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Abstract

In this paper, we show that 36! is the largest factorial which belongs to the multi-
plicative group generated by the Fibonacci numbers.

1. Introduction

During the author’s fellowship at STIAS in Fall of 2023, his colleague, E. Ntakadzeni

Madala, reminded us of the paper [4] and wondered what its title meant as there

is no word in it. In fact, in that joint paper with P. Stănică, we investigated the

Diophantine equation

Fn1
· · ·Fnk

= m1! · · ·mt!

where 1 ≤ n1 < n2 < · · · < nk and 1 ≤ m1 ≤ · · · ≤ mt are integers. The

formula appearing in the title of [4] ends up being the “largest solution” where

largest means with the largest left-hand (or right-hand) sides among all solutions.

Note that F1 = F2 = 1 can be added or omitted as factors to the left-hand side

of the product and they were added to create the impression of a solution which is

“longer” (has more Fibonacci factors in it) than its most compact representation.

Here we decided to study a variant of this equation where now we allow Fibonacci

numbers to repeat on the left-hand side but ask for t = 1 in the right-hand side. It

turns out that (one of) the largest solution then is
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The representation of 30! as a product of Fibonacci numbers is not unique as F6 =

8 = 23 = F 3
3 and F12 = 144 = 24 · 32 = F3F
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4 . But we can even allow
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negative exponents on the left and then we therefore ask, what are the factorials

which belong to the multiplicative group generated by the Fibonacci numbers? Let

us denote this group by GF . In the paper [3], we coined the terminology Fibonacci

integer to mean a positive integer which belongs to GF and we studied upper and

lower bounds for the counting function of the Fibonacci integers. Here, we prove

the following result.

Theorem 1. The largest factorial which is a Fibonacci integer is 36!.

The title formula gives a representation of 36! as a member of GF . It was already

remarked in [3] that if x is such that every prime number p ≤ x is a Fibonacci

integer then all integers whose primes factors are at most x are also Fibonacci

integers. It was also remarked that 37 is the first prime which is not a Fibonacci

integer, which gives an immediate proof of the fact that 36! is a Fibonacci integer

(save for writing down an actual representation of 36! as a Fibonacci integer), but

37! is not a Fibonacci integer. Yet, we need to prove that no n! for n ≥ 37 is a

Fibonacci integer, which is what we do in this paper. Let us first begin with some

preliminaries.

2. Preliminaries

Let (α, β) := ((1 +
√
5)/2, (1 −

√
5)/2) be the roots of the characteristic equation

x2 − x− 1 = 0 of the Fibonacci sequence. It is well-known that

Fn =
αn − βn

α− β
holds for all n ≥ 0.

For a positive integer m write

Φm(X) :=
∏

1≤k≤m
(k,m)=1

(X − exp(2πik/m)) ∈ Z[X]

for the mth cyclotomic polynomial, and let

Φm(X,Y ) :=
∏

1≤k≤m
(k,m)=1

(X − exp(2πik/m)Y ) ∈ Z[X,Y ]

be its homogenization. Following [3], let Φm stand for Φm(α, β). We then have

Fm =
∏
d|m
d>1

Φd,
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which gives, by the Möbius inversion formula, for m > 1

Φm =
∏
d|m

F
µ(d)
m/d .

The formulas show that {Φm}m>1 generate the same multiplicative group as the

Fibonacci numbers. It turns out that GF is almost freely generated by {Φm}m≥2.

This is not exactly so because of the exceptions

Φ2 = 1, Φ6 =
F6

F2F3
= 22 = Φ2

3, Φ12 =
F12F2

F4F6
= 6 = Φ3Φ4. (1)

The number Φm for m > 1 captures the primitive divisors of Fm which are prime

factors p | Fm which do not divide any Fibonacci number Fn for 1 ≤ n < m. Let

us recall the following theorem of Carmichael [2].

Theorem 2 (Primitive Divisor Theorem). If m > 12, then Fm has a prime factor

p such that p ∤ Fn for any positive integer n < m. All such primes p have the

property that p ≡ ±1 (mod m).

One verifies by hand that Fm has primitive divisors for m ≤ 12 except when

m ∈ {2, 6, 12} (the index m = 5 is exceptional as for it p = 5 is the only primitive

prime factor and the congruence condition on p modulo m from the statement of

the above theorem is replaced by p ≡ 0 (mod m)). Hence, the only multiplicative

relations among the Φm’s are obtained from the three ones appearing in (1). Let

Ψm be the product of the primitive prime factors of Fm with the exponent they

appear in the factorization of Fm. Clearly, Ψm | Φm. The quotient δm := Φm/Ψm is

also well understood. To write it down, let for a positive integer k, z(k) denote the

smallest positive integer m such that k | Fm. Then the definition of Ψm becomes

Ψm =
∏

pap∥Fm

z(p)=m

pap .

Further, δm = 1 except if

m = pkz(p) for some integer k ≥ 1 and prime p,

in which case if additionally m ̸∈ {6, 12}, we have δm = p. For m ∈ {6, 12}, we have
6 = 2z(2) and δ6 = 22 and 12 = 22z(2) = 3z(3) and δ12 = 2 · 3. Furthermore, since

for prime p for which z(p) = m we have

p ≡ 0,±1 (mod m), (2)

it follows that if p ̸= 2, 5 then p is larger than the largest prime factor of m. Further,

if m > 12 and m = pkz(p) for some prime p > 2 and integer k ≥ 1, then p = P (m)
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is the largest prime factor of m, and k is also uniquely determined as νp(m) except

if p = 5 in which case it is νp(m)−1. Here, we use the notation νp(m) for the exact

exponent of the prime p in the factorization of the integer m.

Let M = N\{1, 2, 6, 12}. Then GF is freely generated by Φm for m ∈ M. This

group is also freely generated by (Fm)m∈M. Furthermore, the numbers {Φm}m∈M
almost freely generate the multiplicative semigroup generated by the Fibonacci

numbers. However, there are Fibonacci integers which are not in the semigroup

generated by {Φm}m∈M such as

Φ24

Φ3
,

Φ25

Φ5
,

Φ37·19 · Φ113·19

Φ19
.

The following lemma is Lemma 1 in [3].

Lemma 1. Assume that I,J are finite multisets of indices with ni, mj ∈ M,

ni ̸= mj for all i ∈ I, j ∈ J and such that∏
i∈I

Φni

∏
j∈J

Φ−1
mj

∈ N.

There exists an injection f from the multiset of prime factors of∏
j∈J

Ψmj = p1 · · · pk

into the multiset {ni}i∈I , where f(pl) = pkl

l z(pl).

Remark 1 in [3] points out that the above lemma does not tell the entire story as

it does not address δmj
for j ∈ J . We will overcome this difficulty for our problem

in the next section.

3. The Proof of Theorem 1

We assume that n ≥ 37 and that

n! =
∏
i∈I

Φni

∏
j∈J

Φ−1
mj

. (3)

Let J ∗ be the multiset of prime factors of
∏

j∈J Ψmj
, and let I∗ be the multiset

{ni}i∈I . Using Lemma 1 we write

∏
j∈J

Φmj
=
∏
j∈J

δmj

∏
j∈J

Ψmj
=

∏
j∈J

δmj

 p1 . . . pk
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and let f be the injection from J ∗ into I∗ given by f(pl) = pkl

l z(pl) for l = 1, . . . , k.

Let I1 be a sub-multiset consisting of i ∈ I such that ni in the multiset I∗ is in the

image of f as a multiset. Then

n! =
∏

i∈I\I1

Φni

(
k∏

l=1

Φf(pl)

pl

) ∏
j∈J

δ−1
mj

. (4)

Let p be a prime with z(p) > 12. In the left-hand side,

n

p− 1
− log(n+ 1)

log p
≤ νp(n!) <

n

p− 1
(5)

(see Lemma 1 in [1]). In the right-hand side of (1), all factors Φni
for i ∈ I\I1, and

Φf(pl)

pl
for l = 1, . . . , k, are integers, so νp of such factors is non-negative. Further,

νp(δmj
) =

{
1 if mj = pujz(p) for some uj ≥ 1;
0 otherwise.

Putting

op := νp(Fz(p)),

we get

νp(n!) ≤ s0(p)op +
∑
u≥1

si(p)−Np, (6)

where for u ≥ 0 we put

su(p) = #{i ∈ I : ni = puz(p)}, and Np = #{j ∈ J : νp(δmj ) = 1}.

The ≤ sign in (6) is given by the (possible) contributions of p in Φf(pl). Namely,

note that if p = pl for some l = 1, . . . , k then f(pl) = ni contributes 1 in the count

skl
(p) but νp(Φf(pl)/pl) = 0. Furthermore,

νp(n!) ≥ s0(p)op −Np. (7)

Indeed, the above follows from the fact that if z(p) = ni for some i, then either

i ∈ I\I1, or ni ∈ f(J ∗), so z(p) = pkl

l z(pl) for some kl ≥ 1, which shows that

pl ̸= p, and therefore νp(Φz(p)/pl) = νp(Φz(p)) = op.

Lemma 2. For z(p) > 12, we have

Np <
2n

z(p)p(p− 2)
. (8)
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Assume that Lemma 2 is proved, and let us show how we finish. We use that

z(37) = z(113) = 19 and o37 = o113 = 1. Thus, using (5), (7) and (8) for p = q =

113, we get that

n

112
+

2n

19 · 111 · 113
=

n

q − 1
+

4n

z(q)q(q − 2)
> s0(113) = s0(37). (9)

For each i ≥ 1, let qi be a prime number such that z(qi) = 19 · 37i, and the

existence of such primes is guaranteed by the Primitive Divisor Theorem. Then

qi ≥ 2 · 19 · 37i − 1 by (2). Inequality (7) applied to qi gives

n

2 · 19 · 37i − 2
+

2n

19 · 37i(2 · 19 · 37i − 1)(2 · 19 · 27i − 3)

≥ n

qi − 1
+

2n

z(qi)qi(qi − 2)
≥ s0(qi) = si(37). (10)

Putting together (9), (10), (6) and (5), we get

n

36
− log(n+ 1)

log 37
≤ ν37(n!) ≤ s0(37) +

∑
i≥1

si(37)

≤ n

(
1

112
+

4

19 · 111 · 113

+
∑
i≥1

(
1

2 · 19 · 37i − 2
+

2

19 · 37i(2 · 19 · 37i − 1)(2 · 19 · 37i − 3)

) .

The above inequality gives n < 2000.

It remains to cover the range n ∈ [37, 2000). By the Primitive Divisor Theorem,

it follows that max{ni : i ∈ I} ≤ 2000 thanks to (2).

Since n ≥ 37, it follows that 37 | n!, and hence, 37 | Φni
for some i ∈ I. Since

z(37) = 19 and 19 · 372 > 2000, it follows that ni ∈ {19, 19 · 37} for some i ∈ I.
Recall the congruence (2). The case ni = 19 · 37 together with the fact that none of

2 ·19 ·37±1 is prime yields that Φni
is divisible by a prime q ≥ 4 ·19 ·37−1 > 2000.

Such a prime q cannot divide n!; therefore q divides
∏

j∈J Φmj
. Lemma 1 now

shows that for some i′ ∈ I, ni′ is of the form f(q) = qkz(q) > 2000 · 19 · 37 > 2000,

a contradiction. Thus, ni = 19.

Since 113 | Φ19, Inequality (7) tells us that 113 | n!, unless 113 divides δmj
for

some j ∈ J . This makes mj a multiple of 113 · 19 = 2147 > 2000, and since the

Primitive Divisor Theorem implies max{ni : i ∈ I} ≥ max{mj : j ∈ J }, we get a

contradiction. Since n ≥ 113, it follows that 73 | n! and since z(73) = 37, we get

that there is i′ ∈ I such that ni′ ∈ {37 · 73u : u ≥ 0}. Since 37 · 73 > 2000, we

conclude that ni′ = 37. Since Φ37 = 73 ·149 ·2221, the above argument on δmj
with

the prime 2221 shows that 2221 | n!. So, n ≥ 2221, which is a contradiction. Thus,

n ≤ 36.
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4. Proof of Lemma 2

Proof of Lemma 2. Assume z(p) > 12 and write

n! =
∏
i∈I

Φni

∏
j∈J

Φ−1
mj

.

We need to count the number of j ∈ J with νp(δmj
) = 1. Let vp(δmj

) = 1 and

write mj = pi1z(p). Notice that (2) implies that p is the smallest prime factor of

Φmj
. Since vp(Φmj

) = 1, we may write

Φmj = p1 · · · pk, p1 < p2 < · · · < pk

where p = p1 < p2 ≤ · · · ≤ pk are primes. Let q = p2 be the minimal primitive

prime factor of Φmj/p. Lemma 1 shows that there is i ∈ I such that ni = qk1z(q),

and let r be the minimal primitive prime factor of Φni . Note that

r ≥ qk1z(q)− 1 ≥ (pi1z(p)− 1)k1pi1z(p)− 1 ≥ (pi1z(p)/2)k1pi1z(p)− 1.

In particular,

r − 1 > pi1k1+i1z(p)k1+1/2k1 − 2 > pi1k1+i1z(p), (11)

where the last inequality is equivalent to

pi1k1+i1z(p)

((
z(p)

2

)k1

− 1

)
> 2,

which holds since k1 ≥ 1 and z(p) > 12.

Recall Equation (3). The fraction

k∏
l=2

Φf(pl)

pl
(12)

has numerator divisible by a prime r which is at least as large as shown at (11).

Formally, r := ri1,k1 as it depends on both exponents i1 and k1. Assume for now

that νr(δmj ) = 0 for all j ∈ J . Then every time p appears in δmj for some j,

then r = ri1,k1 appears in the numerator of the number (12), where i1 can be

read from mj (it is νp(mj)) and k1 can be read from the function f(p2). Since

νr(n!) < n/(r − 1), we obtain

Np < n
∑
r

1

r − 1
,

where r is the number of such distinct r’s. Notice that the inequality (11) implies

r − 1 > pi1+k1z(p). From the point of view of r = ri1,k1
, distinct primes r have
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distinct pairs (i1, k1). Fixing the value L := i1 + k1, the values of the pair (i1, k1)

can be fixed in at most L− 1 ways. Thus,

Np < n
∑
L≥2

L− 1

pLz(p)
=

n

z(p)(p− 1)2
,

which is much better than desired for the case of vr(δmj ) = 0 for all j ∈ J .

Assume next that there is j′ ∈ J such that νr(δmj′ ) = 1. Then mj′ = ri2z(r).

Note that P (mj′) = r > P (mj) so in particular mj′ ̸= mj . Write

Φmj′ = p′1p
′
2 · · · p′k′ , p′1 < p′2 ≤ · · · ≤ p′k′

with p′1 = r and let q′ = p′2 be the minimal primitive prime factor of Φm′
j
/p′1. Lemma

1 shows that there is i′ such that ni′ = (q′)k2z(q′). Note that P (ni′) > P (ni) so in

particular ni′ ̸= ni. Let r′ be the minimal primitive prime factor of Φn′
i
. At this

step, we note that in fact we used the same construction as previously (obtaining r

out of p assuming νp(δmj
) = 1 for some j ∈ J ) using the two exponents (i1, k1) and

then inequality (11) holds, except that now we started with p′ = r and obtained r′

and the pair of exponents (i1, k1) has been replaced by (i2, k2). Thus, we have

r′ − 1 ≥ (p′)i2k2+i2z(p′) ≥ (p′)i2+k2z(p) ≥ p(i1+k1)(i2+k2)z(p) ≥ pi1+k1+i2+k2z(p).

If νr′(δmj
) = 0 for all j ∈ J , we stop. If not, we continue and create (p′′, r′′)

starting with p′′ = r′, and so on. Note that at every stage we use new mj ’s and

ni’s, distinct from all the previous ones used, just because their largest prime factors

form an increasing sequence. The increasing property of the minimal primitive

prime factors and the finiteness of J guarantee that the algorithm stops, and we

achieve vr∗(δmj ) = 0 for all j ∈ J , where r∗ is the minimal prime factor of some

Φni∗ . Let Jp := {j ∈ J : vp(δmj ) = 0}, and let rj := r∗ for j ∈ Jp described above.

Then, we have

Np < n
∑
r

1

r − 1
,

where the sum is over all the possible distinct primes r ∈ {rj : j ∈ Jp}. We need to

lower bound the values of such r and upper bound the number of them. For this,

let s be the length of the chain for r and assume that the intermediary steps have

pairs of parameters (i1, k1), . . . , (is, ks). Then put

i1 + j1 + i2 + j2 + · · ·+ is + js = L.

For a fixed s, the number of such compositions is(
L

2s− 1

)
.
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Summing up over all s we get a bound of 2L−1. As in the earlier case, the distinct

primes r in the sum have distinct sequences of pairs (i1, k1), . . . , (is, ks), and it

follows that

Np ≤ n
∑
L≥2

2L−1

pLz(p)
=

2

pz(p)(p− 2)
,

which is what we wanted to prove.
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