the exponential Diophantine equation 2x +
15y = z2, Ann. Pure Appl. Math. 26(1) (2022), 1-5.


