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Abstract

A positive integer N is palindromic in the base b when N =
∑k

i=0 cib
i, ck ̸= 0, and

ci = ck−i, i = 0, 1, 2, . . . , k. Focusing on powers of 2, we investigate the smallest
base b when N = 2n is palindromic in the base b.

1. Introduction

Let b > 1 be an integer. Then every positive integer N can be written uniquely in

the form

N =

k∑
i=0

cib
i,

where k ≥ 0 and 0 ≤ ci < b are integers with ck > 0. We write

N = (ck, ck−1, ck−2, · · · , c0)b

and say N has representation (ck, ck−1, ck−2, . . . , c0) in radix or base b. For example,

2023 = (2, 0, 2, 3)10 = (5, 6, 2, 0)7 = (7, 14, 7)16 = (3, 18, 22)23.

The coefficients ck, ck−1, . . . , c0 are called the digits of N in base b and ck is the

leading digit.

If N = (ck, ck−1, ck−2, · · · , c0)b and cj = ck−j for all j = 0, 1, 2, . . . , k, then we

say N is a palindrome in the base b and that (ck, ck−1, ck−2, · · · , c0) is a (k+1)-digit
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palindromic representation of N in the base b. For example, 2023 has a 3-digit

palindromic representation in the base 16.

Remark. A palindromic representation that contains leading zeros can be reduced.

If

N = (0, 0, . . . , 0︸ ︷︷ ︸
z digits

, ck−z, ck−z−1, ck−z−2, · · · , cz, 0, 0, . . . , 0︸ ︷︷ ︸
z digits

)b

then N = bz−1M , where M = (ck−z, ck−z−1, ck−z−2, . . . , cz)b is also a palindromic

representation. Thus we only consider palindromic representation with a nonzero

leading digit.

There are not many papers that discuss palindromic representations in different

bases. Indeed, we were able to find only seven published results, but there may be

others.

(i) In [4], the authors prove, for every base b ≥ 5, that any positive integer can

be written as a sum of three palindromes in base b.

(ii) In [5], the author proves that there exist exactly 203 positive integers N such

that N is a palindrome in base 10 with d ≥ 2 digits and N is also a palindrome

with d digits in a base b ̸= 10. The author of [1] extends this result. He shows

(a) If k ≥ 2, there exists d ≥ 2, n ≥ 0 and a list of bases {b1, b2, . . . , bk},
such that for each 1 ≤ i ≤ k, n is a d-digit palindrome in base bi.

(b) If k ≥ 2 and d ≥ 2, then there exists n ≥ 0 and a list of bases

{b1, b2, . . . , bk}, such that for each 1 ≤ i ≤ k, n is a d-digit palindrome

in base bi.

This settles a conjecture of J. Ernest Wilkins, see [5].

(iii) In [8, 9, 7, 10], for fixed base b, the authors investigate the number of positive

integers up to n that are palindromic in base b.

The only discussion pertaining to the problem that we investigate is the website [2].

It is not difficult to see that N = (1, 1)N−1. Hence every positive integer has a

palindromic representation. We define b = b(N) to be the smallest base b > 1 such

that N has a palindromic representation in the base b. Table 1 enumerates b(N)

for all N ≤ 100. The red entries in Table 1 are where b(N) = N − 1.

Theorem 1 (K. Brown [2]). If b(N) = N − 1, then N = 3, 4, 6 or N > 6 and is a

prime.

Proof. It is easy to check that b(N) ̸= N − 1 when N = 1, 2, 5. Also, b(N) = N − 1

when N = 3, 4, 6. Hence, we suppose N > 6.
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ij
0 1 2 3 4 5 6 7 8 9

0 2 3 2 3 2 5 2 3 2
10 3 10 5 3 6 2 3 2 5 18
20 3 2 10 3 5 4 3 2 3 4
30 9 2 7 2 4 6 5 6 4 12
40 3 5 4 6 10 2 4 46 7 6
50 7 2 3 52 8 4 3 5 28 4
60 9 6 5 2 7 2 10 5 3 22
70 9 7 5 2 6 14 18 10 5 78
80 3 8 3 5 11 2 6 28 5 8
90 14 3 6 2 46 18 11 8 5 2

Table 1: b(N), for N = i+ j, where i = 0, 10, 20, . . . , 90 and j = 0, 1, 2, . . . , 9.

Suppose N = ab with a < b− 1, where b > 2. Then N = a(b− 1) + a, so N has

the palindromic representation (a, a)b−1.

This covers all composites greater than 6 except for squared primes. For squares,

we have

a2 = (a− 1)2 + 2(a− 1) + 1,

so every square N = a2 > 4 has the palindromic representation (1, 2, 1)a−1.

Remark. Observe that b(13) = 3, because 13 = (1, 1, 1)3, so not every prime N

has b(N) = N − 1.

If N = (αck, αck−1, · · ·αc0)b, then N = α(ck, ck−1, · · · c0)b = αM , where M =

(ck, ck−1, · · · c0)b and we say that the representation of N in the base b is a mul-

tiple of the representation of M in the base b. Conversely if N = αM and M =

(ck, ck−1, · · · c0)b, where αci < b, for i = 0, 1, 2, . . . , k, then N = α(ck, ck−1, · · · c0)b.
For example, we have

2023 = (7, 14, 7)16 = 7(1, 2, 1)16 = 7 · 289. (1)

The representation of 2023 is a multiple of the representation of 289.

We say that the representation (αck, αck−1, · · ·αc0) of N in the base b has bino-

mial form or is amultiple α of a binomial representation if ci =
(
k
i

)
, i = 0, 1, 2, . . . , k.

Every multiple of a binomial representation in the base b is of course a palindromic

representation.

The following easy results can be deduced from [2].

Lemma 1. If α

(
k

⌈k/2⌉

)
< b and N = α(1 + b)k, then N has binomial form

α

((
k

k

)
,

(
k

k − 1

)
,

(
k

k − 2

)
, . . . ,

(
k

0

))
b

.
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Corollary 1. If n = xk + r with r ≥ 0 and 2r
(

k
⌈k/2⌉

)
< 2x − 1, then 2n has a

representation in base 2x − 1 in binomial form.

Proof. If n = xk + r, then, setting b = 2x − 1 and α = 2r, we obtain N = 2n =

α(1+ b)k. Because 2r
(

k
⌈k/2⌉

)
< b, Lemma 1 applies and we have a representation of

2n in base 2x − 1 in binomial form.

Kevin Brown writes in his investigation [2]

“This raises the question of whether the min-base representation for

powers of 2 is always of the binomial form.”

In the rest of this paper, we prove some partial results regarding this question and

we also report some computational results.

2. New Results

Lemma 2. If the representation of 2n in the base b is a multiple α of a binomial

representation, then b = 2x − 1 for some integer x ≤ n and α is a power of 2.

Proof. We have

2n =

k∑
i=0

α

(
k

i

)
bi

for some positive integer α. However,

k∑
i=0

α

(
k

i

)
bi = α(b+ 1)k.

Hence, b+ 1 is a divisor of 2n and thus b = 2x − 1 for some x ≤ n. Then

2n = α 2kx,

so α = 2n−kx and therefore α is a power of 2.

Lemma 3. If N = (c2k+1, c2k, . . . , c1, c0)b is a palindromic representation, then

b+ 1 divides N .

Proof. Because ci = c2k+1−i, i = 0, 1, 2, . . . , k, we have

N =

2k+1∑
i=0

cib
i =

k∑
i=0

ci(b
2k+1−i + bi) =

k∑
i=0

ci(b
2k+1−i + bi)

Then, because b+1 divides b2k+1−i+bi for i = 0, 1, . . . , k, we have that b+1 divides

N .
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Corollary 2. If N = 2n has a palindromic representation in base b with an even

number of digits, then b = 2x − 1 for some x.

Proof. Applying Lemma 3, we see that b+ 1 divides 2n. Therefore b = 2x − 1, for

some x.

We now show that Corollary 2 does not necessarily hold if k is even. We consider

palindromic representations of 2n with k = 2 (i.e., palindromic representations with

three digits), which necessarily have the form 2n = (c, d, c)b. We present examples

of such representations where b is not of the form 2x − 1 for some integer x.

Theorem 2. 2n has a 3-digit palindromic representation in the base b if and only

if b2 + 1 ≤ 2n ≤ b3 − 1 and

1

b

⌊
2n

b

⌋
− b− 1

b
≤ c ≤ 1

b

⌊
2n

b

⌋
, (2)

where c = 2n mod b ̸= 0.

Proof. Suppose that

2n = c+ db+ cb2 (3)

with 1 ≤ c ≤ b−1 and 0 ≤ d ≤ b−1. The smallest palindromic representation with

3 digits is (1, 0, 1)b and the largest is (b− 1, b− 1, b− 1)b, so we must have

b2 + 1 ≤ 2n ≤ b3 − 1.

Reducing Equation (3) modulo b, we have 2n ≡ c (mod b). Because 0 ≤ c ≤ b− 1,

we have c = 2n mod b.

Next, we can express 2n = kb+ c, where k = ⌊ 2n

b ⌋. We have

c(1 + b2) + db = 2n = kb+ c,

from which it follows that d = k − cb. We require 0 ≤ d = k − cb ≤ b− 1, so

c ≤ k

b
=

1

b

⌊
2n

b

⌋
and

c ≥ k − b+ 1

b
=

1

b

⌊
2n

b

⌋
− b− 1

b
.

These necessary conditions are also sufficient, so the desired result follows.

Theorem 3. The only 3-digit binomial form representations of 2n are

(2i)(1, 2, 1)2(n−i)/2−1,

where 0 ≤ 3i < n− 2 and n ≡ i (mod 2).
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Proof. If 2n has a 3-digit binomial form representation, then it is

α(1, 2, 1)b,

for some base b and some multiplier α. Hence,

2n = α(1 + 2b+ b2) = α(1 + b)2.

Thus α = 2i and (1 + b)2 = 2j , where i + j = n and 2i+1 < b = 2j/2 − 1. Thus

i+ 1 < j/2 = (n− i)/2. Hence 3i+ 2 < n and n ≡ i (mod 2).

For a given base b, is easy to check when the conditions of Theorem 2 are satisfied.

Theorem 3 identifies the cases when they have binomial form. There are other

palindromic representations as well; the smallest example is 212 = (11, 6, 11)19. We

list all such palindromic representations, for n ≤ 20, in Table 2.

We observe from Table 2 that there are some palindromic representations having

the form 2n = (1, c, 1)b. It is perhaps of interest to consider these representations

in more detail.

Theorem 4. There is a representation 2n = (1, c, 1)b that is not of binomial form

if and only if

(i) there is a factorization 2n − 1 = kb with b ≤ k ≤ 2b− 1, and

(ii) it is not the case that n is even and b = 2n/2 − 1.

Proof. Suppose there is a representation 2n = (1, c, 1)b. From Theorem 2 and its

proof, we have 2n ≡ 1 mod b and 2n−1 = kb. Therefore,
⌊
2n

b

⌋
= k. Then Inequality

(2) is
k

b
− b− 1

b
≤ 1 ≤ k

b
,

which simplifies to

k − b+ 1 ≤ b ≤ k,

or, equivalently,

b ≤ k ≤ 2b− 1,

where c = 2n mod b ̸= 0. Hence there is a factorization 2n − 1 = kb with

b ≤ k ≤ 2b− 1.

We need to consider the possibility that this representation has binomial form.

From Theorem 3 with i = 0, we see that b = 2n/2 − 1, so n is even and 2n =

(1, 2, 1)b.

Example 1. Suppose n = 15. We have the prime factorization 215−1 = 7×31×151.

If we take b = 151 and k = 7 × 31 = 217, then the conditions of Theorem 4 are

satisfied. We obtain the palindromic representation 215 = (1, 66, 1)151.
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n b c d
12 19 11 6
13 27 11 6
14 27 22 12
14 60 4 33
15 37 23 34
15 151 1 66
16 151 2 132
17 142 6 71
18 399 1 258
19 269 7 66
19 438 2 321
20 269 14 132
20 775 1 578
20 825 1 446

Table 2: Non-binomial palindromic representations 2n = (c, d, c)b with three digits
for n ≤ 20.

We now obtain some numerical conditions that guarantee that a palindromic

representation has binomial form.

Lemma 4. Suppose b = 2x − 1 for some x. Let n be a positive integer and let k be

the number of digits of 2n in its b-adic expansion. Then the following hold.

(1) If 2n has a palindromic representation in base b, then n > k(x− 1).

(2) Suppose r = n− kx ≥ 0. If k ≤ x− r, or if 3 ≤ k ≤ x− r+1 and x ≥ 3, then

the palindromic representation of 2n in the base b is the binomial form given

in Lemma 1, with α = 2r.

Proof. We are assuming that b = 2x − 1 for some x and 2n = (ck, ck−1, . . . , c0)b is

a palindromic representation. Hence

2n =

k∑
i=0

cib
i

and ci = ck−i, for each i. In particular, because c0 = ck ≥ 1, we have

2n ≥ bk + 1 > (2x − 1)k.

However, 2x − 1 > 2x−1 because x ≥ 2. Hence 2n > (2x−1)k and therefore

n > (x− 1)k, which proves (1).
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Now assume that r = n− kx ≥ 0 and k ≤ x− r. We have 2n = 2r(b+ 1)k. It is

well known (see [6, page 35]) that(
2m

m

)
=

4m√
πm

(
1− 1

8m
+

1

128m2
+

5

1024m3
+O(m−4)

)
<

4m√
πm

and (
2m− 1

m− 1

)
=

1

2

(
2m

m

)
<

4m− 1
2

√
πm

.

Thus, when k ≥ 2 is even:(
k

⌈k/2⌉

)
=

(
k

k/2

)
<

2k√
kπ/2

≤ 2k√
π

<
2k

1.75
≤ 2x−r

1.75
,

since
√
π > 1.75 and k ≤ x− r. Similarly, when k ≥ 1 is odd:(

k

⌈k/2⌉

)
=

(
k

(k + 1)/2

)
=

(
k

(k − 1)/2

)
<

2k√
(k + 1)π/2

≤ 2k√
π

<
2k

1.75
≤ 2x−r

1.75
.

Consequently

2r
(

k

⌈k/2⌉

)
<

2x

1.75
< 2x − 1 = b,

since x ≥ 2. Hence, Lemma 1 applies with α = 2r.

The proof is similar when 3 ≤ k ≤ x− r + 1. When k ≥ 4 is even:(
k

⌈k/2⌉

)
<

2k√
kπ/2

≤ 2k√
2π

<
2k

2.5
≤ 2x−r+1

2.5
=

2x−r

1.25
,

since
√
2π > 2.5 and k ≤ x − r + 1. The same upper bound holds when k ≥ 5 is

odd.

Consequently

2r
(

k

⌈k/2⌉

)
<

2x

1.25
< 2x − 1 = b,

since x ≥ 3. Hence, Lemma 1 applies with α = 2r.

We can also use the proof technique of Lemma 4 to show the following.

Theorem 5. For all integers n ≥ 2, 2n has a base-b binomial form representation

for some b ≤ 2y − 1, where y ≤
⌈√

2n
⌉
+ 1.

Proof. Define x = ⌈
√
2n⌉ and k =

⌊
n
x

⌋
. Then n = xk + r, where 0 ≤ r ≤ x− 1. If

r ≤ x− k, then we have a binomial form representation of 2n to the base b, where

b ≤ 2x − 1, as shown in Lemma 4.
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Thus we can suppose that r ≥ x − k + 1. We have n = (x + 1)k + r − k,

so n = yk + r′, where y = x + 1 and r′ = r − k. Since r ≤ x − 1, we have

r′ ≤ x−k−1 = y−k−2 < y−k. So we will obtain a binomial form representation

of 2n to the base b, where b ≤ 2y − 1, provided that r′ ≥ 0, i.e., if r ≥ k. We have

r ≥ x− k + 1, so it is sufficient to show that x− k + 1 ≥ k, i.e., x ≥ 2k − 1.

We have x ≥
√
2n. Since k ≤ n/x, we have kx ≤ n. Hence x ≥

√
2n ≥

√
2kx.

Squaring, we obtain x2 ≥ 2kx and hence x ≥ 2k > 2k − 1, as desired.

In Tables 3 and 4, the minimum-base palindromic representation of 2n is com-

puted for all n ≤ 64. In every case, the minimum base is of the form 2x − 1 for

some integer x. The hypotheses of Lemma 4 are satisfied for each such n except

n = 63. Thus, for all n ̸= 63, the minimum-base palindromic representation of 2n

is guaranteed to be of binomial form. However, even for n = 63, the hypotheses of

Lemma 1 are satisfied.

n k x r b(2n) =2x−1

1 0 2 1 b(21) =3 21 =2 · (1)3
2 1 2 0 b(22) =3 22 =(1, 1)3
3 1 2 1 b(23) =3 23 =2 · (1, 1)3
4 2 2 0 b(24) =3 24 =(1, 2, 1)3
5 1 3 2 b(25) =7 25 =4 · (1, 1)7
6 2 3 0 b(26) =7 26 =(1, 2, 1)7
7 2 3 1 b(27) =7 27 =2 · (1, 2, 1)7
8 2 4 0 b(28) =15 28 =(1, 2, 1)15
9 3 3 0 b(29) =7 29 =(1, 3, 3, 1)7

10 3 3 1 b(210)=7 210=2 · (1, 3, 3, 1)7
11 2 5 1 b(211)=31 211=2 · (1, 2, 1)31
12 4 3 0 b(212)=7 212=(1, 4, 6, 4, 1)7
13 3 4 1 b(213)=15 213=2 · (1, 3, 3, 1)15
14 3 4 2 b(214)=15 214=4 · (1, 3, 3, 1)15
15 3 5 0 b(215)=31 215=(1, 3, 3, 1)31
16 4 4 0 b(216)=15 216=(1, 4, 6, 4, 1)15
17 4 4 1 b(217)=15 217=2 · (1, 4, 6, 4, 1)15
18 3 5 3 b(218)=31 218=8 · (1, 3, 3, 1)31
19 3 6 1 b(219)=63 219=2 · (1, 3, 3, 1)63
20 5 4 0 b(220)=15 220=(1, 5, 10, 10, 5, 1)15
21 4 5 1 b(221)=31 221=2 · (1, 4, 6, 4, 1)31
22 4 5 2 b(222)=31 222=4 · (1, 4, 6, 4, 1)31
23 3 7 2 b(223)=127 223=4 · (1, 3, 3, 1)127
24 4 6 0 b(224)=63 224=(1, 4, 6, 4, 1)63
25 5 5 0 b(225)=31 225=(1, 5, 10, 10, 5, 1)31
26 5 5 1 b(226)=31 226=2 · (1, 5, 10, 10, 5, 1)31

Table 3: Palindromic representations of 2n, where 1 ≤ n = kx+ r ≤ 26
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n k x r b(2n) =2x−1

27 4 6 3 b(227)=63 227=8 · (1, 4, 6, 4, 1)63
28 4 7 0 b(228)=127 228=(1, 4, 6, 4, 1)127
29 4 7 1 b(229)=127 229=2 · (1, 4, 6, 4, 1)127
30 6 5 0 b(230)=31 230=(1, 6, 15, 20, 15, 6, 1)31
31 5 6 1 b(231)=63 231=2 · (1, 5, 10, 10, 5, 1)63
32 5 6 2 b(232)=63 232=4 · (1, 5, 10, 10, 5, 1)63
33 4 8 1 b(233)=255 233=2 · (1, 4, 6, 4, 1)255
34 4 8 2 b(234)=255 234=4 · (1, 4, 6, 4, 1)255
35 5 7 0 b(235)=127 235=(1, 5, 10, 10, 5, 1)127
36 6 6 0 b(236)=63 236=(1, 6, 15, 20, 15, 6, 1)63
37 6 6 1 b(237)=63 237=2 · (1, 6, 15, 20, 15, 6, 1)63
38 5 7 3 b(238)=127 238=8 · (1, 5, 10, 10, 5, 1)127
39 4 9 3 b(239)=511 239=8 · (1, 4, 6, 4, 1)511
40 5 8 0 b(240)=255 240=(1, 5, 10, 10, 5, 1)255
41 5 8 1 b(241)=255 241=2 · (1, 5, 10, 10, 5, 1)255
42 7 6 0 b(242)=63 242=(1, 7, 21, 35, 35, 21, 7, 1)63
43 6 7 1 b(243)=127 243=2 · (1, 6, 15, 20, 15, 6, 1)127
44 6 7 2 b(244)=127 244=4 · (1, 6, 15, 20, 15, 6, 1)127
45 5 9 0 b(245)=511 245=(1, 5, 10, 10, 5, 1)511
46 5 9 1 b(246)=511 246=2 · (1, 5, 10, 10, 5, 1)511
47 5 9 2 b(247)=511 247=4 · (1, 5, 10, 10, 5, 1)511
48 6 8 0 b(248)=255 248=(1, 6, 15, 20, 15, 6, 1)255
49 7 7 0 b(249)=127 249=(1, 7, 21, 35, 35, 21, 7, 1)127
50 7 7 1 b(250)=127 250=2 · (1, 7, 21, 35, 35, 21, 7, 1)127
51 6 8 3 b(251)=255 251=8 · (1, 6, 15, 20, 15, 6, 1)255
52 5 10 2 b(252)=1023 252=4 · (1, 5, 10, 10, 5, 1)1023
53 5 10 3 b(253)=1023 253=8 · (1, 5, 10, 10, 5, 1)1023
54 6 9 0 b(254)=511 254=(1, 6, 15, 20, 15, 6, 1)511
55 6 9 1 b(255)=511 255=2 · (1, 6, 15, 20, 15, 6, 1)511
56 8 7 0 b(256)=127 256=(1, 8, 28, 56, 70, 56, 28, 8, 1)127
57 7 8 1 b(257)=255 257=2 · (1, 7, 21, 35, 35, 21, 7, 1)255
58 7 8 2 b(258)=255 258=4 · (1, 7, 21, 35, 35, 21, 7, 1)255
59 5 11 4 b(259)=2047 259=16 · (1, 5, 10, 10, 5, 1)2047
60 6 10 0 b(260)=1023 260=(1, 6, 15, 20, 15, 6, 1)1023
61 6 10 1 b(261)=1023 261=2 · (1, 6, 15, 20, 15, 6, 1)1023
62 6 10 2 b(262)=1023 262=4 · (1, 6, 15, 20, 15, 6, 1)1023
63 9 7 0 b(263)=127 263=(1, 9, 36, 84, 126, 126, 84, 36, 9, 1)127
64 8 8 0 b(264)=255 264=(1, 8, 28, 56, 70, 56, 28, 8, 1)255

Table 4: Palindromic representations of 2n, where 27 ≤ n = kx+ r ≤ 64

We also have computed all palindromic representations of 2n for every positive in-

teger n < 64. Perhaps surprisingly, these computations show that every palindromic

representation of 2n is either of binomial form or has three digits.
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3. Some Extensions

Theorem 6. If p is a prime and N = pn has a palindromic representation N =

(ck, ck−1, . . . , c0)b with k odd, then b = px − 1 for some x.

Proof. Applying Lemma 3, we see that b+ 1 divides pn. Therefore b = px − 1, for

some x.

An obvious theorem whose proof we leave for the reader is Theorem 7.

Theorem 7. For any positive integer z.

(I) zn has the (n+ 1)-digit representation z = (1, 0, 0, . . . , 0)z.

(II) zn + 1 has the (n+ 1)-digit palindromic representation z = (1, 0, 0, . . . , 1)z.

(III) zn − 1 has the n-digit palindromic representation z = (1, 1, 1, . . . , 1)z.

Note that Theorem 7 implies b(2n ± 1) = 2.

A solution (x, y, n, q) to the Nagell-Ljunggren Diophantine equation

xn − 1

x− 1
= yq (4)

is equivalent to the n-digit palindromic representation

yq = (1, 1, 1, . . . , 1)z.

Bugeaud and Mihăilescu studied the Nagell-Ljunggren Diophantine equation and

obtained the following theorem.

Theorem 8 (Bugeaud and Mihăilescu [3]). Apart from the solutions

112 = (1, 1, 1, 1, 1)3, 202 = (1, 1, 1, 1)7 and 73 = (1, 1, 1)18,

Equation (4) has no other solution (x, y, n, q) if any of the following conditions are

satisfied:

(i) q = 2,

(ii) 3 divides n,

(iii) 4 divides n,

(iv) q = 3 and n ̸≡ 5 (mod 6).

Some additional computational results are presented in Tables 5 and 6 in the

Appendix.
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4. Concluding Remarks

We have several conjectures:

(a) b(2n) = 2x − 1, for some x;

(b) The minimum palindromic representation of 2n has binomial form;

(c) b(2a
2

) = 2a − 1;

(d) For any base b there are only finitely many integers N = 2n such that

b(N) = b; and

(e) b(2n) = 3 if and only if n = 1, 2, 3 or 4.

Acknowledgement. Every year on his birthday, the first author reports to Marco

Buratti of Rome some amusing palindromic connection. (Marco is obsessed with

palindromes.) This past year (2023) he reported that he turned 68 which is a

palindrome in base 3 and also in base 16. The interlocution quickly turned to a

discussion on what is the smallest base such that N is a palindrome in that base.

Data was generated and on 22 September 2023, Marco wrote:

Dear Don,

thank you for your interesting message!

Is b(2n) always of the form 2i − 1?

Maybe my question is stupid.

Ciao,

Marco

It turns out that it is not so stupid after all.
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[3] Y. Bugeaud and P. Mihăilescu, On the Nagell-Ljunggren equation, Math. Scand., 101 (2007),
177–183.

[4] J. Cilleruelo, F. Luca and L. Baxter, Every positive integer is a sum of three palindromes,
Math. Comput., 87 (314) (2018), 3023–3055

[5] E.H. Goins, Palindromes in different bases: A conjecture of J. Ernest Wilkins, Integers 9
(2009), #A55, 725–734.



INTEGERS: 24 (2024) 13

[6] Y.L. Luke, The Special Functions and Their Approximations, Vol. 1., Academic Press, New
York, 1969.

[7] K. Onphaeng, T. Khemaratchatakumthorn, P.N. Phunphayap, and P. Pongsriiam, Exact for-
mulas for the number of palindromes in certain arithmetic progressions, J. Integer Sequences
27 (2024), Article 24.4.8.

[8] P. Phunphayap and P. Pongsriiam, Extremal orders and races between palindromes in different
bases, AIMS Math. 7 (2) (2021) 2237–2254.

[9] P.N. Phunphayap and P. Pongsriiam, A complete comparison for the number of palindromes
in different bases, AIMS Math. 8 (4) (2023), 9924–9932.

[10] P. Pongsriiam and K. Subwattanachai, Exact formulas for the number of palindromes up to
a given positive integer, Int. J. Math. Comput. Sci. 14 (2019), 27–46.

Appendix

We provide in Tables 5 and 6 some additional computational results. Non-binomial

forms are marked in red.

21 = 2 · (1)3
22 = (1, 1)3
23 = 2 · (1, 1)3
24 = (1, 2, 1)3
25 = (1, 0, 1, 2)3
26 = (2, 1, 0, 1)3
27 = (1, 1, 2, 0, 2)3
28 = (1, 0, 0, 1, 1, 1)3
29 = 2 · (1, 0, 0, 1, 1, 1)3
210 = (1, 1, 0, 1, 2, 2, 1)3
211 = (2, 2, 1, 0, 2, 1, 2)3
212 = (1, 2, 1, 2, 1, 2, 0, 1)3
213 = (1, 0, 2, 0, 2, 0, 1, 0, 2)3
214 = (2, 1, 1, 1, 1, 0, 2, 1, 1)3
215 = (1, 1, 2, 2, 2, 2, 1, 1, 2, 2)3

216 = (1, 0, 0, 2, 2, 2, 2, 0, 0, 2, 1)3
217 = (2, 0, 1, 2, 2, 2, 1, 0, 1, 1, 2)3
218 = (1, 1, 1, 0, 2, 2, 1, 2, 1, 0, 0, 1)3
219 = (2, 2, 2, 1, 2, 2, 0, 1, 2, 0, 0, 2)3
220 = (1, 2, 2, 2, 0, 2, 1, 1, 0, 1, 0, 1, 1)3
221 = (1, 0, 2, 2, 1, 1, 1, 2, 2, 0, 2, 0, 2, 2)3
222 = (2, 1, 2, 2, 0, 0, 0, 2, 1, 1, 1, 1, 2, 1)3
223 = (1, 2, 0, 2, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2)3
224 = (1, 0, 1, 1, 1, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1)3
225 = (2, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2)3
226 = (1, 1, 2, 0, 0, 0, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)3
227 = (1, 0, 0, 1, 0, 0, 1, 1, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2)3
228 = (2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 2, 1, 0, 1, 2, 2, 2, 1)3
229 = (1, 1, 0, 1, 1, 0, 2, 0, 1, 2, 2, 1, 2, 1, 0, 2, 2, 1, 2)3
230 = (2, 2, 0, 2, 2, 1, 1, 1, 0, 2, 2, 0, 1, 2, 1, 2, 2, 0, 1)3

Table 5: Representations of 2n in the base 3 for n ≤ 25.
Non-palindromic forms are marked in red.
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b(31) = 2 31 = (1, 1)2
b(32) = 2 32 = (1, 0, 0, 1)2
b(33) = 2 33 = (1, 1, 0, 1, 1)2
b(34) = 8 34 = (1, 2, 1)8
b(35) = 8 35 = 3 · (1, 2, 1)8
b(36) = 8 36 = (1, 3, 3, 1)8
b(37) = 24 37 = (3, 19, 3)24
b(38) = 8 38 = (1, 4, 6, 4, 1)8
b(39) = 26 39 = (1, 3, 3, 1)26
b(310) = 26 310 = 3 · (1, 3, 3, 1)26
b(311) = 80 311 = 27 · (1, 2, 1)80
b(312) = 26 312 = (1, 4, 6, 4, 1)26
b(313) = 26 313 = 3 · (1, 4, 6, 4, 1)26
b(314) = 80 314 = 9 · (1, 3, 3, 1)80
b(315) = 26 315 = (1, 5, 10, 10, 5, 1)26
b(316) = 80 316 = (1, 4, 6, 4, 1)80
b(317) = 80 317 = 3 · (1, 4, 6, 4, 1)80
b(318) = 26 318 = (1, 6, 15, 20, 15, 6, 1)26
b(51) = 2 51 = (1, 0, 1)2
b(52) = 4 52 = (1, 2, 1)4
b(53) = 4 53 = (1, 3, 3, 1)4
b(54) = 24 54 = (1, 2, 1)24
b(55) = 24 55 = 5 · (1, 2, 1)24
b(56) = 24 56 = (1, 3, 3, 1)24
b(57) = 24 57 = 5 · (1, 3, 3, 1)24
b(58) = 24 58 = (1, 4, 6, 4, 1)24
b(59) = 124 59 = (1, 3, 3, 1)124
b(510) = 24 510 = (1, 5, 10, 10, 5, 1)24
b(511) = 124 511 = 25 · (1, 3, 3, 1)124
b(512) = 24 512 = (1, 6, 15, 20, 15, 6, 1)24
b(71) = 2 71 = (1, 1, 1)2
b(72) = 6 72 = (1, 2, 1)6
b(73) = 6 73 = (1, 3, 3, 1)6
b(74) = 18 74 = 7 · (1, 1, 1)18
b(75) = 38 75 = (11, 24, 11)38
b(76) = 18 76 = (1, 2, 3, 2, 1)18
b(77) = 48 77 = 7 · (1, 3, 3, 1)48
b(78) = 48 78 = (1, 4, 6, 4, 1)48
b(79) = 18 79 = (1, 3, 6, 7, 6, 3, 1)18
b(710) = 48 710 = (1, 5, 10, 10, 5, 1)48
b(111) = 10 111 = (1, 1)10

b(112) = 3 112 = (1, 1, 1, 1, 1)3
b(113) = 10 113 = (1, 3, 3, 1)10
b(114) = 10 114 = (1, 4, 6, 4, 1)10
b(115) = 56 115 = (51, 19, 51)56
b(116) = 35 116 = (1, 6, 11, 6, 1)35
b(117) = 120 117 = 11 · (1, 3, 3, 1)120
b(118) = 120 118 = (1, 4, 6, 4, 1)120
b(131) = 3 131 = (1, 1, 1)3
b(132) = 12 132 = (1, 2, 1)12
b(133) = 12 133 = (1, 3, 3, 1)12
b(134) = 12 134 = (1, 4, 6, 4, 1)12
b(135) = 12 135 = (1, 5, 10, 10, 5, 1)12
b(136) = 168 136 = (1, 3, 3, 1)168
b(137) = 168 137 = 13 · (1, 3, 3, 1)168
b(138) = 168 138 = (1, 4, 6, 4, 1)168
b(171) = 2 171 = (1, 0, 0, 0, 1)2
b(172) = 4 172 = (1, 0, 2, 0, 1)4
b(173) = 4 173 = (1, 0, 3, 0, 3, 0, 1)4
b(174) = 16 174 = (1, 4, 6, 4, 1)16
b(175) = 16 175 = (1, 5, 10, 10, 5, 1)16
b(176) = 63 176 = (1, 33, 33, 33, 1)63
b(177) = 288 177 = 17 · (1, 3, 3, 1)288
b(191) = 18 191 = (1, 1)18
b(192) = 15 192 = (1, 9, 1)15
b(193) = 18 193 = (1, 3, 3, 1)18
b(194) = 18 194 = (1, 4, 6, 4, 1)18
b(195) = 18 195 = (1, 5, 10, 10, 5, 1)18
b(196) = 360 196 = (1, 3, 3, 1)360
b(197) = 360 197 = 19 · (1, 3, 3, 1)360
b(231) = 3 231 = (2, 1, 2)3
b(232) = 22 232 = (1, 2, 1)22
b(233) = 22 233 = (1, 3, 3, 1)22
b(234) = 22 234 = (1, 4, 6, 4, 1)22
b(235) = 22 235 = (1, 5, 10, 10, 5, 1)22
b(236) = 22 236 = (1, 6, 15, 20, 15, 6, 1)22
b(291) = 4 291 = (1, 3, 1)4
b(292) = 21 292 = (1, 19, 1)21
b(293) = 28 293 = (1, 3, 3, 1)28
b(294) = 28 294 = (1, 4, 6, 4, 1)28
b(295) = 28 295 = (1, 5, 10, 10, 5, 1)28
b(296) = 28 296 = (1, 6, 15, 20, 15, 6, 1)28

Table 6: Palindromic representations of pn < 230, where 3 ≤ p ≤ 29 is prime.


