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Abstract

We express functions of the type
∑
j≤x

w(j)(u ∗ v)(j), for generic weight functions w,

in terms of the summatory functions
∑
j≤x

(u ∗ v)(j) of the Dirichlet convolution of u

and v, when u and v are both completely multiplicative. This information is used
to analyze some divisor problems over k-free and B-free integers. In particular, we
prove a conjecture about an asymptotic formula for the sum of the divisors of all
k-free integers less than or equal to a given threshold, and we extend this analysis to
certain classes of B-free integers. Some analogues of these results for B-free integers
in reduced residue classes are also obtained.

1. Introduction

A recurring problem in number theory is understanding how a weighted average∑
j≤x

w(j)a(j) of a given arithmetic function a relates to its original summatory func-

tion
∑
j≤x

a(j). For instance, [15, 16, 19] deal with the case when a = µ is the

Möbius function, while [9, 10, 13] handle certain sums over arithmetic progressions.

In the same vein, we recently engaged in the study of the functions

D̃k(x) =
∑
n≤x

qk(n)
∑
d|n

1, k ≥ 2, x ≥ 1, (1)
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where

qk(n) =

{
1, if n is k-free,
0, otherwise,

(2)

is the characteristic function of k-free integers (a positive integer n is k-free if n

is not divisible by the k-th power of any prime number). Just for a brief history,

Jakimczuk and Laĺın [8] proved that, for every k ≥ 2, there exists βk ∈ R such

that, for every ϵ > 0,

D̃k(x) =
∏

p prime

[
1− k + 1

pk
+

k

pk+1

]
x log(x) + βkx + Oϵ

(
x3/4+ϵ

)
. (3)

At about the same time, we independently formulated the following unpublished

conjecture (which we proved for k = 2 in [4]).

Conjecture 1. For each k ≥ 2, there is a constant βk such that, for every ϵ > 0,

D̃k(x) =
1

ζ2(k)

 ∏
p prime

ϕk(p)

x log(x) + βkx + Ok,ϵ(x
1/2+ϵ), (4)

with

ϕk(n) =

1 +
1

n2

k−3∑
j=0

j + 1

nj


[
1−

(
nk−1−1
nk−1

)]
[
1 +

(
nk−1−1
nk−1

)]
[1− (nk−1 − 1

nk − 1

)2
]
, n ≥ 1

(5)

(ζ is the Riemann zeta function).

Remark 1. For the sake of clarity, we remark that the expressions for the coeffi-

cients of the leading terms of D̃k in (3) and in (4) are identical. Using the Euler

product for ζ, this assertion reduces to an identity between two polynomials in p.

In fact, note that, for fixed k ≥ 3, the sum
k−3∑
j=0

j + 1

nj
that appears in ϕk(n) is the

derivative of

k−3∑
j=0

xj+1 =
xk−2 − 1

x− 1

at x = 1
n .

Motivated by Conjecture 1, in this note we address the problem of expressing

weighted summatory functions of the form

D[w, u, v](x) =
∑
j≤x

w(j)(u ∗ v)(j), x ≥ 1, (6)
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in terms of

D[u, v](x) =
∑
j≤x

(u ∗ v)(j), (7)

where u, v and w are arithmetic functions and u ∗ v is the Dirichlet convolution of

u and v. In several cases of interest, it is sufficient to find f : N → C such that

D[w, u, v](x) =
∑
j≤x

f(j)D[u, v](x/j).

However, finding useful expressions for f may be tricky depending on the structure

of w. As an additional tool, we present an alternative strategy that works for general

weight functions w, provided that u and v are both completely multiplicative and

information about the convolution of w with the Möbius function µ is available.

Theorem 1. Let u and v be completely multiplicative arithmetical functions. For

any arithmetical function w, and x ≥ 1,

D[w, u, v](x) =
∑
r≤x

g(r)
∑
d|r

u(d)v(r/d)
∑
m|d

µ(m)v(m)D[u, v]
( x

mr

)
, (8)

where g = w ∗ µ is the Dirichlet convolution of w and µ.

Applying Theorem 1 for w = qk and u = v ≡ 1 and using available estimates [3]

∆(x) = O(xη), (9)

for the error term ∆(x) of the classical Dirichlet function:

D(x) :=
∑
n≤x

∑
d|n

1 = x log(x) + (2γ − 1)x+∆(x), (10)

we prove an improved Jakimczuk–Laĺın version of Conjecture 1.

Corollary 1. For k ≥ 2, there exists a constant βk such that, for every ϵ > 0,

D̃k(x) =

( ∏
p prime

[
1− k+1

pk + k
pk+1

])
x log(x) + βk x +O (xηk+ϵ) ,

with ηk =

{
1/k, k = 2, 3,

any η ≥ 1/4 such that ∆(x) = O (xη) , k ≥ 4,

for ∆ defined2 in (10).

2Hardy showed that η can not be smaller than 1/4 [5].
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There is also a nice extension of Corollary 1 for certain types of B-free integers.

Let B : b1, b2, b3 . . . be a sequence of pairwise distinct positive integers such that

bj > 1 for all j, ∑
j

1

bj
< ∞ and gcd(bi, bj) = 1 for i ̸= j.

A positive integer n is B-free if n is not divisible by any of the bj ’s [1]. For example,

if Bk is the set of the kth powers of all prime numbers, then the set of k-free numbers

may be referred to as the set of Bk-free numbers.

The analogue of (1) for B-free integers is

D̃B(x) =
∑
n≤x

qB(n)
∑
d|n

1, (11)

where qB is the characteristic function of B-free integers. Let B be formed by

powers of the prime numbers with possibly varying exponents, that is,

bi = pκi
i , i = 1, 2, . . . (12)

(here and throughout the paper, p1, p2, . . . , pℓ, . . . will denote the sequence of the

prime numbers in ascending order). We shall refer to Bκ for the b’s in (12).

Corollary 2. Let κ = (κ1, κ2, . . . ) ∈ NN. If κmin := min
i≥1

{κi} ≥ 2, there exists a

constant βκ such that, for every ϵ > 0,

D̃Bκ
(x) =

( ∞∏
i=1

[
1− κi + 1

pκi
i

+
κi

pκi+1
i

])
x log(x) + βκ x + O

(
xηκ+ϵ

)
,

with ηκ =

{
1/κmin, κmin = 2, 3,

any η ≥ 1/4 such that ∆(x) = O (xη) , κmin ≥ 4,

for ∆ defined in (10).

Theorem 1 can also be useful for the analysis of some problems over reduced

residue classes, due to its tight connection with completely multiplicative functions

(Dirichlet characters, in particular). For instance, Pongsriian and Vaugham and

others (see [14, 10] and the references therein) estimated the Dirichlet divisor func-

tion D for n in residue classes:

D(x, a, ξ) =
∑
n ≤ x

n ≡ a (mod ξ)

∑
d|n

1, 0 ≤ a < ξ. (13)
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In this regard, one could also consider the problem of estimating the analogue of

(13) for D̃Bκ
:

D̃Bκ
(x, a, ξ) =

∑
n ≤ x

n ≡ a (mod ξ)

qBκ
(n)
∑
d|n

1, 0 ≤ a < ξ. (14)

Corollary 3. Let κ = (κ1, κ2, . . . ) ∈ NN and κmin := mini≥1{κi}. If κmin ≥ 2

and ξ and a are coprime, there is a constant c̃κ,a,ξ such that

D̃Bκ(x, a, ξ) =
φ(ξ)

ξ2

( ∏
χξ(pi)=1

[
1− κi + 1

pκi
i

+
κi

pκi+1
i

])
x log(x) + c̃κ,a,ξ x

+ O (xηκ+ϵ) , with ηκ =

{
1/2, κmin = 2,

1/3 κmin ≥ 4,
(15)

(χξ is the principal Dirichlet character with modulus ξ).

1.1. Organization of the Paper

In Section 2, we state and prove some lemmas about multiplicative and completely

multiplicative functions. In Section 3, we prove the main results of the paper. In

Section 4, we make a few remarks about the work of Jakimczuk and Laĺın [8] and

show that Corollary 1 could also be obtained with their methods.

2. A Few Lemmas About Multiplicative and Completely Multiplicative
Functions

In the following statements, void sums must be interpreted as zero and u(n)0 :=

1, v(n)0 := 1.

Lemma 1. Let u, v : N → C. For non-negative integers τ , ξ and n ≥ 1,

τ+ξ∑
j=0

u(n)jv(n)τ+ξ−j =

 τ∑
j=0

u(n)jv(n)τ−j

( ξ∑
i=0

u(n)iv(n)ξ−i

)

−u(n)v(n)

τ−1∑
j=0

u(n)jv(n)τ−1−j

(ξ−1∑
i=0

u(n)iv(n)ξ−1−i

)
.

(16)

Proof. For A =

(
τ∑

j=0

u(n)jv(n)τ−j

)(
ξ∑

i=0

u(n)iv(n)ξ−i

)
, we have
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A =

τ−1∑
j=0

u(n)jv(n)τ−j + u(n)τ

( ξ∑
i=1

u(n)iv(n)ξ−i + v(n)ξ

)

=

τ−1∑
j=0

u(n)jv(n)τ−j

( ξ∑
i=1

u(n)iv(n)ξ−i

)

+ u(n)τ

(
ξ∑

i=1

u(n)iv(n)ξ−i

)
+ v(n)ξ

 τ∑
j=0

u(n)jv(n)τ−j


= u(n)v(n)

τ−1∑
j=0

u(n)jv(n)τ−1−j

(ξ−1∑
i=0

u(n)iv(n)ξ−1−i

)

+

(
τ+ξ∑

ℓ=τ+1

u(n)ℓv(n)τ+ξ−ℓ

)
+

(
τ∑

ℓ=0

u(n)ℓv(n)τ+ξ−ℓ

)
.

Lemma 2. If u, v : N → C are completely multiplicative for positive integers r and

s,

(u ∗ v)(rs) =
∑

m|gcd(r,s)

µ(m)u(m)v(m)(u ∗ v)
( r

m

)
(u ∗ v)

( s

m

)
. (17)

Proof. The proof is by induction on the number of distinct prime factors of rs. Note

that (17) holds for r = s = 1. Assume that rs > 1 and let p be a prime factor of

rs, with

r = pτr′, s = pξs′, and gcd(p, r′) = gcd(p, s′) = 1,

with τ and ξ not both vanishing, and assume that (17) holds for r′ and s′. Hence,

(u ∗ v)(rs) =

τ+ξ∑
ℓ=0

u
(
pℓ
)
v(pτ+ξ−ℓ)(u ∗ v)(r′s′)

=

τ+ξ∑
ℓ=0

u
(
pℓ
)
v(pτ+ξ−ℓ)

∑
m|gcd(r′,s′)

µ(m)u(m)v(m)(u ∗ v)
(
r′

m

)
(u ∗ v)

(
s′

m

)
.

(18)

If τ = 0, then r′ = r, gcd(r, s) = gcd(r′, s′) and we get
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(u ∗ v)(rs) =
∑

m|gcd(r,s)

µ(m)u(m)v(m)(u ∗ v)
( r

m

)( ξ∑
ℓ=0

u
(
pℓ
)
v(pξ−ℓ)

)
(u ∗ v)

(
s′

m

)
=

∑
m|gcd(r,s)

µ(m)u(m)v(m)(u ∗ v)
( r

m

)
(u ∗ v)

( s

m

)
,

that is, (17) holds for r and s (the same conclusion holds if ξ = 0).

If both τ and ξ are non-vanishing, then

gcd(r, s) = pν gcd(r′, s′),

for some ν ≥ 1. By Lemma 1 and by (18), we obtain

(u ∗ v)(rs) =

(
τ∑

ℓ=0

u
(
pℓ
)
v(pτ−ℓ)

)(
ξ∑

ℓ=0

u
(
pℓ
)
v(pξ−ℓ)

)
A

− u(p)v(p)

(
τ−1∑
ℓ=0

u
(
pℓ
)
v(pτ−1−ℓ)

)(
ξ−1∑
ℓ=0

u
(
pℓ
)
v(pξ−1−ℓ)

)
A,

with

A =
∑

m|gcd(r′,s′)

µ(m)u(m)v(m)(u ∗ v)
(
r′

m

)
(u ∗ v)

(
s′

m

)
.

Hence,

(u ∗ v)(rs) =
∑

m|gcd(r′,s′)

µ(m)u(m)v(m)(u ∗ v)
( r

m

)
(u ∗ v)

( s

m

)
+

∑
m|gcd(r′,s′)

µ(mp)u(mp)v(mp)(u ∗ v)
(
r/p

m

)
(u ∗ v)

(
s/p

m

)
.

Since every divisor d of gcd(r, s) with µ(d) ̸= 0 is of the form d = m or d = pm

with m | gcd(r′, s′), we obtain (17) for r and s.

For u : N → C, r ∈ N and x ≥ 1, let

Sr[u, v](x) =
∑
j≤ x

r

(u ∗ v)(rj). (19)
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Lemma 3. If u, v : N → C are completely multiplicative, for x ≥ 1,

Sr[u, v](x) =
∑
d|r

u(d)v(r/d)
∑
m|d

µ(m)v(m)D[u, v]
( x

mr

)
, (20)

for D[u, v] defined by (7).

Proof. Let us rewrite (17) in a different way:

(u ∗ v)(rs) =
∑
d|r

u(d)v(r/d)
∑

m|gcd(d,s)

µ(m)v(m)(u ∗ v)
( s

m

)
. (21)

Summing (21) in s, we get

Sr[u, v](x) =
∑
s≤ x

r

(∑
d|r

u(d)v(r/d)
∑

m|gcd(d,s)

µ(m)v(m)(u ∗ v)
( s

m

))

=
∑
d|r

u(d)v(r/d)
∑
m|d

µ(m)v(m)
∑

j≤ x
mr

(u ∗ v)
(
jm

m

)

=
∑
d|r

u(d)v(r/d)
∑
m|d

µ(m)v(m)D[u, v]
( x

mr

)
.

Remark 2. Lemma 3 was obtained previously by Pongsriiam and Vaugham for

the constant function u = v ≡ 1 [14, p.8].

Lemma 4. For generic functions w, u, v : N → C and for x ≥ 1,

D[w, u, v](x) =
∑
r≤x

g(r)Sr[u, v](x),

where g = w ∗ µ is the Dirichlet convolution of w and µ.

Proof. We have

D[w, u, v](x) =
∑
j≤x

w(j)(u ∗ v)(j) =
∑
j≤x

(g ∗ 1)(j)(u ∗ v)(j)

=
∑
j≤x

∑
r|j

g(r)

 (u ∗ v)(j) =
∑
r≤x

g(r)

∑
j≤ x

r

(u ∗ v)(jr)


=

∑
r≤x

g(r)Sr[u, v](x).
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2.1. Some Special Convolutions

Given a sequence of real numbers a = (a1, a2, . . . ) and a positive integer n ≥ 1, we

define

na =

ℓ∏
i=1

(pαi
i )

ai ,

where n =

ℓ∏
i=1

pαi
i is the decomposition of n into prime numbers (note that some

of the exponents αi might be zero).

Lemma 5. For n ≥ 1 and κ = (κ1, κ2, . . . , ),

(qBκ
∗ µ)(n) =

{
µ
(
n1/κ

)
, if n1/κ ∈ N,

0, otherwise,
(22)

where 1/κ := (1/κ1, 1/κ2, . . . , ).

Proof. Let n =

ℓ∏
i=1

pαi
i be the decomposition of n into prime numbers. Note that,

if αj > κj for some j and n = rs,

either p
κj

j | r or p2j | s.

Hence,

(qBκ ∗ µ)(n) =
∑
rs=n

qBκ(r)µ(s) = 0.

Assume now that αi ≤ κi for all i and write {1, 2, . . . , ℓ} = K ⊔W, where

K = {i : αi = κi}, W = {i : αi < κi}.

Let

θ =
∏

i ∈ W
pαi
i .

Note that if n = rs and qBκ
(r)µ(s) ̸= 0, then

r = r′
∏

i ∈ K
pαi−1
i and s = s′

∏
i ∈ K

pi

with r′s′ = θ. Therefore,

(qBκ ∗ µ)(n) =
∑
s′|θ

µ

( ∏
i ∈ K

pi

)
µ(s′) =


µ

( ∏
i ∈ K

pi

)
, θ = 1,

0, θ > 1.
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This tells us that, if,

(qBκ ∗ µ)(n) ̸= 0, then n =
∏

i ∈ K
pκi
i

for some K ⊂ N and, in this case,

(qBκ ∗ µ)(n) = µ
(
n1/κ

)
.

To complete the proof, note that if n1/κ ∈ N, then

n =
∏

i ∈ K
priκi
i

for some K ⊂ N and ri ∈ N. If ri > 1 for some i, we concluded above that

(qBκ ∗ µ)(n) = 0. However, in this case, µ
(
n1/κ

)
is also vanishing and (22) still

holds.

Lemma 6. Let w : N → N be defined by

w(n) = qBκ
(n)χξ(n) for all n ≥ 1,

where χξ is the principal Dirichlet character modulus ξ and Bκ is defined in (12).

The Dirichlet convolution of (w ∗ µ)(n) is non-vanishing only for n of the form

n = ℓrκ, with ℓ | ξ and for some r such that gcd(r, ξ) = 1. In this case,

(w ∗ µ)(n) = µ(ℓ)µ(r). (23)

Proof. Every integer n ≥ 1 can be written uniquely as n = αℓ, with ℓ | ξs for some

s and gcd(α, ξ) = 1. Hence,

(w ∗ µ)(n) =
∑
α′|α

∑
ℓ′|ℓ

χξ(ℓ
′α′)qBκ(α

′ℓ′)µ

(
αℓ

α′ℓ′

)
=

∑
α′|α

qBκ
(α′)µ

( α

α′

)
µ(ℓ).

By (22), we obtain

(w ∗ µ)(n) =

{
µ (r)µ(ℓ), α = rκ, r ∈ N,

0, otherwise.

Note that, given that ℓ | ξs, if ℓ ∤ ξ, then µ(ℓ) = 0.
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3. Proofs

In this section, we give proofs of Theorem 1, Corollary 2, and Corollary 3.

Proof of Theorem 1. This follows immediately by Lemmas 3 and 4.

Proof of Corollary 2. Theorem 1 for u = v ≡ 1 and Lemma 5 give

D̃Bκ(x) =
∑
rκ≤x

µ(r)
∑
d|rκ

∑
m|d

µ(m)D
( x

rκm

)
. (24)

Note that, by (22), (qBκ
∗ µ)(n) is non-vanishing only when n is of the form rκ for

some integer r.

Combining (24) with (10), we obtain

D̃Bκ
(x) =

∑
rκ≤x

µ(r)
∑
d|rκ

∑
m|d

µ(m)
( x

rκm

)
log
( x

rκm

)
+ (2γ − 1)

∑
rκ≤x

µ(r)
∑
d|rκ

∑
m|d

µ(m)
( x

rκm

)
+
∑
rκ≤x

µ(r)
∑
d|rκ

∑
m|d

µ(m)∆
( x

rκm

)
.

(25)

It is sufficient to show that the quantities

aκ(x) :=
∑
rκ≤x

µ(r)

rκ

∑
d|rκ

∑
m|d

µ(m)

m

bκ(x) :=
∑
rκ≤x

µ(r)

rκ

∑
d|rκ

∑
m|d

µ(m)

m
log (rκm)

cκ(x) :=
∑
rκ≤x

| µ(r) |
rκ ηk

∑
d|rκ

∑
m|d

| µ(m) |
mηk

satisfy:

(i) aκ(x) and bκ(x) converge as x → ∞ and, for aκ := lim
x→∞

aκ(x) and bκ :=

lim
x→∞

bκ(x) we have

aκ−aκ(x) = Oκ,ϵ

(
x−1+1/κmin+ϵ

)
and bκ−bκ(x) = Oκ,ϵ

(
x−1+1/κmin+ϵ

)
for all ϵ > 0;

(ii) cκ(x) = Oκ,ϵ(x
ϵ) for every ϵ > 0.
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In fact, By (25) and (i) and (ii),

D̃κ(x) = aκx log(x) + (bκ + [2γ − 1]aκ)x + Oκ,ϵ (x
ηk+ϵ) . (26)

The proofs of (i) for aκ(x) and bκ(x) are quite similar to each other. Let us prove

(i) for aκ(x). Denote by 1 the constant function 1(j) = 1 for all j ≥ 1. Because

rκ =
∏
pi | r

pκi
i (27)

when µ(r) ̸= 0, we get

aκ(x) =
∑
rκ≤x

µ(r)

rκ

∑
d|rκ

1(d)
∏
p | d

p prime

(
1− 1

p

)
.

(28)

Because
∑
d|y

1 = Oϵ(y
ϵ) for every ϵ > 0, we have

∑
rκ≤x

µ(r)

rκ

∑
d|rκ

1 ≪ϵ

∑
rκ≤x

1

rκ(1−ϵ)
≤
∑
rκ≤x

1

rκmin(1−ϵ)
. (29)

This shows that aκ(x) converges absolutely (as x → ∞) for every ϵ < 1/2. In

addition,

| aκ − aκ(x) | ≪ϵ

∑
rκmin>x

1

rκmin(1−ϵ)
= Oκ,ϵ

(
x

−κmin+κminϵ+1

κmin

)
. (30)

By (28), we also have

aκ =
∑
rκ≤x

µ(r)

rκ

∏
pi | r

[
1 +

κi∑
ℓ=1

1
(
pℓi
)(

1− 1

pi

)]

=

∞∑
r=1

µ(r)

rκ

∏
pi | r

[
κi + 1− κi

pi

]
=

∞∏
i = 1

(
1− 1

pκi
i

[
κi + 1− κi

pi

])
.

The proof of (ii) is analogous to the proof of (i) and follows by using the Van

Der Corput estimate

∆(x) = O
(
x33/100

)
(31)

for ∆(x) in the cases κmin = 2 and κmin = 3 (see Hölder’s approach to the k-free

divisor problem for similar arguments [6]).
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Proof of Corollary 3. Let char(ξ) be the group of Dirichlet characters modulo ξ.

We have [7, Proposition 4.2.5]

D̃Bκ
(x, a, ξ) =

1

φ(ξ)

∑
χ ∈ char(ξ)

χ(a)
∑
n≤x

χ(n)qBκ
(n)
∑
d|n

1

=
1

φ(ξ)

∑
χ ∈ char(ξ)

χ(a)
∑
n≤x

qBκ(n)(χ ∗ χ)(n),
(32)

where φ is the Euler totient function. For a non-principal character χ, we apply

Theorem 1 for u = v = χ and w = qBκ
. By (22),

∑
n≤x

qBκ
(n)(χ ∗ χ)(n) =

∑
rκ≤x

µ(r)χ(rκ)
∑
d|rκ

∑
m|d

µ(m)χ(m)
∑

j≤ x
rκm

(χ ∗ χ)(j).

(33)

Combining Theorem 8.18 of [2] with Theorem 1.1 of [18], we get∑
j≤ x

rκm

(χ ∗ χ)(j) = Oξ

(( x

rκm

)1/3)
, (34)

so the overall contribution for a non-principal character χ in (32) is Oa,ξ

(
x1/2+ϵ

)
,

κmin = 2, and Oa,ξ

(
x1/3+ϵ

)
, κmin ≥ 3, in this case.

For the principal character χξ, we apply Theorem 1 for w = χξ.qBκ
and u = v ≡ 1

(“.” means pointwise product). By (8) and (23), we get

∑
n≤x

w(n)
∑
d|n

1 =
∑
ℓ|ξ

µ(ℓ)
∑

rκ≤x/ℓ

µ(r)χξ(r)
∑
d|ℓrκ

∑
m|d

µ(m)D
( x

mℓrκ

)
.

Note that gcd(ℓ, rκ) = 1, so we write each divisor d of ℓrκ as ℓ′d′, with ℓ′ | ℓ and

d′ | rκ. Similarly, we write m = ℓ′′d′′, with ℓ′′ | ℓ′ and d′′ | d′ and we use that

D(y) = 0 for y < 1 to replace the condition rκ ≤ x/ℓ by rκ ≤ x/(ℓℓ′′):

∑
n≤x

w(n)
∑
d|n

1 =
∑
ℓ|ξ

µ(ℓ)
∑
ℓ′|ℓ

∑
ℓ′′|ℓ′

µ(ℓ′′)
∑

rκ≤x/(ℓℓ′′)

µ(r)χξ(r)
∑
d′|rκ

∑
d′′|d′

µ(d′′)D
( x

ℓ′′d′′ℓrκ

)
=
∑
ℓ|ξ

µ(ℓ)
∑
ℓ′|ℓ

∑
ℓ′′|ℓ′

µ(ℓ′′)L
( x

ℓℓ′′

)
,

(35)

where

L(x) =
∑
rκ≤x

µ(r)χξ(r)
∑
d′|rκ

∑
d′′|d′

µ(d′′)D
( x

d′′rκ

)
. (36)
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The expression in the right-hand side of (36) is quite similar to the one for D̃Bκ
on

(24). Therefore, proceeding as in the proof of Corollary 2, we conclude that

L(x) =

( ∏
χξ(pi)=1

[
1− κi + 1

pκi
i

+
κi

pκi+1
i

])
x log(x) + cκ,ξ,a x +∆∗

κ(x),

∆∗
κ(x) = O (xηκ+ϵ) , with ηκ =

{
1/2, κmin = 2,

1/3 κmin ≥ 4,
(37)

for some cκ,ξ,a. It remains to prove that∑
ℓ|ξ

µ(ℓ)

ℓ

∑
ℓ′|ℓ

∑
ℓ′′|ℓ′

µ(ℓ′′)

ℓ′′
=

(
φ(ξ)

ξ

)2

. (38)

In this regard, note that the sum on the left-hand side of (38) is made only over

square-free divisors of ξ, so it is sufficient to prove (38) for square–free integers ξ.

This gives

∑
ℓ|ξ

µ(ℓ)

ℓ

∑
ℓ′|ℓ

∑
ℓ′′|ℓ′

µ(ℓ′′)

ℓ′′
=

∑
ℓ|ξ

µ(ℓ)

ℓ

∑
ℓ′|ℓ

φ(ℓ′)

ℓ′
=
∑
ℓ′|ξ

φ(ℓ′)

ℓ′

∑
η|ξ/ℓ′

µ(ℓ′η)

ℓ′η

=
∑
ℓ′|ξ

µ(ℓ′)

ℓ′
φ(ℓ′)

ℓ′

∑
η|ξ/ℓ′

µ(η)

η
=
∑
ℓ′|ξ

µ(ℓ′)

ℓ′
φ(ℓ′)

ℓ′
φ(ξ/ℓ′)

ξ/ℓ′

=
∑
ℓ′|ξ

µ(ℓ′)

ℓ′
φ(ξ)

ξ
=

(
φ(ξ)

ξ

)2

.

The hypothesis “ξ is square-free” was used above to write µ(ℓ′η) = µ(ℓ′)µ(η) and

φ(ξ) = φ(ℓ′)φ(ξ/ℓ′).

4. Some Remarks about the Jakimczuk-Laĺın Method

Jakimczuk and Laĺın proved Equation (3) in [8] by combining Perron’s formula

with an Euler-type product formula for the Dirichlet series with coefficients a(j) =

qk(j)
∑
d|j

1. As an intermediate step, they showed that

∞∑
j=1

a(j)

js
= ζ2(s)F0,k(s), (39)

with

F0,k(s) =

∞∑
j=1

τ(j)

js
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absolutely convergent for Re(s) > 1
k . It passed unnoticed that (39) and (10) are

already enough to provide an upper bound Ok,ϵ(x
ηk+ϵ) for the error term ∆̃k(x) as

in Corollary 1. In fact,

D̃k(x) =
∑
j≤x

τ(j)D(x/j),

with D defined in (10), and the absolute convergence of F0,k and Abel’s formula

tell us that

x∑
j=1

τ(j)

j1/k+ϵ

1

j1−1/k−ϵ
=

∞∑
j=1

τ(j)

j
+ Ok,ϵ(x

−1+ 1
k+ϵ),

for every ϵ > 0.
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