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Abstract
Let bt(n) counts all of the overlined version of the cubic partition triples of a positive
integer n. In this paper, we obtain several infinite families of congruences modulo
small powers of 2 for bt(n). For example, we obtain bt(8n + 7) = 0 (mod 32) and
bt(8 - 9420 + 33 - 9°F1) = 0 (mod 8), for all nonnegative integers o and n.

1. Introduction

A partition of a positive integer n is a finite non-increasing sequence of positive
integers whose sum is n. Let p(n) denote the number of partitions of a positive
integer n, whose generating function is given by

> 1 1
> p(n)g" = =—
n=0

(:9)c E1’

where -
Br = (¢"¢")ee = [J (1 = ¢"%).
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Chan [2, 3, 4] studied the congruence properties of the cubic partition function a(n),
the function that counts the number of partitions of n in which the even parts can
appear in two colors, whose generating function for a(n) is given by

> a(n)g" = ! -
o (6:9)0(0% %) E1E>’
He obtained the identity
- E3E3
Za(3n+2)q 3E4E4’

n=0

which implies
a(3n+2)=0 (mod 3).

In [8] Kim studied the number of overcubic partition function @(n), the function
that counts all of the overlined version of the cubic partitions counted by a(n). In
this case, the first instance of each part is allowed to be overlined (although such
overlining is not required). whose generating function for a(n) is given by

> P 2.2 E
Za(n)q" _ (6 9)s(—¢ ,cé Joo  E4

(43 9) 0 (4% 42 BBy’

Kim obtained the following identity by using the theory of modular forms:

> ESE3
> a(3n+2)q" =351
n=0 2

Hirschhorn [6] gave an elementary proof of the result satisfied by @(n), which is ap-
peared in Kim'’s paper [8]. Sellers [16] has proved a number of arithmetic properties
of @(n). Zhao and Zhong [17] studied the number of cubic partition pairs, denoted
by b(n), whose generating function is

Zb 1 1
T (9% (%P2 EIEY

Recently, Kim [9] studied congruence properties of b(n), which denotes the number
of overcubic partition pairs of n, whose generating function is given by

f:g (0% (a% )% _
— (¢ 9)% (4% ¢2)? E1E3

More recently, Many authors have obtained families of congruences satisfied by
b(n). One can see [10, 11, 12, 13, 14, 15].
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By the motivation of the above works, we will continue to study the divisibil-
ity properties of the function bt(n), the number of overcubic partition triples of a
positive integer n, whose generating function is given by

th S G 1)
(403 (?: 43, ESE3

The main purpose of this paper is to prove the following results.

Theorem 1. For any integers n > 0 and o > 0, we have

bt(8n+7) =0 (mod 32), (2)
bt(8n+5) =0 (mod 8), (3)
bt(72n +33) =0 (mod 8), (4)
bt(72n +57) =0 (mod 8), (5)
bt (8-9°n +33-9°"1) =0 (mod 8). (6)
Theorem 2. For any prime p > 5, a > 0 and n > 0, we have
o —
> bt (24p**n+p**) ¢" = 2E1  (mod 4). (7)
n=0
Theorem 3. For any primep>5, a>0,n>0andl=1,2,..p— 1, we have
bt (24p>*(pn+1) +p**) =0 (mod 4). (8)
Theorem 4. For any integers n > 0 and o > 0, we have
bt(16n + 14) = (mod 16), (9)
bt(16n + 10) = (mod 16), (10)
bt(144n +66) =0 (mod 8), (11)
bt(144n + 114) = (mod 8), (12)
bt(1296n + 594) = (mod 8), (13)
bt(1296n + 1026) =0 (mod 8), (14)
bt (16 - 9°"3n + 66 -9°72) =0  (mod 8), (15)
bt(432n + 18) = bt(48n +2) (mod 8), (16)
bt(432n + 306) = bt(48n + 34) (mod 8). (17)
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Theorem 5. For any integers n > 0 and o > 0, we have

bt(32n+28) =0 (mod 16),
bt(32n +20) =0 (mod 16),
bt(64n +56) =0 (mod 8),
bt(576n +408) =0  (mod 8),
bt(5184n +216) =0 (mod 8),
bt(5184n + 3672) =0 (mod 8),
bt (64 -81°"°n +216-81°7') =0 (mod 8).

Theorem 6. For any prime p > 5, a > 0 and n > 0, we have

> bt (576p°n + 24p**) ¢" = 4E;  (mod 8).

n=0

Theorem 7. For any primep>5, a>0,n>0andl=1,2,..p— 1, we have

bt (576p>* (pn + 1) + 24p**) =0 (mod 8).

Theorem 8. For any integers n > 0 and o > 0, we have

bt(64n 4+ 40) =0 (mod 8),

bt(576n +264) =0 (mod 8),

bt(576n + 456) =0 (mod 8),

bt (64-9°n+264-9°T") =0 (mod 8)

Theorem 9. For any prime p > 5, a > 0 and n > 0, we have

> bt (192p°n + 8p™) ¢" = 2B (mod 4).

n=0

Theorem 10. For any prime p > 5, « >0, n>0andl=1,2,...p — 1, we have

bt (192p**(pn+1) + 8p**) =0 (mod 4).

Theorem 11. For any integers n > 0 and a > 0, we have

bt(64n +48) =0 (mod 4),

bt(128n +80) =0 (mod 4),

bt(128n +96) =0 (mod 4),

bt(256n +160) =0 (mod 4),
bt(256n + 32) = bt(128n + 16)  (mod 4),

bt (256 -2°n+192) =0 (mod 4).

(32)
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2. Preliminaries

Ramanujan’s general theta function f(a,b) is defined as

f(a,b) Z a D/ 2pn(n=/2 g < 1,

n=—oo

The product representation of f(a,b) arises from Jacobi’s triple product identity [1,
p. 35, Entry 19] as

f(a,b) = (—a; ab) oo (—b; ab) oo (ab; ab)

The most important special cases of f(a,b) are as follows:

E5
(@) = f(a,q 0" = (~60)%(0% 6" ) = o
n_z_w B
@) _ E3
¥(q) = flg:q g -
@)= Z (q I O
and -
f=a) = f(=g,—¢*) = Y (=1)"¢"" V" = (g;¢)os = En.
Lemma 1 ([1, page 40, Entry 25]). We have
E,E3 E,F?
B2 — 8 _ o 16
1 EZE%6 q E8 (39)
and s 2
1 8 1876
—5 = =503 T 2¢ . (40)
El2 EQE%G ESES
Lemma 2 ([1, page 345, Entry 1 (iv)]). We have
EgES E2ES,
3 69 353
e s M -7 et L2 (41)
Lemma 3 ([7]). We have
EsEg 2 B3 Bl
E1FE; = —qFEgFg —2 . 42
182 E3E%8 qliglig q EgEg (42)

Lemma 4 ([5, Theorem 2.2]). For any prime p > 5, then

p—1

2

3k24k 3p%+(6k+1)p 3p%—(6k+1)p
Er= Y (g > E(—q > —q 2 >

tp—1 p2-1

+(-1)7° ¢ ™ Ep, (43)
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where

6 _6_1, ifp=-1 (mod 6).

+p—-1 {”gl, ifp=1 (mod 6),
T P

Lemma 5. For any prime p and positive integer n, then

EV =EP"" (mod p"). (44)

3. Proofs of Main Results

In this section, we provide the proofs of Theorems 1 to 3. For brevity, we omit the
proofs of Theorems 4, 5, 8 and 11 as they closely resemble the proof of Theorem 1.
Similarly, we omit the proofs of Theorems 6 and 9 as well as Theorems 7 and 10
since they are similar to the proofs of Theorems 2 and 3, respectively.

Proof of Theorem 1. Employing (40) in (1), we arrive at

= E3EL ESES EIE3E? EYES
bt n _ 418 418 122 4~81-16 83 4 16' 45
2 V" = gy + Srgpegy, T T g 8 gy 49

Extracting the terms involving odd powers of ¢ from (45), we deduce that

= ESE] EES
bt(2n +1)¢" = 6 + 8¢—2 8. 46
Z ( ) (E2)9E2 (E%)QEZ’ ( )

Employing (40) in (46), we obtain

= E{E$ E'EST , B3 E3!
Z bt(2n + 1)q" 6E40E18 + 108q gt 96¢ FIOEI
E15E25 E17E
4 34 4 414 8
+ 6 E40E6 + 6 E;LOE%(S
E51 E45
— 8 41167 = d 128). 4
+ 8¢ E36E3E11§ + 164 ES6E4E11§ (mo 8) (47)

Extracting the terms involving odd powers of ¢ from (47), we see that

o o ENE] EPED
th(4n+3)q = 108 (E2)20E14 + 64¢ (Ef)QOEéfi
8E7 (mod 128). (48)

(E2)18E3E18
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Employing (40) in (48), we arrive at

[ee]
_ E37E86 E51E108
bt(4n + 3)¢" = 12—2 +8-42 72
2. EFEE

EYED (mod 34).
Congruence (2) follows from (49).
Extracting the terms involving even powers of ¢ from (47), we have

0 E9E43
Z t(4n +1)g E%OEE}S (mod 8).

Using (44) in (50), we obtain
7

Ly
Z bt(dn + 1)¢" = GE— (mod 8).

Congruence (3) follows from (51).
Extracting the terms involving even powers of ¢ from (51), we see that
7

E}
Z bt(8n + 1)q ﬁ (mod 8).

Using (44) in (52), we get
Z (8n+1)¢" =6E1E, (mod 8).
Employing (42) in (53), we obtain

o 3B
+ 2qEgErs + 4¢° 18 (mod 8).

EoEf
than =6 Bl

2
n=0 EBE

Extracting the terms involving ¢3" ! from (54), we arrive at

> bt(24n +9)q" = 2E3Es  (mod 8).
n=0

Congruences (4) and (5) follow from (55).
Extracting the terms involving ¢" from (55), we deduce that

> bt(72n+9)¢" = 2E1E;  (mod 8).
n=0

In view of congruences (56) and (53), we establish that

bt(72n +9) = bt(8n+1) (mod 8).

(49)

(51)
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Using (57) and by the principle of mathematical induction, we have
bt (8-9%T'n +9°T1) =bt(8n+ 1) (mod 8). (58)

Using (4) in (58), we get (6).

Proof of Theorem 2. Extracting the terms involving ¢" from (54), we arrive at

= n n — E2E§
n;)bt(mn +1)¢" = 6E1E§ (mod 8). (59)
Using (44) in (59), we obtain
> bi(24n+1)¢" = 2E;  (mod 4). (60)
n=0
Employing (43) in (60), we deduce that
o0 . p2 _ 1
> bt (24 (pn + 55 ) + 1) ¢"=2E, (mod 4), (61)
n=0
which implies
> bt (24p°n+p%) ¢" = 2E;  (mod 4). (62)

n=0

Therefore, it follows that
bt (24p®n +p*) = bt(24n +1) (mod 4).

Using the above relation and by the principle of mathematical induction on «, we
arrive at (7).

Proof of Theorem 3. Combining Equation (61) with Equation (7), we derive that
for a > 0,

oo
ZE (24p2a+1n + p3°‘) ¢" =2E, (mod 4).
n=0

Therefore, it follows that
bt (24p** T (pn +1) +p**) =0 (mod 4).
where [ = 1,2,...,p — 1, we obtain (8).
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