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Abstract

Recently, N. Hindman, D. Strauss, and L. Q. Zamboni proved an extension of
the Hales–Jewett theorem, which is consistent with some sufficiently well-behaved
homomorphism. Their results deal with a finite set of alphabets. In this article,
we show that similar types of results are true for any increasing sequence of finite
alphabets.

1. Introduction

Throughout the article we will use the notation ω to denote N ∪ {0}, where N is

the set of all positive integers, and Pf (X) to denote the set of all nonempty finite

subsets of a set X. For any nonempty set A (or alphabet), let w (A) be the set

of all finite words w = a1a2 . . . an with n ∈ N and ai ∈ A. The quantity n is

called the length of w and is denoted by |w|. The set w (A) naturally becomes a

semigroup under the operation of concatenation of words. We will use the symbol

θ to denote the empty word. For each u ∈ w (A) and a ∈ A, let |u|a be the number

of occurrences of a in u. We will identify the elements of A with the words over A
whose length is one. Let v (a variable) be a letter not belonging to A. By a variable

word over A we mean a word w over A ∪ {v} with |w|v ≥ 1. Let S1 (A) be the set

of variable words over A. If w ∈ S1 (A) and a ∈ A, then w (a) is the word obtained

by replacing each occurrence of v by a. A finite coloring of a set A is a function
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from A to the finite set {1, 2, . . . , n}. A subset B of A is said to be monochromatic

if the function is constant on B. Let us recall the Hales–Jewett theorem.

Theorem 1.1 ([4]). If A is finite, then for any finite coloring of w (A) there exists

a variable word w such that {w (a) : a ∈ A} is monochromatic.

The following theorem is known as the infinitary Hales–Jewett theorem.

Theorem 1.2 ([3]). For every finite coloring of w (A), there exists a sequence

of variable words over A, say (wn (x))
∞
n=0, such that for every n ∈ N and every

m1 < m2 < . . . < mn, the words of the form wm0
(a0)wm1

(a1) . . . wmn
(an) with

ai ∈ A, i ∈ {i, 2, . . . , n}, are of the same color.

Now, we need to recall some definitions from [7].

Definition 1.3. Let n ∈ N and v1, v2, . . . , vn be distinct variables which are not

members of A.

(a) An n-variable word over A is a word w over A ∪ {v1, v2, . . . , vn} such that

|w|vi ≥ 1 for each i ∈ {1, 2, . . . , n}.

(b) If w is an n-variable word over A and x⃗ = (x1, x2, . . . , xn), then w (x⃗) is the

result of replacing each occurrence of vi in w by xi for each i ∈ {1, 2, . . . , n}.

(c) If w is an n-variable word over A and u = a1a2 . . . an is a length n word,

then w (u) is the result of replacing each occurrence of vi in w by ai for each

i ∈ {1, 2, . . . , n}.

(d) The set Sn (A) contains all n-variable words over A and S0 (A) = w (A).

The following particular homomorphism is very useful to us.

Definition 1.4. Let n ∈ N, and let A be an alphabet of finite symbols and a⃗ ∈ An.

Then the homomorphism ha⃗ : Sn (A) → w (A) is defined by ha⃗ (w) = w (⃗a) for all

w ∈ Sn (A).

Definition 1.5. If S, T, and R are semigroups (or partial semigroups) such that

S ∪ T is a semigroup (or partial semigroup), and T is an ideal of S ∪ T , then a

homomorphism τ : T → R is said to be S-independent if, for every w ∈ T and every

u ∈ S,

τ (uw) = τ (w) = τ (wu) .

Example 1.6. If T is a semigroup with identity e, then for any n ≥ 1, a homo-

morphism τ : Sn (A) ∪ S0 (A) → T is S0 (A)-independent if τ [S0 (A)] = {e}.

The following theorem is the multi-variable extension of the Hales–Jewett theo-

rem.
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Theorem 1.7. If n ∈ N and A is finite, then for any finite coloring of w (A) there
exists w ∈ Sn (A) such that {w (x⃗) : x⃗ ∈ An} is monochromatic.

Let A1 ⊆ A2 ⊆ A3 ⊆ . . . be an increasing sequence of alphabets. Then for

each n, i ∈ N, let us denote by Sn (Ai), the set of all n-variable words over Ai.

Let Sn =
⋃∞

i=1 Sn (Ai) be the set of all n-variable words over A =
⋃∞

i=1 Ai and

S0 =
⋃∞

i=1 w (Ai) be the set of all words of finite length over A =
⋃∞

i=1 Ai. The

following theorem is due to N. Karagiannis [8], which is a stronger version of the

infinitary Hales–Jewett theorem.

Theorem 1.8 ([8]). Let (Ai)
∞
i=1 be an increasing sequence of finite alphabets, and

A =
⋃∞

i=1 Ai. Then for any finite coloring of S0 there exists a sequence (wn (x))
∞
n=0

of variable words over A such that for every n ∈ N and every m1 < m2 <

. . . < mn, the words of the form wm0 (a0)wm1 (a1) . . . wmn (an) with ai ∈ Ami ,

i ∈ {1, 2, . . . , n}, are of the same color.

In [8], N. Karagiannis proved a version of the infinitary Hales–Jewett theorem

replacing the alphabet A by an increasing chain of finite alphabets A1 ⊆ A2 ⊆ . . . ⊆
An ⊆ . . .. In this article, we will use the algebra of the Stone-Čech compactification

of discrete semigroups and partial semigroups to provide the combined extension of

Karagiannis’s version of the infinitary Hales–Jewett theorem with some ‘suitable’

homomorphisms.

The remainder of the paper is organized as follows. In Section 2, first, we will

recall the algebra of the Stone-Čech compactification of N, and then some rela-

tive notions of largeness in the Ramsey theory. In Section 3, we will improve all

the results of [7], by proving that we can replace a single alphabet set by an in-

finitely increasing sequence of alphabets. We will also show that we can combine

the Hales–Jewett theorem with some “well-behaved homomorphisms”2 defined from

the free semigroup S0 to some other semigroups.

2. Preliminaries

Now we pause our attention to introduce the algebra of the Stone-Čech compacti-

fication briefly.

2.1. Algebra of the Stone-Čech Compactification of Discrete Semigroups

Let (S, ·) be a discrete semigroup and denote its Stone-Čech compactification by

βS. It can be shown that βS is the set of all ultrafilters on S, where the points of

S are identified with the principal ultrafilters. The basis for the topology over βS

is
{
Ā : A ⊆ S

}
, where Ā = {p ∈ βS : A ∈ p}. The operation of S can be extended

2we will see later in Section 3
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to βS, which makes (βS, ·) a compact right topological semigroup with S contained

in its topological center. More precisely, for p ∈ βS, the function ρp : βS → βS

defined by ρp (q) = q · p is continuous, and for x ∈ S, the function λx : βS → βS

defined by λx (q) = x · q is continuous. For p, q ∈ βS and for A ⊆ S, A ∈ p · q if and

only if
{
x ∈ S : x−1A ∈ q

}
∈ p, where x−1A = {y ∈ S : x · y ∈ A}. Since (βS, ·)

is a compact Hausdorff right topological semigroup, it has the smallest two-sided

ideal K (βS), which is the union of all minimal right ideals of S, as well as the

union of all minimal left ideals of S. Every left ideal of βS contains a minimal left

ideal and every right ideal of βS contains a minimal right ideal. The intersection

of any minimal left ideal and any minimal right ideal is a group, and any two such

groups are isomorphic. Any idempotent p in βS is said to be minimal if and only if

p ∈ K (βS). A subset A of S is central if and only if there is a minimal idempotent

p such that A ∈ p. For more details, the reader can see [6].

We need to use some elementary structure of partial semigroups. Here we recall

some definitions from [5].

2.2. Partial Semigroup

Definition 2.1. A partial semigroup is defined as a pair (G, ∗), where ∗ is an

operation defined on a subset X of G×G such that for all x, y, z in G,

(x ∗ y) ∗ z = x ∗ (y ∗ z)

in the sense that if either side is defined, so is the other, and they are equal.

If (G, ∗) is a partial semigroup, we will denote it by G when the operation ∗ is

clear from the context. The following example of partial semigroup will be useful

in our context.

Example 2.2. For any sequence ⟨xn⟩∞n=1 in ω, let

G = FS (⟨xn⟩∞n=1) =

∑
j∈H

xj : H ∈ Pf (N)


and

X =


∑

j∈H1

xj ,
∑
j∈H2

xj

 : H1 ∩H2 = ∅

 .

Define ∗ : X → G by∑
j∈H1

xj ,
∑
j∈H2

xj

 −→
∑
j∈H1

xj +
∑
j∈H2

xj .
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It is easy to check that G is a commutative partial semigroup. One can similarly

check the same for

G = FP (⟨xn⟩∞n=1) =

∏
j∈H

xj : H ∈ Pf (N)

 .

Definition 2.3. Let (G, ∗) be a partial semigroup. For any g ∈ G, define φ (g) =

{h ∈ G : g ∗ h is defined}. For any H ∈ Pf (G), define σ (H) =
⋂

h∈H φ (h). We

say that (G, ∗) is adequate if and only if σ (H) ̸= ∅ for all H ∈ Pf (G).

For a semigroup (S, ·), denote by NS, the set of all sequences in S, and let

Jm = {t = (t1, t2, . . . , tm) ∈ Nm : t1 < t2 < ... < tm} .

Definition 2.4. Let (S, ·) be a semigroup.

(1) Denote by NS, the set of all sequences in S.

(2) Denote

Jm = {t = (t1, t2, . . . , tm) ∈ Nm : t1 < t2 < ... < tm} .

(3) A set A ⊆ S is said to be a J-set if and only if for each F ∈ Pf

(NS), there exist
m ∈ N, an element a = (a1, a2, . . . , am+1) ∈ Sm+1 and t = (t1, t2, . . . , tm) ∈
Jm such that for each f ∈ F , m∏

j=1

aj · f (tj)

 · am+1 ∈ A.

We define J(S) to be the set J (S) = {p ∈ βS : for all A ∈ p, A is a J-set} .
A set A ⊆ S is called a C-set if it is an element of some idempotent in J (S).

Now, we need to recall the definition of J-sets for partial semigroups. Let F be

the set of all adequate sequences in S.

Definition 2.5. For any adequate partial semigroup G, a subset A ⊆ G is said to

be a J-set if and only if for all F ∈ Pf (F) and L ∈ Pf (S), there exist m ∈ N, an
element a = (a1, a2, . . . , am+1) ∈ Sm+1 and t = (t1, t2, . . . , tm) ∈ Jm such that for

every f ∈ F, (
m∏
i=1

ai ∗ f (ti)

)
∗ am+1 ∈ A ∩ σ (L) .
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3. Main Results

The main purpose of this article is to generalize the results obtained in [7] by

replacing a finite alphabet by an infinite sequence of finite alphabets. Let (An)
∞
n=0

be an increasing sequence of finite alphabets, and A =
⋃∞

n=0 An.

We will use the following fact later in our proofs.

Fact 3.1. Let τ : S0 ∪S1 → ω be a homomorphism defined by τ (w) = |w|v. Hence

τ (w) = 0 if and only if w ∈ S0. Let D ⊆ S0 be a J-set, and ⟨xn⟩∞n=1 be a sequence

in N. Choose y1 = 0, and for every n ∈ N, yn+1 = xn. Then A = FS (⟨yn⟩∞n=1)

is an adequate partial semigroup. One can easily check that τ−1 [A] is also an

adequate partial semigroup. Let T be an adequate partial semigroup, and S be any

partial subsemigroup of T . Let F be a nonempty finite set of partial semigroup

homomorphisms from T to S, which are S-independent. The proof of the fact that

for any J-set D ⊆ S, the set
⋂

ν∈F ν
−1 [D] is a J-set in T is similar to the proof of

[2, Lemma 2.1]. So we leave it to the reader. Hence τ−1 [A] is a J-set in T = S0∪S1.

Also note that S0 is not a J-set in Sn ∪ S0.

Let us recall a special homomorphism from [7].

Definition 3.2. Let n ∈ N and a⃗ ∈ An. We define ha⃗ : S0

⋃
Sn → S0 by

ha⃗ (w) =

{
w (⃗a) if w ∈ Sn

w if w ∈ S0
.

The following result is a version of the Hales–Jewett theorem.

Lemma 3.3. Let m,n ∈ N, and F = {ha⃗ : a⃗ ∈ An
m} be a finite nonempty set of

homomorphisms from T = Sn ∪ S0 to S0 which are the identity maps on S0, i.e.

ha⃗ (s) = s for all s ∈ S0, and ha⃗ ∈ F . If D ⊆ S0 is a piecewise syndetic set in S0,

then D contains the set {wn (⃗a) : a⃗ ∈ An
m} for some wn ∈ Sn (A).

Proof. If n ∈ N, then from [7, Corollary 6],
⋂

ha⃗∈F h
−1
a⃗ [D] is a piecewise syndetic

set in T . Since S0 is not a piecewise syndetic set in T , the set Sn ∩
⋂

ha⃗∈F h
−1
a⃗ [D]

is a piecewise syndetic set in T . Now, choose N > m such that wn ∈ Sn (AN ) ∩⋂
ha⃗∈F h

−1
a⃗ [D]. Hence wn (⃗a) ∈ D for all a⃗ ∈ An

m.

The proof of the following lemma is similar to the proof of the above lemma.

Lemma 3.4. Let m,n ∈ N, and F = {ha⃗ : a⃗ ∈ An
m} be a finite nonempty set of

homomorphisms from T = Sn ∪ S0 to S0 which are the identity maps on S0. If

D ⊆ S0 is a J-set in S0, then D contains the set {wn (⃗a) : a⃗ ∈ An
m} for some

wn ∈ Sn (A).

Proof. This result follows immediately from [2, Theorem 2.3].
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The following theorem shows that we can find a similar configuration to [8,

Theorem 3] in the central sets.

Theorem 3.5. Let l ∈ N, and D ⊆ S0 be a central set. Then there exists an infinite

sequence (wi (x))
∞
i=1 of variable words over A such that for every l ∈ N, and

m1 < m2 < . . . < ml,

we have

wm1
(a⃗1)wm2

(a⃗2) . . . wml
(a⃗l) ∈ D,

where a⃗1 ∈ An
m1
, a⃗2 ∈ An

m2
, . . . , a⃗l ∈ An

ml
.

Proof. Choose a minimal idempotent p ∈ βS0 such that D ∈ p. Then D∗ ={
x ∈ D : x−1D ∈ p

}
∈ p. Let F1 = {ha⃗1

: a⃗1 ∈ An
1}. So from Lemma 3.3, there

exists w1 ∈ Sn (A1) such that w1 ∈ Sn∩
⋂

a⃗1∈An
1
h−1
a⃗1

[D∗] , and this implies w1 (a⃗1) ∈
D∗ for all a⃗1 ∈ An

1 . Hence D∗ ∩
⋂

a⃗1∈An
1
w1 (a⃗1)

−1
[D∗] ∈ p. Suppose for k ∈ N, we

have a sequence (wi (x))
k
i=1 such that for all m1 < m2 < . . . < ml ≤ k, we have

wm1 (a⃗1) . . . wml
(a⃗l) ∈ D∗. Hence,

E = D∗ ∩
⋂

m1<m2<...<ml≤k

wm1
(a⃗1) . . . wml

(a⃗l)
−1

[D∗] ̸= ∅.

Choose wk+1 ∈ Sn∩
⋂

−−−→ak+1∈An
k+1

h−1
−−−→ak+1

[E]. So, for m1 < m2 < . . . < ms ≤ k+1, we

have wm1 (a⃗1) . . . wms (a⃗s) ∈ D∗. Now by induction, we can choose such an infinite

sequence (wi (x))
∞
i=1.

Using the fact that C∗ ∈ p, whenever C ∈ p, one can prove the following gener-

alization of the above theorem.

Corollary 3.6. Let l ∈ N, and D ⊆ S0 be a C-set. Then there exists a sequence

(wn (x))
∞
n=1 of variable words over A such that for every l ∈ N, and every

m1 < m2 < . . . < ml,

we have

wm1 (a⃗1)wm2 (a⃗2) · · ·wml
(a⃗l) ∈ D,

where a⃗1 ∈ An
m1
, a⃗2 ∈ An

m2
, . . . , a⃗l ∈ An

ml
.

Proof. The proof is similar to the proof of the Theorem 3.5.

For any sequence ⟨xn⟩∞n=1 in N, define y1 = 0 and yn+1 = xn. Note that A =

FS (⟨yn⟩∞n=1) is an adequate partial semigroup.
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Theorem 3.7. Let τ : T = S0 ∪ S1 → ω be a homomorphism defined by τ (w) =

|w|v1 . If D ⊆ S0 is a J-set, and ⟨xn⟩∞n=1 is a sequence in N, then there exists a

sequence ⟨wn⟩∞n=1 such that for all n ∈ N, and for each G ∈ Pf (N)

1. {wn (an) : an ∈ An} ⊆ D, and

2.
∑

n∈G τ (wn) ∈ FS (⟨xn⟩∞n=1) .

Proof. For the given sequence ⟨xn⟩n∈N, let us construct a sequence ⟨yn⟩n∈N as men-

tioned above. Then A1 = FS (⟨yn⟩∞n=1) is an adequate partial semigroup. Let F1 =

{ha1
: a1 ∈ A1} be a finite set of partial semigroup homomorphisms from τ−1 (A1)

to S0. Let D ⊆ S0 be a J-set. One can easily verify that
⋂

a1∈A1
h−1
a1

[D] is a J-set

in τ−1 (A1). As S0 is not a J-set in τ−1 (A1), there exists w1 ∈ S1 (Am)∩ τ−1 (A1)

for some m ≥ 1 such that w1 ∈
⋂

a1∈A1
h−1
a1

[D]. Hence

1. for every a1 ∈ A1, we have w1 (a1) ∈ D; and

2. τ (w1) ∈ FS (⟨xn⟩∞n=1) ⊆ A1 = FS (⟨yn⟩∞n=1) .

Now by induction, assume that for some k ∈ N,

1. {wn (an) : an ∈ An} ⊆ D for all n ∈ {1, 2, . . . , k} ; and

2.
∑

n∈G τ (wn) ∈ FS (⟨xn⟩∞n=1) for G ⊆ {1, 2, . . . , k} .

Now choose a sequence ⟨zn⟩∞n=2 such that z1 = 0 and

Ak+1 = FS (⟨zn⟩∞n=1) ⊆ ∩x∈{∑n∈G τ(wn):G⊆{1,2,...,k}} (−x+ FS (⟨xn⟩∞n=1)) .

Then τ−1 [Ak+1] is an adequate partial semigroup. Now, using a similar argument,

used in the first step of this proof, we have m ≥ k + 1, and an element wk+1 ∈
S1 (Am) ∩ τ−1 [Ak+1] such that wk+1 ∈

⋂
ak+1∈Ak+1

h−1
ak+1

[D]. Hence τ (wk+1) ∈
Ak+1 and {wk+1 (ak+1) : ak+1 ∈ Ak+1}. This proves the result.

The following corollary is an extension of Theorem 3.5 combined with the homo-

morphism τ defined above.

Corollary 3.8. Let τ : T = S0 ∪ S1 → ω be a homomorphism defined by τ (w) =

|w|v1 . If D ⊆ S0 is a C-set, and ⟨xn⟩∞n=1 is a sequence in N, then there exists

⟨wn⟩∞n=1 such that for any l ∈ N, G = {n1, n2, . . . , nl} ∈ Pf (N) ,

1. {wn1 (an1)wn2 (an2) . . . wnl
(anl

) : ani ∈ Ani , ni ∈ G} ⊆ D, and

2.
∑

ni∈G τ (wni) ∈ FS (⟨xn⟩∞n=1) .



INTEGERS: 24 (2024) 9

Proof. As D ⊆ S0 is a C-set, choose an idempotent p ∈ βS0 such that D ∈ p. Then,

D∗ ∈ p. Now, proceeding as the proof of Theorem 3.5, assume

E = D∗ ∩ ∩G={n1,n2,...,nl}⊆{1,2,...,k}wn1 (an1)wn2 (an2) . . . wnl
(anl

)
−1

[D∗] ∈ p,

and Ak+1 as in Theorem 3.5. As
⋂

ak+1∈Ak+1
h−1
ak+1

[E] is a J-set, we have our desired

result.

In [2, Theorem 2.5], the authors were able to prove that the conclusion of [7,

Corollary 16] holds for J-sets. In the following theorem, we will show that, instead

of a finite alphabet set, we can choose an increasing sequence of finite alphabets in

the assumption of [7, Corollary 16].

Theorem 3.9. Let k, n ∈ N with k < n, and let T be the set of all words over

{v1, v2, . . . , vk} in which vi occurs for each i ∈ {1, 2, . . . , k}. Given w ∈ Sn, let

τ (w) be obtained from w by deleting all occurrence of elements of A as well as

occurrences of vi, k < i ≤ n. Let ⟨yt⟩∞t=1 be a sequence in T , and let D ⊆ S0 be a

J-set. Then there exists a sequence of variable words ⟨wt⟩∞t=1 over A such that

1. for any m ∈ N, {wm (am) : am ∈ An
m} ⊆ D , and

2. for every G = {m1 < m2 < . . . < ml} ∈ Pf (N) ,

l∏
i=1

τ (wmi
) ∈ FP (⟨yt⟩∞t=1) .

Proof. The proof is similar to the proof of Theorem 3.7. Let T ∗ = T ∪ {θ}, where
θ /∈ T and τ∗ : Sn ∪ S0 → T ∗ be defined by

τ∗ (w) =

{
τ (w) , if w ∈ Sn

θ, if w ∈ S0
.

Then (τ∗)
−1

[FP (⟨yt⟩∞t=1) ∪ θ] is a partial subsemigroup of Sn ∪ S0. Let A1 =

(τ∗)
−1

[FP (⟨yt⟩∞t=1) ∪ θ] , and F1 = {ha⃗1
: a⃗1 ∈ An

1}. Now
⋂

a⃗1∈An
1
h−1
a⃗1

[D] is a J-set

in Sn ∪ S0, and so in Sn. Hence there exists w1 ∈ Sn ∩
⋂

a⃗1∈An
1
h−1
a⃗1

[D] such that

τ (w1) ∈ FP (⟨yt⟩∞t=1). In other words for every a⃗1 ∈ An
1 we have w1 (a⃗1) ∈ D and

τ (w1) ∈ FP (⟨yt⟩∞t=1). Now proceeding along the lines of the proof of Theorem 3.8,

we have our desired result.

The following corollary shows that in the above theorem if we replace J sets with

C sets, then we have much stronger configurations.

Corollary 3.10. Let k, n ∈ N with k < n and let T be the set of words over

{v1, v2, . . . , vk} in which vi occurs for each i ∈ {1, 2, . . . , k}. Given w ∈ Sn, let
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τ (w) be obtained from w by deleting all occurrence of elements of A as well as

occurrences of vi, k < i ≤ n. Let ⟨yt⟩∞t=1 be a sequence in T, and C ⊆ S0 be a

C-set. Then there exists a sequence of variable words ⟨wt⟩∞t=1 over A such that for

all G = {m1 < m2 < . . . < ml} ∈ Pf (N),

1.
{
wm1

(am1
)wm2

(am2
) . . . wml

(aml
) : ami

∈ An
mi
,mi ∈ G

}
⊆ C, and

2.
∏l

i=1 τ (wmi
) ∈ FP (⟨yt⟩∞t=1) .

Proof. The proof is similar to the proof of Theorem 3.7. So we leave it to the

reader.

One of the most important roles played by IP sets is in Ramsey theory. So let

us recall the definition of it.

Definition 3.11. For any commutative semigroup S, A ⊆ S is said to be an IP

set if there exists a sequence ⟨xn⟩∞n=1 such that

A = FS (⟨xn⟩∞n=1) =

{∑
t∈H

xt : H ∈ Pf (N)

}
.

It can be shown that A contains an IP set if and only if it is a member of some

idempotent element p ∈ βS.

In the following theorem, let us assume that the semigroup T and the matrix M

satisfy all the appropriate hypotheses for matrix multiplication to make sense and

be distributive over addition, as it was assumed in [7, Theorem 17].

Theorem 3.12. Let (T,+) be a commutative semigroup with identity element 0.

Let k,m, n ∈ N, and M be a k ×m matrix. For i ∈ {1, 2, . . . ,m}, let τi be an S0-

independent homomorphism from Sn to T . Define a function ψ on Sn by

ψ (w) =


τ1 (w)
τ2 (w)

...
τm (w)

 ,

with the property that for any collection of IP-sets {Ci : i ∈ {1, 2, . . . , k}} in T , there

exists a ∈ Sn such that Mψ (a) ∈ ×k
i=1Ci. Let Bi = FS

(〈
x
(i)
n

〉∞
n=1

)
for 1 ≤ i ≤ k

be k-IP sets in T , and D ⊆ S0 be a C-set in S0. Then there exists ⟨wi⟩∞i=1 ⊆ Sn

such that for each G = {m1,m2, . . . ,ml} ∈ Pf (N), we have

1. wm1
(−−→am1

)wm2
(−−→am2

) · · ·wml
(−−→aml

) ∈ D, and

2. M ◦ ψ (wm1
wm2

. . . wml
) ∈ ×k

i=1Bi.
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Proof. Let ϕ : Sn ∪ S0 → B = ×k
i=1 (Bi ∪ {0}), where ϕ (w) = Mψ (w). Hence

from [7, Lemma 17], ϕ is a homomorphism. Let us choose an idempotent p ∈ βS0

such that D ∈ p, and so D∗ ∈ p. Now for each a⃗1 ∈ An
1 , ha⃗1

: ϕ−1 [B] → S0 is

a partial semigroup homomorphism, which is fixed on S0. As S0 is not a J set,⋂
a⃗1∈An

1
h−1
a⃗1

[D∗] \ S0 is a J-set in ϕ−1 [B]. Hence there exists w1 ∈ ϕ−1 [B] \ S0

such that w1 (a⃗1) ∈ D∗, for all a⃗1 ∈ An
1 , and ϕ (w1) =Mψ (w1) ∈ B. Choose an IP

set B1 ⊆ −Mψ (w1) + B, and clearly (0, 0, . . . , 0) ∈ B1. So, S0 ⊆ ϕ−1 [B1]. Hence

ϕ−1 (B1) is a partial semigroup. Now for a⃗2 ∈ An
2 the map ha⃗2

defined by

ha⃗2
: ϕ−1 [B1] → E = D∗ ∩

⋂
a⃗1∈An

1

w1 (a⃗1)
−1
D∗,

is again a partial semigroup homomorphism fixed on S0. So, there exists w2 ∈⋂
a⃗2∈An

2
h−1
a⃗2

[E] ∩
(
ϕ−1 [B1] \ S0

)
. Thus for every a⃗2 ∈ An

2 ,

ha⃗2
(w2) ∈ E = D∗ ∩

⋂
a⃗1∈An

1

w1 (a⃗1)
−1
D∗.

Thus, w2 (a⃗2) ∈ D∗, w1 (a⃗1) = w2 (a⃗2) ∈ D∗ and ϕ (w2) = Mψ (w2) ∈ B1. Hence

we have

1. Mψ (w1) ∈ B;

2. for every a⃗1 ∈ An
1 , we have w1 (a⃗1) ∈ D∗;

3. Mψ (w2) ∈ −Mψ (w1) +B;

4. for every a⃗2 ∈ An
1 , we have w2 (a⃗2) ∈ D∗; and

5. for every a⃗1, a⃗2 ∈ An
1 , we have w1 (a⃗1)w2 (a⃗2) ∈ D∗.

Moreover, M ◦ ψ (w1w2) =M (ψ (w1) + ψ (w2)) ∈ B.

Now proceeding iteratively, we have our desired result.
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