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Abstract

It is established that if f(x) ∈ Z[x] is irreducible over Q, has degree even, and f(x2)
is reducible over Q, then f(x2) ≡ f(x)f(−x) (mod 4). Making use of this criterion,
it is shown that if f(x) = xdQ−1 +xdQ−2 + · · ·+xd1 +1, where Q < 15, is irreducible
over Q, then f(x2) is irreducible over Q unless f(x) is cyclotomic. These results
address, for the first time, an open question of Michael Filaseta asking whether
f(xr) is irreducible over Q for every positive integer r where f(x) is a non-cyclotomic
polynomial having 0 and 1 as coefficients, and is irreducible over Q.

1. Introduction

Let N denote the collection of polynomials whose coefficients are 0 and 1. We will

refer to the elements of N as 0, 1-polynomials. They are known to exhibit elegant

mathematical properties, both algebraic and analytic. For instance, if W denotes

the complete set of complex zeros of polynomials in N , then Odlyzko and Poonen

[8] showed that γ−1 < |z| < γ for all z ∈ W where γ = (1 +
√
5)/2. Among several

other exciting results, they demonstrated that W is path connected where W is

the closure of W in C. As for some of the algebraic aspects, Filaseta, Finch, and

Nicol [5] showed, among other things, that for positive integers a, b, and c, one

among 1 + xa + xb, 1 + xb + xc, and 1 + xc + xa is irreducible over Q. Filaseta and

Konyagin [2] established that for a fixed positive integer n, the number of squarefree

polynomials (a polynomial is squarefree if it has no multiple roots) of degree at most

n in N is asymptotic to 2n. This implies that about one-half of the polynomials in
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N are squarefree. We will also mention a few other thematically relevant results

as we describe the main problem below.

The present work was strongly motivated by a question of Filaseta [3] concerning

the irreducibility of f(xr) over Q for certain f(x) ∈ N that are irreducible over Q.

In what follows, irreducibility will always refer to the irreducibility over Q. Since

any non-constant member of N is monic, by Gauss’s lemma, it suffices to consider

the irreducibility over Z.
To state Filaseta’s question in a more persuading manner, let Nirred denote the

collection of irreducible polynomials in N . For f(x) ∈ Nirred and a positive integer

r, we consider the polynomial f(xr) ∈ N . However, f(xr) does not necessarily

belong to Nirred in general. The polynomial f(x) = x is a trivial example. There

are other members f(x) ∈ Nirred with the property that f(xr) is reducible for some

r > 1. For instance, f(x) = x2 + x + 1 ∈ Nirred but f(x2) = f(x)f(−x). More

generally, if f(x) ∈ Nirred is cyclotomic, then f(xp) is reducible for every sufficiently

large prime p. To be precise, for a positive integer ℓ, the ℓ-th cyclotomic polynomial

Φℓ(x) is defined as

Φℓ(x) =
∏

0<i<ℓ
gcd(i,ℓ)=1

(x− ωi), ω = e2πi/ℓ.

It is well-known that Φℓ(x) is a monic polynomial with integer coefficients and has

degree ϕ(ℓ), where ϕ is the Euler phi function. An integer polynomial is called

cyclotomic if it is a product of the polynomials Φℓ(x). Otherwise, it is referred

to as non-cyclotomic. It is an established fact that for a positive integer r, the

polynomial Φℓ(x
r) is irreducible if and only if every prime divisor of r divides ℓ. In

particular, Φℓ(x
p) is reducible for every p ∤ ℓ, and factors as

Φℓ(x
p) = Φℓ(x)Φpℓ(x).

There are infinitely many cyclotomic polynomials in Nirred. For instance, Φ3(x
3k) ∈

Nirred for every positive integer k. Accordingly, we phrase the question as follows.

Question 1. Suppose that f(x) ∈ Nirred is non-cyclotomic. Is it true that f(xr) ∈
Nirred for every positive integer r?

Extending a method of Ljunggren [7], Filaseta [3] provided a partial answer to

Question 1 in the affirmative establishing that if f(x) has the additional character-

istic of being nonreciprocal, then f(xr) is irreducible for every positive integer r. A

polynomial h(x) is referred to as reciprocal if

h(x) = ±xdeg hh

(
1

x

)
,

with the plus sign if h(x) ∈ N . Otherwise, h(x) is nonreciprocal. In general, for

a given h(x) ∈ Z[x], the polynomial xdeg hh(1/x) is referred to as the reciprocal of

h(x), and denoted by h̃(x). Every non-constant monomial is nonreciprocal.
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Cyclotomic polynomials are prime examples of reciprocal polynomials. Given

Filaseta’s work, it remains to consider f(x) ∈ Nirred which are non-cyclotomic and

reciprocal. We denote this subset of Nirred by N ncr
irred.

Reciprocal members of N are an important class of polynomials in their own

right. For example, Konvalina and Matache [6] have shown that every reciprocal

0, 1-polynomial has a root on the unit circle. Filaseta and Meade [4] have es-

tablished that every irreducible factor of a reciprocal 0, 1-polynomial is reciprocal.

Additionally, as far as Lehmer’s conjecture on the Mahler measures of monic integer

polynomials is concerned, the reciprocal non-cyclotomic members of N remain a

significant hurdle.

We now return to the topic at hand. Filaseta [3] posed the problem of proving (or

disproving) that if f(x) ∈ N ncr
irred, then f(xr) is irreducible for every integer r ≥ 1.

In this regard, our initial software-based experimentations suggest the following.

Conjecture 1. Let f(x) be an irreducible reciprocal non-cyclotomic 0, 1-polynomial.

Then f(xr) is irreducible for every integer r ≥ 1.

A proof of Conjecture 1 will completely answer Question 1. However, the authors

believe this is potentially a hard problem to resolve. In our modest attempt, we

prove a partial result corroborating the possible validity of Conjecture 1 in the case

where r = 2 and f(x) has few terms.

Theorem 1. Let f(x) be an irreducible reciprocal non-cyclotomic 0, 1-polynomial

with less than 15 terms. Then f(x2) is irreducible.

Thus, Theorem 1, together with Filaseta’s result, provides a complete answer

to Question 1 for f(x) having at most fourteen terms in the case r = 2. In the

next section, we will show that it suffices to assume r is prime in Conjecture 1. We

conclude this section by briefly discussing our strategy in proving Theorem 1.

Let f(x) ∈ N ncr
irred, say

f(x) = xdQ−1 + xdQ−2 + · · ·+ xd1 + 1.

We treat the exponents of f(x) as unknowns. Initially, there are Q − 1 unknowns

to begin with. To prove Theorem 1, we only need to work with Q < 15. By the

reciprocality of f(x), we have dQ−1−j = dQ−1 − dj . This reduces the number of

unknowns to at most (Q−1)/2. In Section 3, we will further reduce this to at most

Q/3 unknowns. This step is key in bringing the computational complexities down

to a manageable state. The proof of Theorem 1 rests upon the observation (see

Theorem 3, Section 2) that if f(x) ∈ Nirred with f(x2) reducible, then

f(x2) ≡ f(x)f(−x) (mod 4).

After eliminating the common terms on the two sides of the above congruence, we

obtain a congruence of the shape HL(x) ≡ HR(x) (mod 2) where HL(x) and HR(x)
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are sums of monomials whose exponents can be expressed in terms of the unknowns

dj . The idea, then, is to match the exponents on both sides depending on their sizes

and parities. But at this stage, we still have around Q/2 unknowns involved. We

will demonstrate that there is a unique odd positive integer ℓ, and unique reciprocal

polynomials fe(x) and fo(x), such that

f(x) = fe(x
2) + xℓfo(x

2).

Thus, each dj can be expressed in terms of ℓ and the exponents of the terms of fe(x)

and fo(x). We introduce these unknowns and rewrite HL(x) ≡ HR(x) (mod 2).

Next, we leverage the reciprocality of fe(x) and fo(x) to reduce this to a polynomial

congruence FL(x) ≡ FR(x) (mod 2) where FL(x) and FR(x) are sums of monomials

with exponents expressed in terms of the exponents of monomials in fe(x) and fo(x).

We further maneuver to ensure that the total number of unknowns in the various

exponents appearing in FL(x) ≡ FR(x) (mod 2) is at most Q/3. We then compare

the exponents as previously described, leading to several linear equations in these

unknowns for which we seek positive integral solutions. We prove our result by

establishing that every feasible solution produces a cyclotomic f(x).

The paper is organized as follows. In Section 2, we establish the irreducibility

criterion and prepare the ground for the proof of Theorem 1. In Section 3, we finish

the proof of Theorem 1 with the help of several lemmas.

2. Applications of Capelli’s Theorem

We begin by discussing the factorization of f(xr) for an arbitrary irreducible integer

polynomial f(x). Let f(x) ∈ Z[x] be irreducible of degree n. As a consequence of

Capelli’s main results [1] in this direction, one obtains the following neat reducibility

criterion for f(xr) (see Theorems 20 and 21 in [9]).

Theorem 2 ([9]). Let f(x) ∈ Z[x] be irreducible, and suppose that r ≥ 2 is an

integer. Then f(xr) is reducible if and only if one of the following holds.

(i) The polynomial f(xp) is reducible for some prime p dividing r. Equivalently,

for every complex root α of f(x), there is some β ∈ Q(α) such that α = βp

for some prime p dividing r.

(ii) One has 4 | r, and f(x4) is reducible. Equivalently, 4 | r, and for every

complex root α of f(x), there is some β ∈ Q(α) such that α = −4β4.

Given Theorem 2, it suffices to assume r is either a prime or r = 4 in Conjecture 1.

After establishing the irreducibility criterion for f(x2) below, we will demonstrate

that the condition r = 4 can be dropped.
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We will now specialize in the case where f(x) ∈ N ncr
irred, although the proof is

valid for any monic irreducible polynomial of even degree with integer coefficients.

It is not hard to see that if f(x) ∈ N ncr
irred, and deg f is odd, then f(−1) = 0. Thus,

deg f is even for every f(x) ∈ N ncr
irred. Henceforth, we will assume that deg f is even.

Theorem 3. Let f(x) ∈ Nirred. If f(x2) is reducible, then

f(x2) ≡ f(x)f(−x) (mod 4). (1)

Proof. Let f(x) be as stated in the theorem. Further, suppose that f(x2) is re-

ducible. By [10, Lemma 24, pg. 152], there exists a monic polynomial g(x) ∈ Z[x]
such that

f(x2) = g(x)g(−x). (2)

We claim that g(x) ≡ f(x) (mod 2). But this is clear after considering Equation (2)

modulo 2. Namely, we have

f(x2) ≡ g(x)2 ≡ g(x2) (mod 2).

The assertion follows. Thus, g(x) = f(x)+2h(x) for some h(x) ∈ Z[x]. Eliminating

g(x) from Equation (2), we obtain

f(x2) = (f(x) + 2h(x))(f(−x) + 2h(−x))

≡ f(x)f(−x) + 2(f(x)h(−x) + f(−x)h(x)) (mod 4).

Since f(x) and h(x) have integer coefficients, the conclusion of the theorem follows

by observing that f(x)h(−x) + f(−x)h(x) ≡ 0 (mod 2).

Let f(x) ∈ Nirred. Recall that in resolving Conjecture 1, one may assume that

r = 4 if r is not a prime. We shall next establish below that f(x4) is reducible if

and only if f(x2) is reducible. Consequently, it would suffice to assume that r is

prime in Conjecture 1, as asserted earlier.

Theorem 4. Let f(x) ∈ Nirred of degree n > 0. Then f(x4) is reducible if and

only if f(x2) is reducible.

Proof. Let f(x) be as stated in the theorem. It is easy to see that f(x4) is reducible

if f(x2) is reducible. Conversely, suppose that f(x4) is reducible and f(x2) is

irreducible. Thus, f(x2) ∈ Nirred. We proceed as in the proof of Theorem 3 to

first deduce that there is an irreducible monic polynomial u(x) ∈ Z[x] satisfying
u(x) ≡ f(x2) (mod 2) such that

f(x4) = u(x)u(−x). (3)
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Let u(x) = f(x2)+2r(x) where r(x) ∈ Z[x]. Substituting u(x) in Equation (3) with

this expression, one obtains

f(x4) = (f(x2) + 2r(x))(f(x2) + 2r(−x))

= f(x2)2 + 2f(x2)(r(x) + r(−x)) + 4r(x)r(−x).

Since r(x) + r(−x) ≡ 0 (mod 2), it follows that f(x4) ≡ f(x2)2 (mod 4). Conse-

quently,

f(x2) ≡ f(x)2 (mod 4). (4)

Now, suppose f(x) is not a constant. Then there is an integer t ∈ {1, 2, . . . , n} such

that f(x) = 1 + xt + xt+1v(x) for some v(x) ∈ Z[x]. Then, Equation (4) implies

1 + x2t + x2t+2v(x2) ≡ 1 + 2xt + xt+1v1(x) (mod 4),

for some v1(x) ∈ Z[x]. We obtain a contradiction by comparing the coefficients of

xt on both sides above. This concludes the proof.

3. A Proof of Theorem 1

We now turn to the proof of Theorem 1. In what follows, we assume that f(x) is as

stated in Theorem 1. We further assume throughout that deg f = n = 2m where

m > 0 is an integer. Moreover, since every irreducible 0, 1-polynomial of degree 2 is

cyclotomic, we constrain ourselves to the case that m > 1. As before, Q = f(1) will

denote the number of terms of f(x), and we restrict to Q < 15 for our purposes.

We will prove Theorem 1 by contradiction. Accordingly, we suppose that f(x2) is

reducible. Then Theorem 3 implies that Equation (1) holds. We will next establish

several lemmas to prove Theorem 1.

Lemma 1. Let h(x) ∈ Z[x] be an irreducible reciprocal polynomial of degree 2k such

that h(x) /∈ Z[x2]. Then, there are unique reciprocal integer polynomials he(x) and

ho(x) and a unique odd positive integer ℓh, satisfying

deg he = k and deg ho = k − ℓh, (5)

such that

h(x) = he(x
2) + xℓhho(x

2) with he(0)ho(0) ̸= 0. (6)

Proof. Observe that h(x) /∈ Z[x2] implies there are unique he(x), ho(x) ∈ Z[x], and
a unique odd positive integer ℓh, such that Equation (6) holds with ho(0) ̸= 0.

Since h(x) is irreducible of degree 2k, we deduce that h(x) ̸≡ x so that h(0) ̸= 0. It

follows that he(0) = h(0) ̸= 0. Furthermore, it can be easily seen that both he(x
2)

and ho(x
2) are reciprocal since h(x) is the reciprocal of an even degree. Thus, he(x)

and ho(x) are reciprocal.
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It remains to establish Equation (5). It is clear from deg h = 2k that deg he = k.

Taking the reciprocal of the polynomials appearing on both sides of Equation (6),

we obtain

h(x) = h̃(x) = he(x
2) + x2k−ℓh−2 deg hoho(x

2).

Comparing the above with Equation (6), we deduce that

ℓh = 2k − ℓh − 2 deg ho,

establishing Equation (5). The lemma follows.

Lemma 2. Suppose that f(x) ∈ Nirred is reciprocal with deg f = 2m such that

f(x2) is reducible. Then there are unique reciprocal polynomials fe(x) and fo(x) in

N , as well as a unique odd positive integer ℓ, such that

deg fe = m, deg fo = m− ℓ,

and

f(x) = fe(x
2) + xℓfo(x

2) with fe(0)fo(0) ̸= 0. (7)

Proof. The conclusion follows from Lemma 1 provided that f(x) /∈ Z[x2]. So,

suppose that f(x) = h(x2) for some h(x) ∈ N . Observe that h(x) ∈ Nirred since

f(x) is irreducible. But then Theorem 4 implies that f(x2) = h(x4) is irreducible,

contradicting our assumption that f(x2) is reducible. This settles the lemma.

Observe that the integer ℓ in Lemma 2 is the smallest odd exponent of x in

f(x) since fo(0) = 1. Since ℓ is odd, exactly one of the integers deg fe = m and

deg fo = m − ℓ is odd. Accordingly, either fe(−1) = 0 or fo(−1) = 0 since these

polynomials are reciprocal. Expressing f(x) and f(−x) in terms of fe(x) and fo(x),

and substituting in Equation (1), we get

f(x2) ≡ fe(x
2)2 − x2ℓfo(x

2)2 (mod 4).

In other words,

f(x) ≡ fe(x)
2 − xℓfo(x)

2 (mod 4). (8)

We need the following information on ℓ appearing in Equation (8).

Lemma 3. Let f(x) ∈ Nirred be reciprocal non-cyclotomic of degree 2m. Let fe(x),

fo(x), and ℓ be as defined in Equation (7). Suppose that f(x2) is reducible (so

that Equation (8) holds). Then, ℓ is the smallest exponent of x appearing in f(x).

Moreover, ℓ < m/2.

Proof. We first show that ℓ is the smallest nonzero exponent of x in f(x). Suppose

that f(x) =
∑2m

j=0 εjx
j , where each εj ∈ {0, 1} with ε2m = ε0 = 1. Further, let

fe(x) =
∑m

j=0 cjx
j , where every cj ∈ {0, 1} with cm = c0 = 1. Since εℓ = 1 by
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hypothesis, it suffices to show that ck = 0 for each k satisfying 0 < k < ℓ. After

comparing the coefficient of xk on both sides of Equation (8), we have

εk =


2

∑
0<i+j=k

i<j

cicj if k ≡ 1 (mod 2)

ck/2 + 2
∑

i+j=k
i<j

cicj if k ≡ 0 (mod 2).
(9)

We prove our assertion inductively. For k = 1, we have ε1 = 2c1. Since ε1 ∈ {0, 1},
it follows that c1 = 0. Next, assume that ci = 0 for every i satisfying 0 < i < k.

Thus, εk = 2c0ck = 2ck. Once again, since εk ∈ {0, 1}, it follows that ck = 0,

proving our assertion.

We next establish that ℓ < m/2. The coefficient of xℓ in fe(x)
2 − xℓfo(x)

2 is

2cℓ − 1. From Equation (8), one has

1 = εℓ ≡ 2cℓ − 1 (mod 4).

Thus, cℓ = 1. Accordingly, it follows from Equation (9) that ε2ℓ = 1. We assert

that the coefficient of xℓ+k in f(x) is zero whenever k is odd and 0 < k < ℓ. There

is nothing to prove if ℓ = 1. So, assume that ℓ > 1. Let fo(x) =
∑m−ℓ

j=0 bjx
j , where

each bj ∈ {0, 1} with b0 = bm−ℓ = 1. Since cj = 0 for every j satisfying 0 < j < ℓ,

one computes that for an odd k ∈ (0, ℓ), the coefficient of xℓ+k in fe(x)
2 − xℓfo(x)

2

is

2cℓ+k − 2

k∑
j=0

bjbk−j ≡ 0 (mod 2).

It now follows from Equation (8) that εℓ+k = 0 for every odd k ∈ (0, ℓ). In

particular, ε2j = 0 for each j satisfying 0 < j < ℓ. Next, observe that ℓ < m.

Otherwise, m − ℓ = deg fo ≥ 0 would imply that ℓ = m. In that event, f(x) =

x2m + xm + 1, which is cyclotomic, contrary to our assumption.

If 2ℓ > m, then

0 < 2m− 2ℓ < m < 2ℓ,

whence, ε2m−2ℓ = 0. On the other hand, since f(x) is reciprocal of degree 2m, one

has that ε2m−2ℓ = ε2ℓ = 1. It follows that 2ℓ ≤ m.

Next, suppose 2ℓ = m. Since ε2j = 0 for every j satisfying 0 < j < ℓ, it

follows from the reciprocality of f(x) that fe(x) = x2ℓ + xℓ + 1. Also, in this case,

deg fo = m − ℓ = ℓ. We claim that fo(x) = xℓ + 1. If that is not the case, then

let k denote the smallest exponent of x in fo(x) satisfying 0 < k < ℓ. Consider

the coefficient of xℓ+k on both sides of Equation (8). While the coefficient of xℓ+k

on the right is −2, the same on the left is εk. However, this implies εk ≡ −2

(mod 4), which is an impossibility since εk ∈ {0, 1}. The claim now follows. Thus,
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fo(x) = xℓ + 1, and

f(x) = fe(x
2) + xℓfo(x

2) = x4ℓ + x3ℓ + x2ℓ + xℓ + 1 = Φ5(x
ℓ).

This is a contradiction since f(x) is not cyclotomic per our hypothesis. Therefore,

ℓ < m/2, as required.

Next, assume that f(x) ∈ Nirred is reciprocal such that f(x2) is reducible. It

follows from the proof of Theorem 3 that there is an irreducible monic g(x) ∈ Z[x]
with deg g = deg f = 2m, such that Equation (2) holds. As mentioned in the

introduction, a result of Filaseta and Meade (see [4, Lemma 2]) implies that every

irreducible factor of a reciprocal 0, 1-polynomial is reciprocal. So, both g(x) and

g(−x) are reciprocal. Observe that g(x) /∈ Z[x2]. Otherwise, Equation (2) would

imply that f(x2) = g(x)2. This is impossible since f(x) is irreducible (so that f(x2)

is separable).

Let ℓg, ge(x), and go(x) be as stated in Lemma 1. Specifically,

g(x) = ge(x
2) + xℓggo(x

2),

where deg ge = m and deg go = m − ℓg. We eliminate g(x) from the equation

f(x2) = g(x)g(−x) using the last relation above to obtain

f(x2) = ge(x
2)2 − x2ℓggo(x

2)2.

Consequently,

f(x) = ge(x)
2 − xℓggo(x)

2. (10)

Setting x = 1 in Equation (10), we obtain

f(1) = ge(1)
2 − go(1)

2.

Considering that 0, 1, 4, and 9 are the only squares modulo 16, we deduce that

Q = f(1) ≡ r (mod 16), where

r ∈ {0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15}.

Given that 0 < Q < 15, we further restrict ourselves to

Q ∈ {1, 3, 4, 5, 7, 8, 9, 11, 12, 13}.

It is easily seen that Q = 1 implies f(x) ≡ 1. We discard this case. We can

further eliminate Q = 3 and Q = 4 from the list since every three or four-term

reciprocal 0, 1-polynomial is cyclotomic. To see this, first, observe that there is a

unique three-term reciprocal 0, 1-polynomial of degree 2m. Namely, the polynomial

f(x) = x2m + xm + 1 = Φ3(x
m), which is cyclotomic. In the case that Q = 4,

the polynomial f(x) has the shape f(x) = x2m + x2m−k + xk + 1 for some integer
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k ∈ (0,m). One verifies that f(x) = (x2m−k + 1)(xk + 1), and hence, f(x) is

cyclotomic. From now on, we will limit our discussion to the case where Q ∈
{5, 7, 8, 9, 11, 12, 13}.

Some remarks are in order in handling the case where Q ∈ {8, 12}. Suppose

f(x) ∈ Nirred is reciprocal and f(x2) is reducible. Let g(x) be as stated in Equa-

tion (2), and let ge(x) and go(x) be as defined previously. Since g(x) is reciprocal

of degree 2m, we deduce from Lemma 1 that both ge(x) and go(x) are reciprocal.

Furthermore, exactly one of them has an odd degree since deg ge − deg go = ℓg is

odd. Let {g1(x), g2(x)} = {ge(x), go(x)} be such that deg g1 is odd. In particular,

g1(−1) = 0. Consequently, f(−1) = g2(−1)2. So, if Q = f(1) is even, then g2(1)

is even. Based on these observations, it is possible to dismiss the scenario where

Q = 8 in the following manner. Notice that Q = 8 arises when ge(1)
2 = 9 and

go(1)
2 = 1. However, this implies g2(1) ≡ 1 (mod 2), which is a contradiction since

Q = 8 is even. The next lemma will allow us to handle the case that f(1) = 12

with relative ease.

Lemma 4. Let f(x), g1(x), and g2(x) be as described above. Suppose that g2(1) ≡ 0

(mod 4). If f(1) ≡ 4ε (mod 16) for some ε ∈ {−1, 1}, then f(−1) ≡ 0 (mod 16).

Proof. Let ge(x), go(x), ℓg, g1(x), and g2(x) be as stated before. Suppose that

f(1) ≡ 4ε (mod 16) and g2(1) ≡ 0 (mod 4).

Then gi(1) ≡ gi(−1) ≡ 0 (mod 2) for each i ∈ {1, 2}. Recall that deg g1 is odd

with g1(−1) = 0. Thus, f(−1) = g2(−1)2 ≡ 0 (mod 4). We claim that g2(−1) ≡ 0

(mod 4). For the sake of convenience, we let G(x) denote g2(x). So, G(1) ≡ 0

(mod 4). If G(x) ∈ Z[x2], then G(−1) = G(1) ≡ 0 (mod 4), as required. Otherwise,

let ℓG = k, Ge(x), and Go(x) be as defined in Lemma 1 for the polynomial G(x).

Specifically,

G(x) = Ge(x
2) + xkGo(x

2) with k = degGe − degGo.

Since G(x) is a reciprocal polynomial of even degree, the polynomials Ge(x) and

Go(x) are reciprocal. This implies that degGe is odd or degGo is odd. Accordingly,

x + 1 divides either Ge(x) or Go(x). Therefore, either Ge(1) is even or Go(1) is

even. Since G(1) is even, we can conclude that both Ge(1) and Go(1) are even.

Next, observe that if G(−1) ≡ 2 (mod 4), then

Ge(1)−Go(1) = G(−1) ≡ 2 (mod 4). (11)

However, the relation

Ge(1) +Go(1) = G(1) ≡ 0 (mod 4)
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implies, by Equation (11), that 2Ge(1) ≡ 2 (mod 4). This leads to a contradiction

since Ge(1) is even. Thus, G(−1) ≡ 0 (mod 4), as asserted. Consequently,

f(−1) = g2(−1)2 = G(−1)2 ≡ 0 (mod 16).

The lemma follows.

Let us illustrate how Lemma 4 helps us to determine the parity of m where 2m =

deg f . This significantly simplifies our computations when f(1) = 12. Suppose that

f(1) = 12 and f(x2) is reducible. Since f(x) is irreducible, we have f(−1) =

g2(−1)2 > 0. However, f(−1) < f(1) = 12 implies f(−1) ̸≡ 0 (mod 16). The

conclusion of Lemma 4 then implies that g2(1) ≡ 2 (mod 4). Given 12 = f(1) =

ge(1)
2 − go(1)

2, we have

ge(1)
2 − go(1)

2 ≡ −4 (mod 16).

This implies ge(1) ≡ 0 (mod 4) and go(1) ≡ 2 (mod 4). Consequently, ge(x) =

g1(x) and go(x) = g2(x), with deg go = m − ℓ being even. Therefore, if f(1) = 12,

we deduce that m is odd.

While discussing our strategy in Section 1, we proposed reducing our problem to

a certain polynomial congruence FL(x) ≡ FR(x) (mod 2). We will accomplish this

over the next few passages.

Lemma 5. Let h(x) ∈ Z[x] be a reciprocal polynomial with deg h = n > 0. Set

d = ⌊(deg h)/2⌋ where ⌊x⌋ denotes the greatest integer not exceeding x. Then, there

is a unique polynomial u(x) ∈ Z[x] with deg u < n/2, and unique integers M > n/2

and a, such that h(x) can be expressed as

h(x) = xM ũ(x) + axd + u(x).

Furthermore, a = 0 whenever h(1) is even. In particular, a = 0 if n is odd.

Proof. Let h(x), n, and d be as stated in the lemma. Clearly, h(x) is not a monomial.

We consider the different cases depending on whether n is even or odd. First,

consider that n is even. In that case, n = 2d. Since h(x) is reciprocal, there is a

nonnegative integer s, nonzero integers a0, a1, . . ., as, and integers d = d0 > d1 >

· · · > ds > 0, such that

h(x) =

s∑
j=0

ajx
d+dj + axd +

s∑
j=0

ajx
d−dj

for some a ∈ Z. We take

u(x) =

s∑
j=0

ajx
d−dj and M = d+ ds.



INTEGERS: 24 (2024) 12

Thus, deg u = d− ds < d = n/2 and M = d+ ds > d = n/2, so that

xM ũ(x) = xd+ds

s∑
j=0

ajx
dj−ds =

s∑
j=0

ajx
d+dj .

The assertion now follows in this case.

Next, suppose n is odd. In this case, n = 2d + 1. With the above notation, we

express h(x) as

h(x) =

s∑
j=0

ajx
d+1+dj +

s∑
j=0

ajx
d−dj .

The assertion of the lemma follows after taking u(x) =
∑s

j=0 ajx
d−dj and M =

d+ 1 + ds.

For future reference, note that if we set deg u = q in the proof of Lemma 5, then

M = n− q. To see this, first observe that ds = d− q. Accordingly,

M = d+ ds + δ = 2d− q + δ,

where δ = 0 if n is even, and δ = 1 otherwise. Our assertion follows upon observing

that n = 2d+ δ.

Let f(x) ∈ Nirred be a reciprocal polynomial of degree 2m. Let fe(x), fo(x), and

ℓ be as defined in Equation (7). According to Lemma 5, for each j ∈ {e, o}, there
are integers Mj , aj , dj , and a polynomial uj(x) ∈ N , such that

fj(x) = xMj ũj(x) + ajx
dj + uj(x), (12)

where dj = ⌊(deg fj)/2⌋, and aj = 0 if either deg fj is odd or if fj(1) is even.

Furthermore, deg uj < (deg fj)/2 < Mj .

Now, suppose that f(x2) is reducible. Then, Equation (8) implies that

fe(x
2) + xℓfo(x

2) ≡ fe(x)
2 − xℓfo(x)

2 (mod 4). (13)

By substituting fe(x) and fo(x) from Equation (12) into Equation (13), we obtain

x2Me ũe(x
2) + aex

2de + ue(x
2) + x2Mo+ℓũo(x

2) + aox
2do+ℓ + xℓuo(x

2)

≡ (xMe ũe(x) + aex
de + ue(x))

2

− xℓ(xMo ũo(x) + aox
do + uo(x))

2

≡ x2Me ũe(x)
2 + aex

2de + ue(x)
2

+ 2aex
Me+de ũe(x) + 2aex

deue(x)

+ 2xMe ũe(x)ue(x)− x2Mo+ℓũ0(x)
2

− xℓuo(x)
2 − 2aox

Mo+do+ℓũo(x)− aox
2do+ℓ

− 2aox
do+ℓuo(x)− 2xMo+ℓũo(x)uo(x) (mod 4).

(14)
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We will next compare the terms on the two extreme sides of Equation (14) that

have degrees less than m. Recall that Me > (deg fe)/2 = m/2. Thus, 2Me > m.

Furthermore, de = ⌊(deg fe)/2⌋ > m/2− 1. Therefore,

Me + de >
m

2
+

m

2
− 1 = m− 1.

Similarly, Mo > (deg fo)/2 = (m− ℓ)/2 implies 2Mo + ℓ > m. Additionally,

do =

⌊
deg fo

2

⌋
>

m− ℓ

2
− 1.

Therefore, Mo + do + ℓ > m− 1. Consider for each j ∈ {e, o},

dj + deg uj <
deg fj

2
+

deg fj
2

= deg fj .

Thus, de + deg ue < m and do + deg uo < m − ℓ. Lastly, we observe that the

expression

2do + ℓ = 2

⌊
m− ℓ

2

⌋
+ ℓ (15)

equals m if m − ℓ is even, and equals m − 1 if m − ℓ is odd. In the latter case,

ao = 0.

If u(x) =
∑d

i=0 x
ej , where e0 < e1 < · · · < ed are nonnegative integers, then

u(x)2 = u(x2) + 2Lu(x),

where Lu(x) =
∑

0≤i<j≤d x
ei+ej . Moreover, degLu < 2 deg u. Accordingly,

degLue < m and degLuo < m− ℓ.

For a polynomial h(x) ∈ Z[x] and an integer k > 0, let (h(x))k ∈ Z[x] denote the

remainder h(x) (mod xk). Next, we substitute ue(x)
2 and uo(x)

2 in Equation (14)

with ue(x
2) + 2Lue

(x) and uo(x
2) + 2Luo

(x), respectively. After rearranging terms

and ignoring those possessing degrees greater than or equal to m, we obtain

Lue
(x) + aex

deue(x) +
(
xMe ũe(x)ue(x)

)
m

≡ xℓuo(x
2) + xℓLuo

(x) + aox
do+ℓuo(x) +

(
aox

2do+ℓ
)
m

+
(
xMo+ℓũo(x)uo(x)

)
m

(mod 2).

(16)

Recall that uj(x) is a 0, 1-polynomial for j ∈ {e, o}. If ue(x) or uo(x) are not

identically zero, we let

ue(x) = 1 +

s∑
i=1

xni and uo(x) = 1 +

t∑
i=1

xmj , (17)
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where

ns = deg ue <

⌊
deg fe

2

⌋
≤ m

2
< Me,

and

mt = deg uo <

⌊
deg fo

2

⌋
< Mo. (18)

Furthermore,

Me = deg fe − deg ue = m− ns (19)

and

Mo = deg fo − deg uo = m− ℓ−mt. (20)

Now, suppose both ue(x) and uo(x) are nonzero. If m is even, then m − ℓ is odd,

in which case ao = 0. Additionally, in this case de = m/2 and do = (m− ℓ− 1)/2.

Eliminating Me and Mo from Equation (16) using Equation (19) and Equation (20),

and noting that 2do + ℓ = m (see Equation (15)), we obtain

Lue
(x) + aex

deue(x) + xm−ns (ũe(x)ue(x))ns

≡ xℓuo(x
2) + xℓLuo

(x) + xm−mt (ũo(x)uo(x))mt
(mod 2).

(21)

One computes that

(ũe(x)ue(x))ns
= 1 +

s∑
j=1

xnj +

s−1∑
j=1

xns−nj +
∑

1≤i<j<s

xns−nj+ni (22)

and

(ũo(x)uo(x))mt
= 1 +

t∑
j=1

xmj +

t−1∑
j=1

xmt−mj +
∑

1≤i<j<t

xmt−mj+mi . (23)

Rewriting Equation (21) by substituting the corresponding expressions from Equa-

tion (22) and Equation (23), we get

s∑
j=1

xnj +
∑

1≤i<j≤s

xni+nj + aex
m/2 + ae

s∑
j=1

xm/2+nj

+

s∑
j=1

xm−nj +
∑

1≤i<j≤s

xm−nj+ni

≡ xℓ +

t∑
j=1

xmj+ℓ +

t∑
j=1

x2mj+ℓ +
∑

1≤i<j≤t

xmi+mj+ℓ

+

t∑
j=1

xm−mj +
∑

1≤i<j≤t

xm−mj+mi (mod 2).

(24)
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Next, consider the case where m is odd. In this scenario, deg fo = m − ℓ is even,

so 2do + ℓ = m. Additionally, ae = 0 since deg fe = m is odd. Accordingly,

Equation (16) becomes

Lue(x) + xm−ns (ũe(x)ue(x))ns
≡ xℓuo(x

2) + xℓLuo(x) + aox
(m+ℓ)/2uo(x)

+ xm−mt (ũo(x)uo(x))mt
(mod 2).

Proceeding as we did for even m, we obtain

s∑
j=1

xnj +
∑

1≤i<j≤s

xni+nj +

s∑
j=1

xm−nj +
∑

1≤i<j≤s

xm−nj+ni

≡ xℓ +

t∑
j=1

xmj+ℓ +

t∑
j=1

x2mj+ℓ + aox
(m+ℓ)/2

+ ao

s∑
j=1

x(m+ℓ)/2+mj +
∑

1≤i<j≤t

xmi+mj+ℓ

+

t∑
j=1

xm−mj +
∑

1≤i<j≤t

xm−mj+mi (mod 2).

(25)

We have now obtained the polynomials FL(x) and FR(x) we were seeking. Let FL(x)

and FR(x) represent the polynomials on the left and right sides of Equation (24) if

m is even, and Equation (25) if m is odd. The exponents of x appearing in FL(x)

and FR(x) are unknowns. We will match these exponents by their sizes and parities

in FL(x) ≡ FR(x) (mod 2). For instance, if we can identify the smallest (or largest)

exponents in both FL(x) and FR(x), then they must be equal. Additionally, the

total number of exponents of a fixed parity in FL(x) and FR(x) combined is always

even. Our subsequent arguments are primarily based on these two observations.

Observe that for every i, j, k ∈ {1, 2, . . . , s} with k < j, one has

ni ≤ ns < m/2 < m− nj < m− nj + nk.

This implies that n1 and n2 are, respectively, the smallest and the second smallest

exponents on the left sides of both Equation (24) and Equation (25). Similarly,

since ℓ < m/2 (by Lemma 3), the smallest and the second smallest exponents on the

right sides of both Equation (24) and Equation (25) are ℓ and m1 + ℓ, respectively.

Therefore,

n1 = ℓ and n2 = m1 + ℓ. (26)

Proof of Theorem 1. Suppose that f(x) is an irreducible reciprocal 0, 1-polynomial

such that f(x2) is reducible. Further, assume that f(x) has Q ≤ 14 terms. As

previously explained, considering Q ∈ {5, 7, 9, 11, 12, 13} suffices. Let fe(x), fo(x),
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and ℓ be as defined in Equation (7). Additionally, let ne = fe(1) and no = fo(1).

Thus,

Q = f(1) = ne + no and f(−1) = ne − no.

For j ∈ {e, o}, let Mj , uj(x), dj , and aj have the same meaning as implied in

Lemma 5. As noted earlier, exactly one of the integers deg fe and deg fo is odd. As

such, either ae = 0 or ao = 0.

Recall that f(−1) is a square of a nonzero integer in the cases under consideration.

Specifically, if f(1) = 12, then ne + no = 12 and ne − no = 4 (ne − no = 0 would

imply that f(−1) = 0, which contradicts the irreducibility of f(x)). Therefore,

ne = 8 and no = 4. Given that fj(1) = 2uj(1) + aj for each j ∈ {e, o}, it follows

from the previous observation that ae = ao = 0 when f(1) = 12. Additionally,

as explained in the comments following the proof of Lemma 4, m is odd. In the

remaining cases,

ne + no ∈ {5, 7, 9, 11, 13} and ne − no ∈ {1, 9}.

From nj = fj(1) = 2uj(1) + aj for every j ∈ {e, o}, it follows that nj is odd if and

only if aj = 1. Since aj = 0 if deg fj is odd, we deduce that if nj is odd, then

aj = 1, implying deg fj is even. Specifically, if ne is odd, then ae = 1, and hence,

m = deg fe is even. Additionally, ao = 0, no is even, and deg fo = m − ℓ is odd.

Similarly, if no is odd, then ao = 1, and hence, deg fo = m−ℓ is even. In particular,

m is odd. Moreover, ae = 0, ne is even, and deg fe = m is odd. To summarize,

m ≡ no (mod 2).

Based on this information, we obtain the following eight possibilities for ne, ue(1),

ae, no, uo(1), ao, and the corresponding parities of m.

(i) If f(1) = 5, then f(−1) = 1; ne = 3, no = 2; ue(1) = 1, uo(1) = 1; ae = 1,

ao = 0, and m ≡ 0 (mod 2)

(ii) If f(1) = 7, then f(−1) = 1; ne = 4, no = 3; ue(1) = 2, uo(1) = 1; ae = 0,

ao = 1, and m ≡ 1 (mod 2)

(iii) If f(1) = 9, then f(−1) = 1; ne = 5, no = 4; ue(1) = 2, uo(1) = 2; ae = 1,

ao = 0, and m ≡ 0 (mod 2)

(iv) If f(1) = 11, and f(−1) = 9, then ne = 10, no = 1; ue(1) = 5, uo(1) = 0;

ae = 0, ao = 1, and m ≡ 1 (mod 2)

(v) If f(1) = 11, and f(−1) = 1, then ne = 6, no = 5; ue(1) = 3, uo(1) = 2;

ae = 0, ao = 1, and m ≡ 1 (mod 2)

(vi) If f(1) = 12, and f(−1) = 4, then ne = 8, no = 4; ue(1) = 4, uo(1) = 2;

ae = ao = 0, and m ≡ 1 (mod 2)
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(vii) If f(1) = 13, and f(−1) = 9, then ne = 11, no = 2; ue(1) = 5, uo(1) = 1;

ae = 1, ao = 0, and m ≡ 0 (mod 2)

(viii) If f(1) = 13, and f(−1) = 1, then ne = 7, no = 6; ue(1) = 3, uo(1) = 3;

ae = 1, ao = 0, and m ≡ 0 (mod 2)

We consider (i) – (viii) separately. In each case, we first determine the correspond-

ing forms of ue(x) and uo(x) as given by Equation (17), based on the values of

ue(1) and uo(1). Then, we proceed to match the degrees of terms on both sides of

Equation (24) or Equation (25), depending on whether m is even or odd.

Case (i). If f(1) = 5, then ue(x) and uo(x) are both identically 1. Thus, ns =

0 = mt. Consequently, from Equation (19) and Equation (20), we have Me = m

and Mo = m − ℓ. Also, de = m/2. Therefore, fe(x) = xm + xm/2 + 1 and

fo(x) = xm−ℓ + 1. Accordingly,

f(x) = x2m + x2m−ℓ + xm/2 + xℓ + 1. (27)

Furthermore, in this scenario, Equation (24) transforms into

xm/2 ≡ xℓ (mod 2).

It follows that m = 2ℓ. Setting m = 2ℓ in Equation (27), we obtain

f(x) = x4ℓ + x3ℓ + x2ℓ + xℓ + 1 = Φ5(x
ℓ).

This settles the case that f(1) = 5.

Case (ii). Next, consider the case where f(1) = 7. In this case, uo(x) = 1 and

ue(x) = 1+xn1 = 1+xℓ (by Equation (26)). Furthermore, based on Equation (19)

and Equation (20), we find thatMe = m−n1 = m−ℓ andMo = m−ℓ. Additionally,

do = (m− ℓ)/2. Thus,

fe(x) = xm−ℓ(xℓ + 1) + xℓ + 1 = xm + xm−ℓ + xℓ + 1 (28)

and

fo(x) = xm−ℓ + x(m−ℓ)/2 + 1. (29)

Since m is odd, we consider Equation (25), which transforms into

xℓ + xm−ℓ ≡ xℓ + x(m+ℓ)/2 (mod 2).

We deduce that m − ℓ = (m + ℓ)/2. Therefore, m = 3ℓ. Setting m = 3ℓ in

Equation (28) and Equation (29), we find that fe(x) = x3ℓ + x2ℓ + xℓ + 1, and

fo(x) = x2ℓ + xℓ + 1. In that scenario,

f(x) = x6ℓ + x4ℓ + x2ℓ + 1 + xℓ(x4ℓ + xℓ + 1)

= x6ℓ + x5ℓ + x4ℓ + x3ℓ + x2ℓ + xℓ + 1 = Φ7(x
ℓ),
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and the present case is settled.

To streamline our presentation, from now on, we will represent the polynomial

xd1 + xd2 + · · ·+ xdr by the tuple [d1, d2, . . . , dr], without imposing any specific or-

dering of the entries. Rewriting Equation (24) and Equation (25) in tuple notation,

we obtain, respectively,[
(nj)j , (ni + nj)i<j , aem/2, ae (m/2 + nj)j ,

(m− nj)j , (m− nj + ni)i<j

]
=

[
ℓ, (mj + ℓ)j , (2mj + ℓ)j , (mi +mj + ℓ)j ,

(m−mj)j , (m−mj +mi)i<j

]
(30)

and [
(nj)j , (ni + nj)i<j , (m− nj)j , (m− nj + ni)i<j

]
=

[
ℓ, (mj + ℓ)j , (2mj + ℓ)j , ao(m+ ℓ)/2,

ao ((m+ ℓ)/2 +mj)j , (mi +mj + ℓ)j ,

(m−mj)j , (m−mj +mi)i<j

]
,

(31)

where each indexed parenthesis represents the collection of exponents of terms in a

specific sum within Equation (24) and Equation (25). For brevity, we have omitted

the condition (mod 2) from Equation (30) and Equation (31).

Case (iii). In the case where f(1) = 9, one finds that

ue(x) = 1 + xn1 = 1 + xℓ and uo(x) = 1 + xm1 .

From Equation (19) and Equation (20), we deduce that

Me = m− n1 = m− ℓ and Mo = m− ℓ−m1.

Additionally, de = m/2, ae = 1, and ao = 0 here. Thus, we can express fe(x) and

fo(x) as

fe(x) = xm−ℓ(xℓ + 1) + xm/2 + xℓ + 1 = xm + xm−ℓ + xm/2 + xℓ + 1 (32)

and

fo(x) = xm−ℓ−m1(xm1 + 1) + xm1 + 1 = xm−ℓ + xm−ℓ−m1 + xm1 + 1. (33)

Since m is even here, canceling the common terms ℓ and n1 from Equation (30), we

obtain

[m/2,m/2 + ℓ,m− ℓ] = [m1 + ℓ, 2m1 + ℓ,m−m1]. (34)
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Recall that m1 < (deg fo)/2 = (m − ℓ)/2 (from Equation (18)). Accordingly, the

smallest exponent appearing on the right side of Equation (34) is m1 + ℓ. Further-

more, based on Lemma 3, which states that ℓ < m/2, we deduce that m/2 is the

smallest exponent on the left side of Equation (34). It follows that m/2 = m1 + ℓ,

leading to m = 2m1 + 2ℓ. Substituting m by 2m1 + 2ℓ in Equation (32) and

Equation (33), one obtains

fe(x) = x2m1+2ℓ + x2m1+ℓ + xm1+ℓ + xℓ + 1,

and

fo(x) = x2m1+ℓ + xm1+ℓ + xm1 + 1.

Accordingly, from Equation (7), we get that

f(x) = x4m1+4ℓ + x4m1+3ℓ + x4m1+2ℓ + x2m1+3ℓ + x2m1+2ℓ + x2m1+ℓ + x2ℓ + xℓ + 1.

It can be verified that f(x) = Φ3(x
2ℓ)Φ3(x

2m1+ℓ). This settles the present case.

Case (iv). Next, consider the case where f(1) = 11 and f(−1) = 9. From (iv),

we find that uo(x) ≡ 1, and ao = 1. Thus,

ue(x) = 1 + xℓ + xn2 + xn3 + xn4 .

After eliminating the common terms ℓ and n1 from Equation (31), we find that n2

is the smallest exponent on the left side of Equation (31), while the right side of

Equation (31) comprises a single term, (m + ℓ)/2. Since, n2 < m/2, the term xn2

remains intact in Equation (25), leading to a contradiction.

Case (v). Next, suppose that f(1) = 11 and f(−1) = 1. In this case, one verifies

that

ue(x) = 1 + xn1 + xn2 = 1 + xℓ + xm1+ℓ

and

uo(x) = 1 + xm1 .

Additionally, from Equation (19) and Equation (20), we have

Me = m− n2 = m−m1 − ℓ and Mo = m− ℓ−m1.

Furthermore, do = (m − ℓ)/2, ao = 1, and ae = 0 here. We use Equation (26) to

cancel ℓ with n1, and m1 + ℓ with n2 in Equation (31), to obtain

[m1 + 2ℓ,m− ℓ,m− ℓ−m1,m−m1]

= [2m1 + ℓ, (m+ ℓ)/2, (m+ ℓ)/2 +m1,m−m1].

After eliminating m−m1, we have

[m1 + 2ℓ,m− ℓ,m− ℓ−m1] = [2m1 + ℓ, (m+ ℓ)/2, (m+ ℓ)/2 +m1]. (35)
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Recall that m and ℓ are odd in the present case. Thus, if m1 is even, then all the

exponents on the left of Equation (35) are even. Conversely, there is at least one odd

exponent on the right side. Specifically, 2m1+ℓ. Thus, one of the integers (m+ℓ)/2

and (m+ ℓ)/2 +m1 is odd. Since m1 is even, we deduce that both (m+ ℓ)/2 and

(m+ℓ)/2+m1 are odd. However, this results in having three even exponents on the

left side and three odd exponents on the right side of Equation (35). Consequently,

at least one even (respectively, one odd) power of x remains intact on the left

(respectively, right) side of Equation (25), which is impossible.

It follows that m1 is odd. In that event, m − ℓ is the only even exponent on

the left side of Equation (35). The possible even exponents on the right side of

Equation (35) are (m+ ℓ)/2 or (m+ ℓ)/2+m1, but not both. We consider the two

possibilities separately.

If (m+ ℓ)/2 is even, then m− ℓ = (m+ ℓ)/2. This implies m = 3ℓ. In that event,

(m+ ℓ)/2 +m1 = m1 + 2ℓ.

Consequently, m − ℓ − m1 = 2m1 + ℓ in Equation (35) whence, ℓ = 3m1. Now,

expressing Me, Mo (using Equation (19) and Equation (20)), and do (using Equa-

tion (15)) in terms of m1, we have

Me = Mo = m−m1 − ℓ = 5m1 and do = (m− ℓ)/2 = 3m1.

Based on the information one obtains

fe(x) = x5m1(1 + xm1 + x4m1) + (1 + x3m1 + x4m1)

= x9m1 + x6m1 + x5m1 + x4m1 + x3m1 + 1,

and

fo(x) = x5m1(1 + xm1) + x3m1 + xm1 + 1 = x6m1 + x5m1 + x3m1 + xm1 + 1.

Accordingly,

f(x) = x18m1 + x15m1 + x13m1 + x12m1 + x10m1 + x9m1

+ x8m1 + x6m1 + x5m1 + x3m1 + 1.

It is easily verified that f(ζ) = 0 where ζ = e2πi/11m1 .

Next, consider the possibility that

m− ℓ = (m+ ℓ)/2 +m1.

In this case, m − ℓ −m1 = (m + ℓ)/2. Consequently, we have m1 + 2ℓ = 2m1 + ℓ

in Equation (35). This simplifies to m1 = ℓ. Substituting this into m − ℓ =

(m+ ℓ)/2 +m1, we find that m = 5ℓ. Thus,

ue(x) = 1 + xℓ + x2ℓ,
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and

uo(x) = 1 + xℓ.

It is not hard to show from here that f(x) = Φ11(x
ℓ). We omit the details.

Case (vi). Next, if f(1) = 12, then

ue(x) = 1 + xn1 + xn2 + xn3

and

uo(x) = 1 + xm1 .

Recall that m is odd in the present scenario. We proceed as before by eliminating

the terms ℓ and m1 + ℓ from Equation (31), to obtain

[n3, n1 + n2, n1 + n3, n2 + n3,m− n1,m− n2,m− n3,

m− n2 + n1,m− n3 + n1,m− n3 + n2]

= [2m1 + ℓ,m−m1].

Based on Equation (26), we have m−n2 +n1 = m−m1. By canceling these terms

above, we get

[n3, n1 + n2, n1 + n3, n2 + n3,m− n1,m− n2,m− n3,

m− n3 + n1,m− n3 + n2]

= [2m1 + ℓ].

(36)

Next, we search for the biggest exponent L on the left side above. To this end, we

note that m−n3+n2 > n3+n2 since n3 < m/2. So, the probable candidates for L

are m− n1 and m− n3 + n2. We consider the three cases: m− n1 > m− n3 + n2,

m− n3 + n2 > m− n1, and m− n3 + n2 = m− n1. In the first case, Equation (36)

implies m− n1 = 2m1 + ℓ, which simplifies to

m = 2m1 + ℓ+ n1 = 2m1 + 2ℓ.

However, this is absurd since m is odd.

Next, if m− n3 + n2 > m− n1, then m− n3 + n2 = 2m1 + ℓ. In this scenario,

m = n3 − n2 + 2m1 + ℓ = n3 −m1 − ℓ+ 2m1 + ℓ = n3 +m1,

where, we have used that n2 = m1 + ℓ from Equation (26). This, in turn, implies

that

n3 +m1 = m > 2n2 = 2m1 + 2ℓ.

In other words, n3 > m1 + 2ℓ. On the other hand, m − n3 + n2 > m − n1 implies

that n3 < n1 + n2 = m1 + 2ℓ, leading to a contradiction.
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Thus, we are left with the possibility that m− n3 + n2 = m− n1. In that event,

Equation (26) implies n3 = n1 + n2 = m1 + 2ℓ. By substituting n1 with ℓ, n2 with

m1 + ℓ, and n3 with m1 + 2ℓ in Equation (36), we get

[m1 + 2ℓ,m1 + 2ℓ,m1 + 3ℓ, 2m1 + 3ℓ,m− ℓ,m−m1 − ℓ,

m−m1 − 2ℓ,m−m1 − ℓ,m− ℓ]

= [2m1 + ℓ].

Eliminating the common exponents on the left side above, we obtain

[m1 + 3ℓ, 2m1 + 3ℓ,m−m1 − 2ℓ] = [2m1 + ℓ]. (37)

Since 2m1 + 3ℓ is bigger than both m1 + 3ℓ and 2m1 + ℓ, Equation (37) leaves us

with the possibility that

2m1 + 3ℓ = m−m1 − 2ℓ.

Therefore, m = 3m1 +5ℓ. Additionally, from Equation (37), we get that m1 +3ℓ =

2m1 + ℓ. Thus, m1 = 2ℓ, and

m = 3m1 + 5ℓ = 11ℓ and n2 = m1 + ℓ = 3ℓ.

Accordingly, one computes that n3 = m1 + 2ℓ = 4ℓ. Thus, deg ue = n3 = 4ℓ and

deg uo = m1 = 2ℓ. We further determine from Equation (19) and Equation (20)

that Me = m− n3 = 7ℓ and Mo = m− ℓ−m1 = 8ℓ. Thus,

ue(x) = 1 + xℓ + x3ℓ + x4ℓ and uo(x) = 1 + x2ℓ.

It is easily verified that

fe(x) = (x7ℓ + 1)(x4ℓ + x3ℓ + xℓ + 1) and fo(x) = (x8ℓ + 1)(x2ℓ + 1).

Finally, one computes f(x) = fe(x
2) + xℓfo(x

2), to obtain

f(x) = x22ℓ + x21ℓ + x20ℓ + x17ℓ + x16ℓ + x14ℓ + x8ℓ + x6ℓ + x5ℓ + x2ℓ + xℓ + 1.

It is not hard to verify that f(ζ) = 0, where ζ = e2πi/9ℓ.

Case (vii). The scenario, where f(1) = 13 and f(−1) = 9, can be handled in a

precisely similar manner as Case (iv). These details are omitted.

Case (viii). It remains to consider the case where f(1) = 13 and f(−1) = 1.

One verifies that

ue(x) = 1 + xℓ + xm1+ℓ and uo(x) = 1 + xm1 + xm2 .
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Based on Equation (19) and Equation (20), we have

Me = m− ℓ−m1 and Mo = m− ℓ−m2.

Additionally, ae = 1, ao = 0, and de = m/2. As before, we begin by canceling ℓ

and m1 + ℓ from Equation (30), to obtain

[m1 + 2ℓ,m/2,m/2 + ℓ,m/2 + ℓ+m1,m− ℓ,m− ℓ−m1,m−m1]

= [m2 + ℓ, 2m1 + ℓ, 2m2 + ℓ,m1 +m2 + ℓ,m−m1,m−m2,m−m2 +m1].

Eliminating m−m1 from both sides above, we get

[m1 + 2ℓ,m/2,m/2 + ℓ,m/2 + ℓ+m1,m− ℓ,m− ℓ−m1]

= [m2 + ℓ, 2m1 + ℓ, 2m2 + ℓ,m1 +m2 + ℓ,m−m2,m−m2 +m1].
(38)

We analyze the various possible parities of m1, m2, and m/2. For a tuple of ex-

ponents [d1, d2, . . . , dr], we consider the vector (d′1, d
′
2, . . . , d

′
r) ∈ Fr

2 where dj ≡ d′j
(mod 2). Observe that if the equation

[d1, d2, . . . , dr] = [e1, e2, . . . , ek]

has a solution in positive integers di and ej , then r + k is even. Furthermore,

considering parity, the total number of 0’s (and hence, the total number of 1’s) in

the set {d′1, d′2, . . . , d′r, e′1, e′2, . . . , e′k} is even. We will refer to two tuples of the same

length as equivalent if they both reduce to the same vector over F2. We will establish

a specific parity condition on m1 and m/2 using these observations. Namely, that

m/2 ≡ m1 (mod 2).

First, consider the case where m1 ≡ m2 (mod 2). Assume that m1 ≡ m2 ̸≡ m/2

(mod 2). The tuple [m1 + 2ℓ,m/2,m/2 + ℓ,m/2 + ℓ +m1,m − ℓ,m − ℓ −m1] on

the left side of Equation (38) is equivalent to the tuple

v = [m1,m1 + 1,m1, 0, 1,m1 + 1].

While the tuple [m2 + ℓ, 2m1 + ℓ, 2m2 + ℓ,m1 +m2 + ℓ,m−m2,m−m2 +m1] on

the right side of Equation (38) is equivalent to

w = [m1 + 1, 1, 1, 1,m1, 0].

If m1 ≡ 0 (mod 2), the F2-vectors associated with v and w are respectively,

v′ = (0, 1, 0, 0, 1, 1) and w′ = (1, 1, 1, 1, 0, 0).

Thus, v′ and w′ together contain five, an odd number of zeros. As explained above,

this implies that Equation (38) does not hold in this case.
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If m1 ≡ 1 (mod 2), then

v′ = (1, 0, 1, 0, 1, 0) and w′ = (0, 1, 1, 1, 1, 0).

Once again, there are an odd number of zeros in v′ and w′, leading us to conclude

that Equation (38) does not hold in this case. Thus, if m1 ≡ m2 (mod 2), then

m1 ≡ m2 ≡ m/2 (mod 2).

Next, consider the case that m1 ̸≡ m2 (mod 2). We claim that m/2 ≡ m1

(mod 2) in this scenario. Suppose instead that m/2 ̸≡ m1 (mod 2). One verifies

that the equivalent tuples v and w, associated with the left and the right sides of

Equation (38), respectively, are

v = [m1,m1 + 1,m1, 0, 1,m1 + 1] and w = [m1, 1, 1, 0,m1 + 1, 1].

We next consider the associated F2-vectors v
′ and w′. If m1 ≡ 0 (mod 2), then we

easily verify that

v′ = (0, 1, 0, 0, 1, 1) and w′ = (0, 1, 1, 0, 1, 1).

We find that five zeros appear in v′ and w′ together. Accordingly, we discard this

case. If m1 ≡ 1 (mod 2), then

v′ = (1, 0, 1, 0, 1, 0) and w′ = (1, 1, 1, 0, 0, 1).

Since there are five zeros in this case, our claim is settled by similar arguments.

Based on the preceding discussion, we have two possibilities outlined below.

m1 ≡ m2 ≡ m/2 (mod 2) and m/2 ≡ m1 ̸≡ m2 (mod 2).

First, suppose that m1 ≡ m2 ≡ m/2 ≡ 0 (mod 2). Restricting our attention to the

even exponents on the two sides of Equation (38), we find that

[m1 + 2ℓ,m/2] = [m−m2,m−m2 +m1].

We eliminate this possibility as follows. Since m2 < m/2, we have m−m2 > m/2.

Therefore, m/2 = m − m2 + m1, in which case, m2 = m/2 + m1, leading to a

contradiction given that m2 < m/2.

Next, suppose m1 ≡ m2 ≡ m/2 ≡ 1 (mod 2). Restricting to the even exponents

in Equation (38), this time, we obtain

[m/2 + ℓ,m− ℓ−m1] = [m2 + ℓ,m−m2 +m1].

Since m2 < m/2, we deduce that

m/2 + ℓ = m−m2 +m1 and m− ℓ−m1 = m2 + ℓ.
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Upon solving, we find that m2 = 3m1 and 2m1 + ℓ = m/2. Now, rewriting Equa-

tion (38) with m/2 = 2m1 + ℓ and m2 = 3m1, and ignoring the even exponents, we

obtain

[m1 + 2ℓ, 2m1 + ℓ, 3m1 + 2ℓ, 4m1 + ℓ] = [2m1 + ℓ, 6m1 + ℓ, 4m1 + ℓ,m1 + 2ℓ].

Eliminating the common exponents, one obtains

3m1 + 2ℓ = 6m1 + ℓ.

This simplifies to ℓ = 3m1. Thus, m = 10m1. Next, expressing the exponents of

the terms of ue(x) and uo(x) in terms of m1, we have

ue(x) = 1 + x3m1 + x4m1 and uo(x) = 1 + xm1 + x3m1 .

Additionally, from Equation (19) and Equation (20), we verify that

Me = m− ℓ−m1 = 6m1 and Mo = m− ℓ−m2 = 4m1.

Finally, de = m/2 = 5m1. Consequently,

fe(x) = x6m1(x4m1 + xm1 + 1) + x5m1 + x4m1 + x3m1 + 1

= x10m1 + x7m1 + x6m1 + x5m1 + x4m1 + x3m1 + 1,

and

fo(x) = x4m1(x3m1 + x2m1 + 1) + x3m1 + xm1 + 1

= x7m1 + x6m1 + x4m1 + x3m1 + xm1 + 1.

One further computes that

f(x) = x20m1 + x17m1 + x15m1 + x14m1 + x12m1 + x11m1 + x10m1

+ x9m1 + x8m1 + x6m1 + x5m1 + x3m1 + 1.

Setting ζ = e2πi/13m1 , we find that f(ζ) = 0.

Next, suppose m/2 ≡ m1 ̸≡ m2 (mod 2). We start by considering the possibility

that m/2 ≡ m1 ≡ 0 (mod 2) and m2 ≡ 1 (mod 2). Constraining ourselves to the

even exponents in Equation (38), we have

[m1 + 2ℓ,m/2] = [m2 + ℓ,m1 +m2 + ℓ].

We consider the two possibilities;

(A) m1 + 2ℓ = m2 + ℓ, and m/2 = m1 +m2 + ℓ,

(B) m/2 = m2 + ℓ, and m1 + 2ℓ = m1 +m2 + ℓ.
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Set q = m/2. In case (A), m2 = m1 + ℓ and q = 2(m1 + ℓ). Restricting to the odd

exponents in Equation (38), we get

[2m1 + 3ℓ, 3m1 + 3ℓ, 4m1 + 3ℓ, 3m1 + 3ℓ] = [2m1 + ℓ, 2m1 + 3ℓ, 3m1 + 3ℓ, 4m1 + 3ℓ].

Comparing the smallest exponents above, we obtain 2m1 + 3ℓ = 2m1 + ℓ, which is

absurd since ℓ > 0.

In case (B), we have m2 = ℓ, and q = 2ℓ. Consider the odd exponents appearing

in Equation (38). One has

[3ℓ,m1 + 3ℓ, 3ℓ, 3ℓ−m1] = [2m1 + ℓ, 3ℓ, 3ℓ,m1 + 3ℓ].

After canceling 3ℓ with m1 + 3ℓ, we deduce that 3ℓ − m1 = 2m1 + ℓ. This, in

particular, implies that 3 divides ℓ. Let ℓ = 3k where k is a positive integer. We

conclude that m1 = 2k. Additionally, we have m2 = ℓ = 3k and m = 4ℓ = 12k in

the current scenario. One can now compute that

ue(x) = x5k + x3k + 1 and uo(x) = x3k + x2k + 1,

and that

Me = m− deg ue = m− 5k = 7k and Mo = m− ℓ− deg uo = 6k.

Now, we can express fe(x) as

fe(x) = xMe ũe(x) + aex
m/2 + ue(x)

= x7k(x5k + x2k + 1) + x6k + x5k + x3k + 1

= x12k + x9k + x7k + x6k + x5k + x3k + 1.

Similarly, one computes that

fo(x) = x9k + x7k + x6k + x3k + x2k + 1.

Finally,

f(x) = fe(x
2) + xℓfo(x

2)

= x24k + x18k + x14k + x12k + x10k + x6k + 1

+ x3k(x18k + x14k + x12k + x6k + x4k + 1)

= x24k + x21k + x18k + x17k + x15k + x14k + x12k

+ x10k + x9k + x7k + x6k + x3k + 1.

It can be verified that f(x) is divisible by Φ13(x
k), and the assertion of the theorem

follows in this case.
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It remains to consider the case where m/2 ≡ m1 ≡ 1 (mod 2) and m2 ≡ 0

(mod 2). Restricting to the even exponents in Equation (38), now we have

[m/2 + ℓ,m− ℓ−m1] = [m1 +m2 + ℓ,m−m2].

There are two possibilities here, specifically,

(C) q + ℓ = m1 +m2 + ℓ, and m− ℓ−m1 = m−m2 and

(D) q + ℓ = m−m2, and m− ℓ−m1 = m1 +m2 + ℓ,

where q = m/2. In the scenario (C), one has m2 = m1 + ℓ and q = m1 + m2 =

2m1 + ℓ. As before, we express the odd exponents in Equation (38) in terms of m1

and ℓ, to get

[m1 + 2ℓ, 2m1 + ℓ, 3m1 + 2ℓ, 4m1 + ℓ] = [m1 + 2ℓ, 2m1 + ℓ, 2m1 + 3ℓ, 4m1 + ℓ].

We immediately deduce that 3m1 +2ℓ = 2m1 +3ℓ, in which case, m1 = ℓ. Accord-

ingly, m2 = m1 + ℓ = 2ℓ and

m = 2q = 2m1 + 2m2 = 6ℓ.

One now computes that

ue(x) = x2ℓ + xℓ + 1 = uo(x)

and

Me = m− deg ue = 4ℓ and Mo = m− ℓ− deg uo = 3ℓ.

We accordingly obtain

fe(x) = x4ℓ(x2ℓ + xℓ + 1) + x3ℓ + x2ℓ + xℓ + 1

= x6ℓ + x5ℓ + x4ℓ + x3ℓ + x2ℓ + xℓ + 1,

and

fo(x) = x3ℓ(x2ℓ + xℓ + 1) + x2ℓ + xℓ + 1

= x5ℓ + x4ℓ + x3ℓ + x2ℓ + xℓ + 1.

Putting this information together, one obtains that f(x) = Φ13(x
ℓ).

Next, in case (D), we get m2 = 2m1 and q = m2 + ℓ = 2m1 + ℓ. Expressing the

odd exponents in Equation (38) in terms of m1 and ℓ, we get

[m1 + 2ℓ, 2m1 + ℓ, 3m1 + 2ℓ, 4m1 + ℓ] = [2m1 + ℓ, 2m1 + ℓ, 4m1 + ℓ, 3m1 + 2ℓ].

After removing the common exponents, we obtain m1+2ℓ = 2m1+ℓ. Thus, m1 = ℓ.

Accordingly, m2 = 2ℓ and m = 6ℓ. It is readily verified that the present case is

identical to (C) whence, one concludes that f(x) = Φ13(x
ℓ). Theorem 1 is thus

settled.
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