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Abstract

We denote the number of partitions of n wherein the even parts are distinct (and
the odd parts are unrestricted) by ped(n). In this paper, we will use generating
function manipulations to obtain new congruences for ped(n) modulo 24.

1. Introduction and Main Result

A partition of a positive integer n is a non-increasing sequence of positive integers

whose sum is equal to n. If p(n) denotes the number of partitions of a positive

integer n and we adopt the convention p(0) = 1, then the generating function for

p(n) satisfies the identity
∞∑

n=0

p(n)qn =
1

(q; q)∞
,

where

(a; q)∞ :=

∞∏
n=0

(1− aqn), |q| < 1.

Throughout this paper, we write

fk := (qk; qk)∞, for any integer k ≥ 1.

The number of partitions of n wherein the even parts are distinct (and the odd

parts are unrestricted) is denoted by ped(n). The generating function for ped(n) [6]

is
∞∑

n=0

ped(n)qn =
(−q2; q2)∞
(q; q2)∞

=
(q4; q4)∞
(q; q)∞

. (1.1)
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Note that by (1.1), the number of partitions of n wherein the even parts are distinct

(and the odd parts are unrestricted) equals the number of partitions of n with no

parts divisible by 4, i.e., the 4-regular partitions (see [6] and references therein).

In recent years many congruences for the number of 4-regular partitions have been

discovered (see [2–4,11,14–17] and references therein).

Numerous congruence properties are known for the function ped(n). For example,

Andrews, Hirschhorn and Sellers [6] proved that for α ≥ 1 and n ≥ 0,

ped(3n+ 2) ≡ 0 (mod 2),

ped(9n+ 4) ≡ 0 (mod 4),

ped(9n+ 7) ≡ 0 (mod 12),

ped

(
32α+2n+

11 · 32α+1 − 1

8

)
≡ 0 (mod 2),

ped

(
32α+1n+

17 · 32α − 1

8

)
≡ 0 (mod 6),

ped

(
32α+2n+

19 · 32α+1 − 1

8

)
≡ 0 (mod 6).

Recently, Xia [5] obtained many interesting infinite families of congruences modulo

8 for ped(n).

The aim of this paper is to establish new congruences modulo 24 for ped(n). In

the next theorem, we state our main results.

Theorem 1.1. For every n ≥ 0, we have

ped(225n+ 43) ≡ 0 (mod 24),

ped(225n+ 88) ≡ 0 (mod 24),

ped(225n+ 133) ≡ 0 (mod 24),

ped(225n+ 223) ≡ 0 (mod 24).

Furthermore, for every k ≥ 1 and n ≥ 0, we have

ped(9n+ 7) ≡ ped

(
9 · 52kn+

57 · 52k − 1

8

)
(mod 24).

The paper is organised as follows: In Section 2, we present some preliminaries

required for our proofs. In Sections 3, we present the proof of Theorem 1.1.
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2. Preliminaries

In this section, we collect the q-series identities that are used in our proofs. Recall

that Ramanujan’s general theta function f(a, b) [1] is defined by

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1.

Important special cases of f(a, b) are the theta functions φ(q), ψ(q) and f(−q),
which satisfies the identities

φ(q) := f(q, q) =

∞∑
n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞ =
f52
f21 f

2
4

,

ψ(q) := f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
f22
f1
,

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n+1)/2 = (q; q)∞ = f1.

In terms of f(a, b), Jacobi’s triple product identity [1] is given by

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Lemma 2.1 (Hirschhorn [10]). We have that

f1 = f25
(
R(q5)− q − q2R(q5)−1

)
, (2.1)

where

R(q) =
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

.

3. Proof of Theorem 1.1

Andrews, Hirschhorn and Sellers [6] proved that

∞∑
n=0

ped(9n+ 7)qn = 12
f42 f

6
3 f4

f111
. (3.1)

Therefore,

ped(9n+ 7) ≡ 0 (mod 12). (3.2)
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It follows from (3.1) that

∞∑
n=0

ped(9n+ 7)qn ≡ 12
f42 f

6
3 f4

f111
(mod 24). (3.3)

But, by the binomial theorem, f2mt ≡ fm2t (mod 2), for all positive integers t and

m.

Therefore, it follows from (3.3) that

∞∑
n=0

ped(9n+ 7)qn ≡ 12f1f6f12 (mod 24). (3.4)

Employing (2.1) in (3.4), we arrive at

∞∑
n=0

ped(9n+ 7)qn ≡ 12f25f150f300

(
R30R5R60 −R30R60q

2 − R30R60q
2

R5
+R5R60q

6

+R60q
7 +

R60q
8

R5
−R30R5q

12 − R5R60q
12

R30
+R30q

13 +
R60q

13

R30

+
R30q

14

R5
+
R60q

14

R30R5
+R5q

18 − q19 − q20

R5
+
R5q

24

R30
− R30R5q

24

R60

− q25

R30
+
R30q

25

R60
− q26

R30R5
+
R30q

26

R5R60
+
R5q

30

R60
− q31

R60
− q32

R5R60

+
R5q

36

R30R60
− q37

R30R60
− q38

R30R5R60

)
(mod 24). (3.5)

Extracting the terms involving q5n+4 from both sides of (3.5), dividing both sides

by q4 and then replacing q5 by q, yields

∞∑
n=0

ped(9(5n+ 4) + 7)qn ≡ 12f5f30f60

(
2q2

R6

R1
− q3

)
(mod 24),

from which it follows that

∞∑
n=0

ped(45n+ 43)qn ≡ 12q3f5f30f60 (mod 24). (3.6)

Next, equating the coefficients of q5n+j on both sides of this congruence, where

j = 0, 1, 2, 4, gives the congruences in Theorem 1.1.

Further, extracting the terms involving q5n+3 from both sides of (3.6), dividing

both sides by q3 and then replacing q5 by q, yields

ped(225n+ 178) ≡ 12f1f6f12 (mod 24).
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which is equivalent to

ped(9n+ 7) ≡ ped(225n+ 178) (mod 24). (3.7)

Successive iterations of (3.7) give

ped(9n+ 7) ≡ ped(9(25n+ 19) + 7)

≡ ped(225(25n+ 19) + 178)

≡ ped(9 · 54n+ 9 · 52 · 19 + 9 · 19 + 7)

...

≡ ped(9 · 52kn+ 9 · 19 · 52k−2 + . . .+ 9 · 19 + 7)

≡ ped

(
9 · 52kn+

57 · 52k − 1

8

)
(mod 24).

This completes the proof.

The author would like to end this section with the following conjecture:

Conjecture 3.1. For each nonnegative integer n,

ped(225n+ 43) ≡ 0 (mod 192),

ped(225n+ 88) ≡ 0 (mod 192),

ped(225n+ 133) ≡ 0 (mod 192),

ped(225n+ 223) ≡ 0 (mod 192).

4. Concluding Remarks

Recently, Chen [14] proved some vanishing results on the coefficients of θχ(z) and

the product of two theta functions. Using these results and some generating function

manipulations we can find many more congruences for ped(n) modulo 24.

Acknowledgement. The author thanks the referee for careful reading and useful

suggestions.
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