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Abstract
A positive integer N is palindromic in the base b when N = Zf:() c;b?, e, # 0, and
¢ = cp—q, © = 0,1,2,..., k. Focusing on powers of 2, we investigate the smallest

base b when N = 2" is palindromic in the base b.

1. Introduction

Let b > 1 be an integer. Then every positive integer N can be written uniquely in

k
N=> cb'
i=0

where k > 0 and 0 < ¢; < b are integers with ¢ > 0. We write

the form

N = (cr,Cr—1,Ck—2,""" ,Co)p
and say N has representation (ck, ck—1,Ck—2, ..., Co) in radiz or base b. For example,

2023 = (2,0,2,3)10 = (5,6,2,0)7 = (7,14, 7)1 = (3, 18, 22)s.

The coefficients ¢, cip_1,...,co are called the digits of N in base b and ¢ is the
leading digit.

If N = (ck,Ch—1,Cr—2,"+- ,c0)p and ¢; = ¢,_; for all j = 0,1,2,...,k, then we
say N is a palindrome in the base b and that (ck, cg—1,Cr—2, - ,co) is a (k+1)-digit
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palindromic representation of N in the base b. For example, 2023 has a 3-digit
palindromic representation in the base 16.

Remark. A palindromic representation that contains leading zeros can be reduced.
If

N = (07 0) ey 0) Ck—2z,Clk—2—1,Ck—2—2,""" ,Cz, 0) 07 e ,O)b
S—— N——
z digits z digits
then N = b*~1M, where M = (¢j_.,Cr—»_1,Ch—»_2,-..,Cz)p is also a palindromic

representation. Thus we only consider palindromic representation with a nonzero
leading digit.

There are not many papers that discuss palindromic representations in different
bases. Indeed, we were able to find only seven published results, but there may be
others.

(i) In [4], the authors prove, for every base b > 5, that any positive integer can
be written as a sum of three palindromes in base b.

(ii) In [5], the author proves that there exist exactly 203 positive integers N such
that N is a palindrome in base 10 with d > 2 digits and N is also a palindrome
with d digits in a base b # 10. The author of [1] extends this result. He shows

(a) If k > 2, there exists d > 2, n > 0 and a list of bases {b1,bo,...,bx},
such that for each 1 < i <k, n is a d-digit palindrome in base b;.

(b) If ¥ > 2 and d > 2, then there exists n > 0 and a list of bases
{b1,ba,...,br}, such that for each 1 < i < k, n is a d-digit palindrome
in base b;.

This settles a conjecture of J. Ernest Wilkins, see [5].

(iii) In [8, 9, 7, 10], for fixed base b, the authors investigate the number of positive
integers up to n that are palindromic in base b.

The only discussion pertaining to the problem that we investigate is the website [2].

It is not difficult to see that N = (1,1)y—_;. Hence every positive integer has a
palindromic representation. We define b = b(IN) to be the smallest base b > 1 such
that N has a palindromic representation in the base b. Table 1 enumerates b(N)
for all N < 100. The red entries in Table 1 are where b(N) = N — 1.

Theorem 1 (K. Brown [2]). Ifb(N) =N — 1, then N =3,4,6 or N > 6 and is a
prime.

Proof. 1t is easy to check that J(N) # N —1 when N =1,2,5. Also, b(N) =N -1
when N = 3,4,6. Hence, we suppose N > 6.
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j\i o 1 2 3 4 5 6 7 8 9
0 2 3 2 3 2 5 2 3 2
10 3 10 5 3 6 2 3 2 5 18
20 3 2 10 3 5 4 3 2 3 4
30 9 2 7 2 4 6 5 6 4 12
40 3 5 4 6 10 2 4 46 7 6
50 T 2 3 52 8 4 3 5 28 4
60 9 6 o5 2 7 2 10 5 3 22
70 9 7 5 2 6 14 18 10 5 78
80 3 8 3 5 11 2 6 28 &5 8
90 4 3 6 2 46 18 11 8 5 2

Table 1: b(N), for N =i + j, where ¢ = 0,10,20,...,90 and 5 =0,1,2,...,09.

Suppose N = ab with a < b — 1, where b > 2. Then N = a(b— 1)+ a, so N has
the palindromic representation (a,a)p—1.
This covers all composites greater than 6 except for squared primes. For squares,
we have
a®=(a—1)*+2(a—1)+1,

so every square N = a? > 4 has the palindromic representation (1,2,1),_1. O

Remark. Observe that b(13) = 3, because 13 = (1,1, 1)3, so not every prime N
has b(N) = N — 1.

If N = (ack,ackg—1, - acy)p, then N = a(cg, cp—1,---¢co)p = M, where M =

(ck,Cr—1," - co)p and we say that the representation of N in the base b is a mul-
tiple of the representation of M in the base b. Conversely if N = aM and M =
(¢k,Cr—1," " Co)p, where ac; < b, for i =0,1,2,...,k, then N = a(cg,cr—1, - ¢o)p.

For example, we have

2023 = (7,14,7)16 = 7(1,2,1)16 = 7 - 289. (1)

The representation of 2023 is a multiple of the representation of 289.
We say that the representation (acy, acg—_1, - - acp) of N in the base b has bino-
mial form or is a multiple a of a binomial representation if ¢; = (f), 1=0,1,2,... k.

Every multiple of a binomial representation in the base b is of course a palindromic
representation.
The following easy results can be deduced from [2].

Lemma 1. Ifa( ) <band N = a(l +b)*, then N has binomial form

k
[k/2]

(6505 0)),
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Corollary 1. If n = zk + r with r > 0 and 27-([;;21) < 2% — 1, then 2™ has a

representation in base 2% — 1 in binomial form.

Proof. If n = xk + r, then, setting b = 2* — 1 and @ = 2", we obtain N = 2" =
a(1+b)*. Because 2T(“€I;2W) < b, Lemma 1 applies and we have a representation of
2™ in base 2% — 1 in binomial form. O]

Kevin Brown writes in his investigation [2]

“This raises the question of whether the min-base representation for
powers of 2 is always of the binomial form.”

In the rest of this paper, we prove some partial results regarding this question and
we also report some computational results.

2. New Results

Lemma 2. If the representation of 2™ in the base b is a multiple o of a binomial
representation, then b = 2* — 1 for some integer x < n and « is a power of 2.

Proof. We have

for some positive integer av. However,

k

Za@)bi —a(b+ )",

=0

Hence, b + 1 is a divisor of 2™ and thus b = 2¥ — 1 for some x < n. Then

on — a2kx

so a = 2" and therefore « is a power of 2. O
Lemma 3. If N = (cogs1,Cok,---,C1,C0)p 45 a palindromic representation, then
b+ 1 divides N.
Proof. Because ¢; = copy1-4, 9 =0,1,2,... k, we have

2k+1 k ' _ k _ _

N = Z Cibl = Zci(ka—’_l_l + bl) = Zci(b2k+l_z + bl)
i=0 i=0 i=0

Then, because b+ 1 divides b2*+1=t4-p? for i = 0,1, ..., k, we have that b+ 1 divides
N. O
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Corollary 2. If N = 2" has a palindromic representation in base b with an even
number of digits, then b = 2% — 1 for some .

Proof. Applying Lemma 3, we see that b + 1 divides 2. Therefore b = 2% — 1, for
some z. 0

We now show that Corollary 2 does not necessarily hold if k is even. We consider
palindromic representations of 2" with k = 2 (i.e., palindromic representations with
three digits), which necessarily have the form 2" = (¢, d, ¢),. We present examples
of such representations where b is not of the form 2* — 1 for some integer x.

Theorem 2. 2" has a 3-digit palindromic representation in the base b if and only
ifb2+1<2" <b3 -1 and

17| b—1 1]2n
il Bl I G G R
b{bJ b _C_b{bJ’ (2)

where ¢ = 2™ mod b # 0.

Proof. Suppose that
2" = ¢+ db + cb? (3)

with 1 <¢<b—1and 0 <d < b—1. The smallest palindromic representation with
3 digits is (1,0,1), and the largest is (b — 1,b— 1,b — 1), so we must have

PP+1<2m<pd 1.

Reducing Equation (3) modulo b, we have 2" = ¢ (mod b). Because 0 < ¢ <b—1,
we have ¢ = 2" mod b.
Next, we can express 2" = kb + ¢, where k = LQT:LJ We have

c(1+b*) +db=2"=kb+c,

from which it follows that d =k — cb. We require 0 <d=k—cb<b—1, so

k1|2
S A

and
k—b+1 1|27 b—1
e> o2
- b blb b
These necessary conditions are also sufficient, so the desired result follows. O

Theorem 3. The only 3-digit binomial form representations of 2™ are
(Qi)(la2a 1)2(n—i)/2_1,

where 0 < 3i <n—2 andn =14 (mod 2).
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Proof. If 2™ has a 3-digit binomial form representation, then it is
a(1,2,1)y,
for some base b and some multiplier a. Hence,
2" = a1+ 2b+ %) = a(1 +b)>.

Thus a = 2 and (1 4 b)? = 27, where i + j = n and 2/t! < b = 2//2 — 1. Thus
i+1<j/2=(n—1)/2. Hence 3i+2 <n and n =i (mod 2). O

For a given base b, is easy to check when the conditions of Theorem 2 are satisfied.
Theorem 3 identifies the cases when they have binomial form. There are other
palindromic representations as well; the smallest example is 2'2 = (11,6,11)19. We
list all such palindromic representations, for n < 20, in Table 2.

We observe from Table 2 that there are some palindromic representations having
the form 2" = (1,¢,1),. It is perhaps of interest to consider these representations
in more detail.

Theorem 4. There is a representation 2™ = (1,¢, 1), that is not of binomial form
if and only if

(i) there is a factorization 2" — 1 = kb with b < k < 2b—1, and
(ii) 4t is not the case that n is even and b= 2"/? — 1.

Proof. Suppose there is a representation 2" = (1,¢,1),. From Theorem 2 and its
proof, we have 2" = 1 mod b and 2" —1 = kb. Therefore, L%J = k. Then Inequality
(2) is

b—1
b

SN

k
<1< —
— - b?
which simplifies to

E—b+1<b<k,

or, equivalently,
b<k<2bh—1,

where ¢ = 2" mod b # 0. Hence there is a factorization 2" — 1 = kb with
b<k<2b—1.

We need to consider the possibility that this representation has binomial form.
From Theorem 3 with ¢ = 0, we see that b = 2"/2 — 1, so n is even and 2" =
(1,2,1)y. O

Example 1. Suppose n = 15. We have the prime factorization 215! = 7x 31 x 151.
If we take b = 151 and k = 7 x 31 = 217, then the conditions of Theorem 4 are
satisfied. We obtain the palindromic representation 25 = (1,66,1)5;.
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n b c d
12 19 11 6
13 27 11 6
14 27 22 12
14 60 4 33
15 37 23 34
15 151 1 66

16 151 2 132
17 142 6 71
18 399 1 258
19 269 7 66
19 438 2 321
20 269 14 132
20 775 1 578
20 825 1 446

Table 2: Non-binomial palindromic representations 2" = (¢, d, ¢), with three digits
for n < 20.

We now obtain some numerical conditions that guarantee that a palindromic
representation has binomial form.

Lemma 4. Suppose b = 2% — 1 for some x. Let n be a positive integer and let k be
the number of digits of 2™ in its b-adic expansion. Then the following hold.

(1) If 2" has a palindromic representation in base b, then n > k(z —1).

(2) Supposer =n—kx>0. Ifk<xz—r,orif3<k<z—r+1andz >3, then
the palindromic representation of 2" in the base b is the binomial form given
i Lemma 1, with o = 2".

Proof. We are assuming that b = 2 — 1 for some x and 2" = (¢, Cg—1,-.-,Co)p IS
a palindromic representation. Hence

k
2" = Z Cibi
i=0
and ¢; = ci_;, for each 7. In particular, because ¢y = ¢ > 1, we have
2" >pF 41> (27 — 1)k

However, 2° — 1 > 277! because > 2. Hence 2" > (2~1)* and therefore
n > (x — 1)k, which proves (1).
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Now assume that r =n — kx > 0 and k < z —r. We have 2" = 2"(b + 1)’“. It is
well known (see [6, page 35]) that

ZE0 W G U U B RV S
m ) vam 8m | 128m2 | 1024m3 m

2m -1\ 1/2m <4m*%
m—-1) 2\m Vrm'

Thus, when k > 2 is even:

and

(1in) = () < Vies = 5 < 1w = 1

since /7 > 1.75 and k < z — r. Similarly, when k > 1 is odd:

()~ ()~ (o) < T B e
k/21)  \(k+1)/2) \(k—-1)/2 (k+L)m/2 ~ /@ L7 = 175"
Consequently
2" K < 2 <2*—-1=b
[k/2] 1.75 -
since x > 2. Hence, Lemma 1 applies with o = 2".
The proof is similar when 3 < k <z —r+ 1. When k > 4 is even:
( k > _ 2k - 2k _ ﬁ - 29:—7“-1-1 B Qr—r
[k/2] VEr/2 T Vem 25 T 25 1.25°

since v2m > 2.5 and k < z —r + 1. The same upper bound holds when k > 5 is

odd.
Consequently
o F VX iy
[k/2] 1.25 -
since x > 3. Hence, Lemma 1 applies with a = 2". O

We can also use the proof technique of Lemma 4 to show the following.

Theorem 5. For all integers n > 2, 2" has a base-b binomial form representation
for some b < 2Y — 1, where y < [\/Qn] +1.

Proof. Define x = [v/2n] and k = |2|. Then n = ak +r, where 0 <r <z — 1. If
r < x — k, then we have a binomial form representation of 2" to the base b, where
b < 2% —1, as shown in Lemma 4.
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Thus we can suppose that r > =z — k + 1. We have n = (z + 1)k + r — k,
yk + 1, where y = z 4+ 1 and v/ =
r"<zr—k—-1=y—k—2<y—k. So we will obtain a binomial form representation
of 2™ to the base b, where b < 2¥ — 1, provided that 7’ > 0, i.e., if r > k. We have

SO n =

r>x — k+ 1, so it is sufficient to show that x — k+1 > k, i.e., x > 2k — 1.

We have x > v/2n. Since k < n/x, we have kx < n. Hence z > v2n > v2kzx.

Squaring, we obtain 2% > 2kx and hence = > 2k > 2k — 1, as desired.

In Tables 3 and 4, the minimum-base palindromic representation of 2" is com-
puted for all n < 64. In every case, the minimum base is of the form 2% — 1 for
some integer . The hypotheses of Lemma 4 are satisfied for each such n except
n = 63. Thus, for all n # 63, the minimum-base palindromic representation of 2"
is guaranteed to be of binomial form. However, even for n = 63, the hypotheses of

Lemma 1 are satisfied.

nkxzr b2") =2°-1

1021 b(2"H) =3 2T =2.(1)3

2120 b(2%) =3 2% =(1,1)3

3121 b(2%) =3 2% =2-(1,1);

4220 b(2Y) =3 2* =(1,2,1)3

5132 b(2%) =7 2° =4-(1,1)7

6230 b(2%) =7 206 =(1,2,1)r

7231 b(2") =7 27 =2-(1,2,1)r
8240 b(2%) =15 28 =(1,2,1)15

9330 b(2°) =7  2° =(1,3,3,1);
10331 b(2'% =7 2'°=2.(1,3,3,1)7
11251 b(2")=31 2"=2.(1,2,1)3
12430 b(2)=7 2'2=(1,4,6,4,1);
13341 b(2"3%)=15 2%=2.(1,3,3,1)15
14342 b(2")=15 2"=4.(1,3,3,1)15
15350 b(2')=31 2%=(1,3,3,1)3
16440 b(2'% =15 2'=(1,4,6,4,1)15
17441 b(2')=15 27=2-(1,4,6,4,1)15
18353 b(2'%)=31 2'¥=8.(1,3,3,1)3
19361 b(2'9)=63 2=2-(1,3,3,1)¢3
20540 b(2°%)=15 22°=(1,5,10,10,5,1)15
21451 b(2*Y)=31 22'=2-(1,4,6,4,1)3;
22452 b(2*%)=31 2%2=4-(1,4,6,4,1)3;
23372 b(2*2%)=127 2**=4-(1,3,3,1)127
24460 b(2**)=63 22*=(1,4,6,4,1)3
25550 b(2*°)=31 2%°=(1,5,10,10,5,1)s
26551 b(2*6)=31 2?°=2.(1,5,10,10,5,1)3;

Table 3: Palindromic representations of 2", where 1 <n = kx +r < 26

r —k. Since r < z — 1, we have
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kx +r <64

27—1

~
[a\]
—
=
—
o]
w o =
™ = M31
3 < o 2 S g2 °Fw
= w m PETES B = o ol B o IR G (i (s IR pan jan i s
) oS . ~ GRS w0 g = SR
—~ © © —~ g A LN = = = N o~ © N
-2 O A w AN C e R RS NS R A G NNHDTCS SR
— (a1} ~ W~ _ 7 e e o=~ o~ T e ~ e e e e -~ o~ -
~ -~ [Ta B o B P — A — 0 ~ -~ Nej ~ — O
- N - 228 g% g PR F s mwd LT s 8adad s sawd 8
R 500§ A L0 T = T 0 S L M 0 10— 7330»71167
N o P . S A A - P T
T N B e B e B = = I o B R N R e T e Y R e = B T Y =R =R = B
R I TP i T B e I o e A B e BC - B B B B o T B NN - - B Nl
Y S s L e e s I S S SSSE TS SS S T 2SS TS

647625116612116113,111112372111215:22 A~ g5 00

7 7 ,77,7,,7,77 ,7,,7, 7,,7,, ,,5’77’7

PCRY S S o= S 3 3 S0 S S g
47647157644?471167KU7471—L\.W/26’6715075&;127;~b75075;1n072~(7~{7171n07n0732
o L s s D D N D DN e D DT s D o 0

L— —_ . . .171. . S— —_ C - ~1’1~ . . . - .61’. .1’17
8/!\ /l\ 424((288(2( 4(24((2848(2(241(24((

[l I L e | | B B 1
.

1

0 D [ T 0w O O 9~ M F O © N~ 0 O O 4 a4 M F 0 © >~ 0 O 9O = O 00 <f
A A a4 o m O O 0 0 O o O 60O F F F < < < <+ F S O F o0 0 0 0 10 10 10 0 0 M O O © O O
[\ B B~ T T BN BN T R T BN BN T TR [ B B S TR R B B N [ TR B B TR R [ B BN oS Y TR N BN B

N M e ckoe)

D~ D~ 1010 I~ I~ — 1010 e A A 0~~~ A~ FAN A -0

MAN =M MDD NN N A M ANN AT NNIOODO AN IO D DDA
NN A — o A HHOWLII AN A AN~ 1010~ NN e A VN

O© —H -+ M O O
I

P

RS N
I I

I~ 0 oo O 4 a4 Mo F n © > 0 O H 4 M F 1w © - 0w DO H M F WO - 0V DO ~H A M f
A A A o o M O O 0 0 0 0 F o f F F F F < F F 0 0 0 o 1 1 1 10 10 10 O 9O © O O
A A A A A A A A A AN A AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN NN ANNANANNANN

_ N o o

where 27 <n

INTEGERS: 24 (2024)

nk xzr b(2")

s cSo2S5ScocOotSo55ScOO oSO OOOOOCMSOSQOSQOSSOSOSQOSOSSOSSOSOSOSOSOSOSOSOOCOOSO OO OO

MNO— O T AN AT ANOO—MMNMO IO —TNO T ANODO MO ANMNMO O —ANFO— AN OO

O~ 10 © © 00D~ O O~ 00O~ VI-D-00 OO DD~ 00—0O0 OO0
— o

< F HF OO0 F F 0O OO0 F 00~ O O 0 O - O 100 O © 0~ O O © D

I~ 0 DO =4 A MFT I OIS0V AN OO0 =AM IO OIS0 -+ <f

AN ANMmMmmmMmMmOMOMTF HF F T 0010101101010 10 1010 O O O O O

Table 4: Palindromic representations of 2",

We also have computed all palindromic representations of 2" for every positive in-
teger n < 64. Perhaps surprisingly, these computations show that every palindromic

representation of 2™ is either of binomial form or has three digits.
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3. Some Extensions

Theorem 6. If p is a prime and N = p™ has a palindromic representation N =
(CkyCk—1,---,C0)p with k odd, then b =p® — 1 for some x.

Proof. Applying Lemma 3, we see that b + 1 divides p™. Therefore b = p* — 1, for
some . 0

An obvious theorem whose proof we leave for the reader is Theorem 7.
Theorem 7. For any positive integer z.
(I) 2™ has the (n+ 1)-digit representation z = (1,0,0,...,0),.
(IT) 2™ + 1 has the (n + 1)-digit palindromic representation z = (1,0,0,...,1),.

(III) 2™ — 1 has the n-digit palindromic representation z = (1,1,1,...,1),.

Note that Theorem 7 implies b(2" £ 1) = 2.
A solution (z,y,n,q) to the Nagell-Ljunggren Diophantine equation

" —1

r—1

=y (4)
is equivalent to the n-digit palindromic representation
yq: (17]‘717"'71)2'

Bugeaud and Mihailescu studied the Nagell-Ljunggren Diophantine equation and
obtained the following theorem.

Theorem 8 (Bugeaud and Mihailescu [3]). Apart from the solutions

=(1,1,1,1,1)3, 20 = (1,1,1,1)7 and 7 = (1,1,1)s,

9 ) ) )

Equation (4) has no other solution (x,y,n,q) if any of the following conditions are
satisfied:

() ¢
(ii) 3 divides n,
(ili) 4 divides n,

)

(iv) =3 and n £ 5 (mod 6).

Some additional computational results are presented in Tables 5 and 6 in the
Appendix.
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4. Concluding Remarks

We have several conjectures:
(
(b

a) b(2") =27 — 1, for some x;
) The minimum palindromic representation of 2™ has binomial form;
() b(2e") =2 — 1;
)

(d) For any base b there are only finitely many integers N = 2™ such that
b(N) = b; and

(e) b(2™) =3 if and only if n =1,2,3 or 4.

Acknowledgement. Every year on his birthday, the first author reports to Marco
Buratti of Rome some amusing palindromic connection. (Marco is obsessed with
palindromes.) This past year (2023) he reported that he turned 68 which is a
palindrome in base 3 and also in base 16. The interlocution quickly turned to a
discussion on what is the smallest base such that N is a palindrome in that base.
Data was generated and on 22 September 2023, Marco wrote:

Dear Don,

thank you for your interesting message!
Is b(2") always of the form 2! — 1?7
Maybe my question is stupid.

Ciao,

Marco

It turns out that it is not so stupid after all.
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Appendix

We provide in Tables 5 and 6 some additional computational results. Non-binomial

forms are marked in red.

21 =2.(1)3 216 =(1,0,0,2,2,2,2,0,0,2,1)3

22 =(1,1)3 217=(2,0,1,2,2,2,1,0,1,1,2)3

23 =2.(1,1)3 218 = (1,1,1,0,2,2,1,2,1,0,0,1)3

24 =(1,2,1)3 219=(2,2,2,1,2,2,0,1,2,0,0,2)3

25 =(1,0,1,2)3 220 =(1,2,2,2,0,2,1,1,0,1,0,1,1)3

26 =(2,1,0,1)3 221 =(1,0,2,2,1,1,1,2,2,0,2,0,2,2)3

27 =(1,1,2,0,2)3 222 = (2,1,2,2,0,0,0,2,1,1,1,1,2,1)3

28 =(1,0,0,1,1,1)3 223 = (1,2,0,2,1,0,0,1,2,0,0,0,0,1,2)3

29 =2.(1,0,0,1,1,1)3 224 =(1,0,1,1,1,2,0,1,0,1,0,0,0,1,0,1)3

210 =(1,1,0,1,2,2,1)3 225 =(2,1,0,0,0,1,0,2,0,2,0,0,0,2,0,2)3

211 =(2,2,1,0,2,1,2)3 226 =(1,1,2,0,0,0,2,1,1,1,1,0,0,1,1,1,1)3

212 =(1,2,1,2,1,2,0,1)3 227 =(1,0,0,1,0,0,1,1,2,2,2,2,0,0,2,2,2,2)3

213 =(1,0,2,0,2,0,1,0,2)3 228 = (2,0,0,2,0,1,0,0,2,2,2,1,0,1,2,2,2,1)3

214 =(2,1,1,1,1,0,2,1,1)3 229 = (1,1,0,1,1,0,2,0,1,2,2,1,2,1,0,2,2,1,2)3

215 =1(1,1,2,2,2,2,1,1,2,2)3 230=(2,2,0,2,2,1,1,1,0,2,2,0,1,2,1,2,2,0,1)3

Table 5: Representations of 2" in the base 3 for n < 25.
Non-palindromic forms are marked in red.
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Table 6: Palindromic representations of p™ < 23°, where 3 < p < 29 is prime.



