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Abstract
We introduce a generalization of multiple polylogarithms and give their Landen-
type connection formulas. Also, we define generalized poly-Bernoulli numbers by
using these polylogarithms and prove some relations.

1. Introduction

For an index k = (k1,...,k,) € ZL,, we set d(k) :=r and |k| =k :=ki +--- + k;.
They are called the depth and the weight of k, respectively. For any index k =
(k1, ..., k), define multiple polylogarithms Lig(z) as

moy

Lig(z):= Y. ———p € QI

0<m<---<m,. myt My

(for more general settings, see, e.g., [3] and [16]). When k = (k) (k > 0), the
function Lig(2) is the classical polylogarithm.

For indices k and k', the notation k&’ < k means that k' is obtained from k by
combining some consecutive entries, e.g., (3,5) =< (1,2,1,3,1). Okuda and Ueno
[14] proved the following beautiful relation called the Landen connection formula:

Theorem 1 ([14, Prop. 9]). For any index k € 7, we have that

Lik( : )=<—1)d<’“ZLik'<z>. 1)

z—1
<k’

Let Lif(z) be the non-strict multiple polylogarithm defined by

. z

0<m1<---<m,. my
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We note that Lij(z) = Y,/ < Lig/(2). If an index k = (k1, ..., k,) satisfies k, > 2,
then the values Lix(1) and Li} (1) converge. These limit values, denoted by ¢(k)
and ¢*(k), are called multiple zeta values and multiple zeta star values, respectively.

For an index k = (k1,. .., k,) with k, > 2, Yamamoto [15] introduced the follow-
ing interpolated multiple zeta values:

(k) =Y 1= c(k) e R[]
K<k

This polynomial interpolates multiple zeta values and multiple zeta star values
because (°(k) = ¢((k) and ¢'(k) = ¢*(k). Yamamoto studied the function ('(k)
in connection with the so-called “two-one formula” [13], and proved a sum formula
and a cyclic sum formula for ¢*(k).

There are some studies on a polylogarithm version of the interpolated multiple
zeta values. Li and Qin [10] introduced interpolated multiple polylogarithms as

Lig(t,z) = Y tdepR)=derkIL,, () (2)
k' <k
and gave a formula relating to the so-called “Ohno-Zagier relation” [12]. When
k. > 2, it clearly follows that Lig(¢,1) = ¢*(k). Ohno and Wayama [11] investigated
the interpolated Arakawa-Kaneko zeta functions and considered another type of
interpolated multiple polylogarithm as follows:

Lij () = 3 4oLy (2). (3)
K=<k’

This function interpolates Lij,(z) = Lig(z) and Lig(z) = 3", s Lir(2). The latter
value Liz(z) appears in the Landen connection formula (1). -

For an index k = (k1,...,k,) € ZL,, two kinds of poly-Bernoulli numbers ck)
and B (n > 0) are defined as follows:

t
le 1*6 Zc(k)— and le ZB(k)t

(see, e.g.,[9]). We remark that, in general, these numbers can be defined even if
k;’s are non-positive. When r = 1, the numbers C’ék) and B,Sk) are introduced by
Arakawa-Kaneko [1] and Kaneko [6]. Since Li; (z) = —log(1—z), we have ctV =B,
and B = (-=1)"B,, for n > 0. Here B,, (n > 0) are ordinary Bernoulli numbers
defined by

o

¢ B, .
Tt

n=0

In the present paper, we introduce generalized multiple polylogarithms including
both Equations (2) and (3) and give a generalization of the Landen connection
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formula (1). Moreover, we define the corresponding poly-Bernoulli numbers, which

)

are generalizations of the ordinary poly-Bernoulli numbers c® and B , and prove

some identities.

2. Generalized Multiple Polylogarithms

aet +b
cet +d

b

d which is a linear

For a matrix (Z ) € GL5(R), let us consider z =

t

fractional transformation of e!. We remark that z = et + pi can be written formally
as cet +
—b+dz # c d
t=1 = — du. 4
RR—— /a+b<a—cu b—du> “ )
c+d
In particular, when a =1 and b = —1, we have
1+4dz # c d
t=1 = —+ —— | du. 5
1 /0 <1—cu+1—|—du> “ 5)
. 1 -1 a; b
For an integer s > 1, set g9 = € GLy(R) and ¢g; = €
co do ¢ d;

GL3(R) (1 <4 < s). The symbol g stands for a sequence g = (9o, 91,---,9s). Let

16: (/Bla"'vﬂs) and'y = (717'-'773) e R
For an index k = (k1,...,k,) € ZL,, we use the arrow notation ky := (ki,...,k.+
1) and k_, := (k1,..., k., 1). Then we define generalized multiple polylogarithms

Lig (g, (8,7); 2) € R][[z]] inductively as

Lit, (9. (87)52) = | Zﬁz (i e an

C; d1 .
Li ) - L 9 ) ; d
(9B = [ ;7 (o ) L (B da
with an initial condition
. ? Co do
Ll(l) (gv(ﬁ37)72)2/0 <1—Cou+1+d0u) du

_SasCar

n=1

a—ct b—dt

Here we give some examples of g = (i Z) and G4(t) == = — —4_ in Table
1.



INTEGERS: 24 (2024) 4

GO () (e

Gg(t)' % 1 2 1w

Table 1: Examples of G4(t)

. 1 -1 1 0
If g = (90,91, 92) With go = g2 = (1 O) and g1 = (0 1>7 and B = (1,0)
and v = (0,1), then the function Lig (g, (8,7);2) is expressed by the well-known
iterated integral representation of the multiple polylogarithm Lig(z). By definition,

the function Lig (g, (8,7); z) has no constant term, i.e., Lig (g, (8,7); 2) € zR[[2]]

t—1
for any index k. Also it follows that Li(y (g, (B,7); et+d> = t because of
Cpe 0

Equation (4).

For an index k € Z%, Hoffman’s dual index kY of k is defined inductively by
the identities (k1)¥ = (k¥)_, and (k_)Y = (kY); with (1)¥ = (1). This index
kY appears in Hoffman’s duality formula for finite multiple zeta values (see [4]).
Interchanging 3 and ~ corresponds to taking Hoffman’s dual index kY, i.e., the
following identity holds:

Lik (g, (8,7); 2) = Ligv (g, (7, 8); 2) -

The following is a kind of sum formula for Lig(g, (3,7); 2).

Proposition 1. For an integer k > 1 and an indeterminate pu, we have

S w® 1Ly (g, (8,7); 2) = Lik(g, (B + 17, 6); 2). (7)

k|=k
Here § € R® is an arbitrary vector and B3+ pry := (B; + (i) i<i<s-

Proof. We prove Identity (7) by induction on k. When k = 1, Identity (7) is trivial
because Li)(g, (3,7); z) defined by Identity (6) does not depend on (3,~).
We assume that Identity (7) holds for some k£ > 1. Then

d

> p' ™ Lig(g, (8,7); 2)

z
|k|=k+1

d

= | 2o # O ik (9, (B.4)2) + Y n"WLik (g, (8,7):2)

[k|=Fk |k|=Fk

s G di d(k)—17 :
= ; B (0. (B,
;ﬂ <ai —cz b — diz) Z K (g, (8,7); 2)

|ke|=Fk
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S G di d(k)—17 ;
1 — L ’ : :

|k|=k

=306+ ) (2 ) Lisla. B+ e, 0.
i=1

i — Ciz bi — dzZ

Hence, by inductive assumption, we have

J d
LN 9 Li(g, (B,7); 2) = ~~Likta(g, (B + wy. 8); 2).

z dz
|k|=k+1

Because every multiple polylogarithm has no constant term, Identity (7) also holds
for k + 1. O

For g = (90,91, --,9s), we define

S ELZ Bj L 1 0 o a; bz
i = ¢ di) \co—do —1 9= (co —do)a; —¢;  (co —do)b; — d;

for 0 < ¢ < s and set § = (§o,G1,---,3s). We remark that each g; (1 < i < s)
depends on gy and

_ 1 0\ /1 -1\ _[(1 -1
go = Co—do -1 Co do o —do —Cp ’

Also we can see that this operation is an involution, i.e., (§) = g. Then we obtain
the following theorem which is a generalization of the Landen connection formula

(1)

Theorem 2. For any index k € ZL, we have

. z .
Lig <9a (B,7): (co—do)z—1> = Lik (9, (B,7):2) - (8)
Proof. We will prove the following: if u = ;, then
(CO — do)v -1

G di Ci d; .
o = - == 1<i<s).
(ai—ciu bi—diu> du (di—éw bi—div> dv (1<i<5s)

Then, by considering the transformation of variables, we obtain Equation (8).
v -1
When u = m, we have du = de and

i i -1
¢ du = ¢ dv

a; — C;U a; — Cim . ((CO — do)’U — 1)2




INTEGERS: 24 (2024) 6

C; -1

= . d

(ai(co —do) —ci)v —a; (o —doyo—1°"
_ ailco—do) —¢i o —do p
-~ \ai — (ai(co — do) — ci)v 1= (co — do)v v

Therefore we obtain that

C; dz
(ai — C;u - bi — diu) du

ai(co—do) —ci  bi(co—do) —d; v
(ai — (ai(co — do) — ci)v bi — (bi(C() — do) — dl)v) d

(~ Ci~ — = di~ >dv.
a; —Cv b, —dv

3. Examples

3.1. The Classical Case

Throughout this subsection we assume that s = 2 and

. 1 -1 10 1 -1
92(90;91792)W1th90=(1 0)7912(0 1) andggz(1 O)' (9)

The function Lig (g, ((B1, B2), (71,72)); 2) is a generalization of both Lig(¢,2) and
Lij,(2) defined by Equations (2) and (3). In fact, we have

Lix (g, ((1,0),(t,1)); 2) = Lix(t,2) and Lix(g,((1,1),(0,1));2) = Lig ().

We give some examples of the correspondence of g and G4(t) in Table 2.

Table 2: Examples of G, (t) and Gy, (t)

Under the assumption (9), Theorem 2 can be written in the following form.
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Theorem 3. Assume g satisfies the condition (9). Then
. z .
Lig (g, ((B1,B2), (71572)); z—l) = —Lig (g, (81,81 — B2), (71,711 —12)); 2) -
(10)

Proof. By Theorem 2, we have

Lig (g, ((B1, B2); (71,72)); zzl> = Lix (g, ((B1,B2), (11,72)); 2) - (11)

The differential form 51%dt + B2 ﬁdt is transformed as

1 1 1 1 1
(ﬁl <t + 1—15) + B2 (_1—t>) dt = <51t + (b1 = f2)q —t) dt

under the transformation ¢ — ﬁ Hence we have

Li (. ((B1, B2), (11.72)); 2) = —Lik (g, (B1, 81 — B2), (1,71 — 12)); 2)

and this completes the proof. O

Example 1. By applying (81, 82) = (1,¢) and (y1,72) = (0,1) in Equation (10),

we obtain that
. z 1
g (57) = COMMLE ).

where Lil, (2) is the function defined by Equation (3). When ¢ = 0, this equation
gives the original Landen connection formula (1).

Example 2. For 5 € R, set ng)(z) := Lig (g, ((1,0), (1,1 — B)); z). By Theorem
3, we can get

P (Zzl) =—£P (). (12)

In particular, when 8 = 0, this equation gives

Li, (L) = —Lijv (2).

3.2. A Case with One Parameter

Throughout this subsection we assume that s = 2 and

. 1 -1 10 1 -1
g = (90, 91, 92) with go = <1 _w>, 9= (0 1) and g2 = <1 _w>’
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(1 -1 (10 (1 -1
go=\1 —w 1=\0 1 2=\1 —w

Ggo(t)zl%*L G!h(t):l G92(t):1%7L

(1 -1 (1 0 (1 -1
9 =\w -1 N=\14+w -1 2= \w -1

_ 1 _ 1+ 1 _ 1
Ggo(t) = 1t 1—wu;t Gy (1) = 1—(1—&1-Uw)t +i G (t) = —1 t 1—wwt

Table 3: Examples of G, (t) and Gy, (t) with a parameter w

where w is a real parameter with —1 < w < 1. The case w = 0 is the one treated
in the previous section.
We also give a correspondence between g and G,4(t) in Table 3.

If 8= (1,0) and v = (0, 1), then the function Lig (g, (3,7); z) coincides with the
function Li;cw) (z) defined by the author [5] (in [5] the parameter ¢ is used instead
of w and the function is denoted by Lij(z)). The value Li;cw) (1) is the multiple
T-value with one parameter defined by Chapoton [2].

When w = 0, we have Ligco) (z) = Lig (2) and when w = —1, we have Li;gl) () =
24(k) Ath(k,z). Here Ath(k,z) is a kind of multiple polylogarithm of level two
defined by

Mmittme

Ath(k, z) == Z o

m;=1(2) my (ml + mg)k2 cee (ml 4+ o4 m»,«)kT
m; >0

(see [7, Eq.(5.1)]). By Theorem 2, we get the following Landen-type connection

formula:
. ~ (w)
Li®) o — (—1)4®)T, )
i (i) = COE ()
Here
~(w 1)...
Li;cU) (Z) — Z R( ) R(k) Zm1+~~+mk’
m1>1,m2>0,...,m >0 ma(my +ma) - (my+ -+ )
where

(i) == 1 —wmi (ie{1’k1+1""7k1+"'+kr—1+1}),
(I1+w)™  (otherwise).
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4. Generalized Poly-Bernoulli Numbers

Imatomi [8] introduced two kinds of multi-poly-Bernoulli-star numbers C’,(lkﬁ and
Bflkz (n > 0) by the following generating series:

Liz(l . eft) > (k) t"
AT = 2 Oy (13)
n=0
le(l —e” (k) t"
By —- 14
— Z Ko (14)

The following is a duality formula for multi-poly-Bernoulli-star numbers.

Theorem 4 ([8, Theorem 3.2]). For an index k € ZL, and an integer n > 0, we
have that

o) = (—1)"B*).

It can be easily checked that the left-hand sides of Equations (13) and (14) can
be written as

_ . —t

et — 1 aleT(l e ),
LIZ(]- € t) d ok —t
—et = %Ll’m(l e ")

As an analogy, we define two types of Bernoulli numbers C (k:9,B7) and B(k -9:(B:7)

as

t

d e’ —1 > tm
: . _ § : (k,9,(B,7))
dtleT (ga (/65’7)7 ) - Cn Tl!7

7
coet +d
o€+ do n—0

t__

d e t
2L E B (k,g,(B, ’7))
i 1, (gv (/65 7) C(]et ¥ d()) -

These numbers are generalizations of multi-poly-Bernoulli-star numbers defined by
Equations (13) and (14). In fact, if g satisfies the condition (9) and 8 = (1,1)
and v = (0, 1), then Lig (g, (8,7); 2) = Lig(2) and we have cika-Bm) = C,gk*) and
BEeBM) — pk) By definition, it is clear that BY9P7) = k908 44
these values are essentially the same objects.

By straightforward calculation, an explicit expression of the generating function



INTEGERS: 24 (2024) 10

of Cﬁk’g’(ﬁﬁ)) can be given as

d_. et —1
%leT (ga (ﬂ77)7 )

Coet + do
_ zs:ﬂ a;dy + ¢; _ bido + d; (15)
o = ! (aico - Ci>6t + a;dg + ¢; (biC() — di)et + b;dy + d;

t_
x Lig, <g, (B,7); el) :

coet + dy

(k:9.(B:7) ig obtained by replacing 8; with 7; in the

The generating function of B
right-hand side of the above equation.

By the sum formula (Proposition 1), we get the following proposition.

Proposition 2. For an integer k > 1, we have

Z pdR=1ckg.(By) — plk.g,(B+uy.8)) — Cé{l}k’g’(ﬁ”@ﬂ”)), (16)
|k|=k
Z k)1 plkg.(6:7) — pk.g.(B+my ) = 01} .9.(v-B+u7) (17)
|k|=k

k

Here {1}* stands for the index (1,...,1) for k > 1.

Proof. We prove only Identity (16), and Identity (17) can be proved similarly. By
Proposition 1, we have

t

1y - e —
> pt*I L, (97(@7);

t
coet +d
k| =k 0 0

) = Li <g, (B + 1y, B); etldo) - (18)

coet +

By multiplying

i ﬂ aido + ¢; _ bldo + dz
Pl ¢ (aico — ci)et + a;dg + ¢; (biCQ — di)et + b;do + d;

both sides of Equation (18) and by considering the generating function (15) of

k9B o have
d(k)—1 (k,g,(BY) 2 (k.g,(B+rv.8)) 2 _
S i Y e S e B g
|k|=k n=0 n=0

By comparing the coefficients, we obtain the first equation of (16). The second
equation is obtained immediately because of (k)Y = {1}*. O

By using Theorem 2, we can get the following theorem.
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Theorem 5. For any index k € 2%, we have

CT(Lk,g,(ﬂﬁ)) — (_1)7l—1CT(Lk»Q7(,37’Y)) (n > 0).

z et —1

Proof. Set = ——— and 2(t) ;= ———
roof. Set u(z) (o —do)r—1 and z(t) codl T do
that u(z(t)) = z(—t). By this identity and Theorem 2, we have

. Then we can easily show

By differentiating both sides in ¢ and comparing the coefficients, the desired identity
is obtained. O

In the last of the paper, we give a formula which generalizes Theorem 4. Assume
that g satisfies the condition (9). Substituting z = 1 — e’ in Identity (12), we have

L (1-et)=-2l(1-e).
By the relation (k1)Y= (k")_,, we have

Ly (l—et)y =—Lih (1-¢).

By differentiating both sides of this equation with respect to ¢t and by comparing
the coefficients, we obtain that

C kg ((1LF),(L1=0))) — (_1)n Bk .a.((LA).(LI=AD)  (p, > ().

This formula gives Theorem 4 when 5 = 0.
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