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Abstract

Let bt(n) counts all of the overlined version of the cubic partition triples of a positive
integer n. In this paper, we obtain several infinite families of congruences modulo
small powers of 2 for bt(n). For example, we obtain bt(8n + 7) ≡ 0 (mod 32) and
bt(8 · 9α+2n+ 33 · 9α+1) ≡ 0 (mod 8), for all nonnegative integers α and n.

1. Introduction

A partition of a positive integer n is a finite non-increasing sequence of positive

integers whose sum is n. Let p(n) denote the number of partitions of a positive

integer n, whose generating function is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
=

1

E1
,

where

Ek := (qk; qk)∞ =

∞∏
n=1

(1− qnk).
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Chan [2, 3, 4] studied the congruence properties of the cubic partition function a(n),

the function that counts the number of partitions of n in which the even parts can

appear in two colors, whose generating function for a(n) is given by

∞∑
n=0

a(n)qn =
1

(q; q)∞(q2; q2)∞
=

1

E1E2
.

He obtained the identity

∞∑
n=0

a(3n+ 2)qn = 3
E3

3E
3
6

E4
1E

4
2

,

which implies

a(3n+ 2) ≡ 0 (mod 3).

In [8] Kim studied the number of overcubic partition function a(n), the function

that counts all of the overlined version of the cubic partitions counted by a(n). In

this case, the first instance of each part is allowed to be overlined (although such

overlining is not required). whose generating function for a(n) is given by

∞∑
n=0

a(n)qn =
(−q; q)∞(−q2; q2)∞
(q; q)∞(q2; q2)∞

=
E4

E2
1E2

.

Kim obtained the following identity by using the theory of modular forms:

∞∑
n=0

a(3n+ 2)qn = 3
E6

3E
3
4

E8
1E

3
2

.

Hirschhorn [6] gave an elementary proof of the result satisfied by a(n), which is ap-

peared in Kim’s paper [8]. Sellers [16] has proved a number of arithmetic properties

of a(n). Zhao and Zhong [17] studied the number of cubic partition pairs, denoted

by b(n), whose generating function is

∞∑
n=0

b(n)qn =
1

(q; q)2∞(q2; q2)2∞
=

1

E2
1E

2
2

.

Recently, Kim [9] studied congruence properties of b(n), which denotes the number

of overcubic partition pairs of n, whose generating function is given by

∞∑
n=0

b(n)qn =
(−q; q)2∞(−q2; q2)2∞
(q; q)2∞(q2; q2)2∞

=
E2

4

E4
1E

2
2

.

More recently, Many authors have obtained families of congruences satisfied by

b(n). One can see [10, 11, 12, 13, 14, 15].
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By the motivation of the above works, we will continue to study the divisibil-

ity properties of the function bt(n), the number of overcubic partition triples of a

positive integer n, whose generating function is given by

∞∑
n=0

bt(n)qn =
(−q; q)3∞(−q2; q2)3∞
(q; q)3∞(q2; q2)3∞

=
E3

4

E6
1E

3
2

. (1)

The main purpose of this paper is to prove the following results.

Theorem 1. For any integers n ≥ 0 and α ≥ 0, we have

bt(8n+ 7) ≡ 0 (mod 32), (2)

bt(8n+ 5) ≡ 0 (mod 8), (3)

bt(72n+ 33) ≡ 0 (mod 8), (4)

bt(72n+ 57) ≡ 0 (mod 8), (5)

bt
(
8 · 9α+2n+ 33 · 9α+1

)
≡ 0 (mod 8). (6)

Theorem 2. For any prime p ≥ 5, α ≥ 0 and n ≥ 0, we have

∞∑
n=0

bt
(
24p2αn+ p3α

)
qn ≡ 2E1 (mod 4). (7)

Theorem 3. For any prime p ≥ 5, α ≥ 0, n ≥ 0 and l = 1, 2, ...p− 1, we have

bt
(
24p2α(pn+ l) + p3α

)
≡ 0 (mod 4). (8)

Theorem 4. For any integers n ≥ 0 and α ≥ 0, we have

bt(16n+ 14) ≡ 0 (mod 16), (9)

bt(16n+ 10) ≡ 0 (mod 16), (10)

bt(144n+ 66) ≡ 0 (mod 8), (11)

bt(144n+ 114) ≡ 0 (mod 8), (12)

bt(1296n+ 594) ≡ 0 (mod 8), (13)

bt(1296n+ 1026) ≡ 0 (mod 8), (14)

bt
(
16 · 9α+3n+ 66 · 9α+2

)
≡ 0 (mod 8), (15)

bt(432n+ 18) ≡ bt(48n+ 2) (mod 8), (16)

bt(432n+ 306) ≡ bt(48n+ 34) (mod 8). (17)
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Theorem 5. For any integers n ≥ 0 and α ≥ 0, we have

bt(32n+ 28) ≡ 0 (mod 16), (18)

bt(32n+ 20) ≡ 0 (mod 16), (19)

bt(64n+ 56) ≡ 0 (mod 8), (20)

bt(576n+ 408) ≡ 0 (mod 8), (21)

bt(5184n+ 216) ≡ 0 (mod 8), (22)

bt(5184n+ 3672) ≡ 0 (mod 8), (23)

bt
(
64 · 81α+2n+ 216 · 81α+1

)
≡ 0 (mod 8). (24)

Theorem 6. For any prime p ≥ 5, α ≥ 0 and n ≥ 0, we have

∞∑
n=0

bt
(
576p2αn+ 24p3α

)
qn ≡ 4E1 (mod 8). (25)

Theorem 7. For any prime p ≥ 5, α ≥ 0, n ≥ 0 and l = 1, 2, ...p− 1, we have

bt
(
576p2α(pn+ l) + 24p3α

)
≡ 0 (mod 8). (26)

Theorem 8. For any integers n ≥ 0 and α ≥ 0, we have

bt(64n+ 40) ≡ 0 (mod 8), (27)

bt(576n+ 264) ≡ 0 (mod 8), (28)

bt(576n+ 456) ≡ 0 (mod 8), (29)

bt
(
64 · 9α+2n+ 264 · 9α+1

)
≡ 0 (mod 8). (30)

Theorem 9. For any prime p ≥ 5, α ≥ 0 and n ≥ 0, we have

∞∑
n=0

bt
(
192p2αn+ 8p3α

)
qn ≡ 2E1 (mod 4). (31)

Theorem 10. For any prime p ≥ 5, α ≥ 0, n ≥ 0 and l = 1, 2, ...p− 1, we have

bt
(
192p2α(pn+ l) + 8p3α

)
≡ 0 (mod 4). (32)

Theorem 11. For any integers n ≥ 0 and α ≥ 0, we have

bt(64n+ 48) ≡ 0 (mod 4), (33)

bt(128n+ 80) ≡ 0 (mod 4), (34)

bt(128n+ 96) ≡ 0 (mod 4), (35)

bt(256n+ 160) ≡ 0 (mod 4), (36)

bt(256n+ 32) ≡ bt(128n+ 16) (mod 4), (37)

bt (256 · 2αn+ 192) ≡ 0 (mod 4). (38)
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2. Preliminaries

Ramanujan’s general theta function f(a, b) is defined as

f(a, b) :=

∞∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1.

The product representation of f(a, b) arises from Jacobi’s triple product identity [1,

p. 35, Entry 19] as

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

The most important special cases of f(a, b) are as follows:

φ(q) := f(q, q) =

∞∑
n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞ =
E5

2

E2
1E

2
4

,

ψ(q) := f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
E2

2

E1

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞ = E1.

Lemma 1 ([1, page 40, Entry 25]). We have

E2
1 =

E2E
5
8

E2
4E

2
16

− 2q
E2E

2
16

E8
(39)

and
1

E2
1

=
E5

8

E5
2E

2
16

+ 2q
E2

4E
2
16

E5
2E8

. (40)

Lemma 2 ([1, page 345, Entry 1 (iv)]). We have

E3
1 =

E6E
6
9

E3E3
18

+ 4q3
E2

3E
6
18

E2
6E

3
9

− 3qE3
9 . (41)

Lemma 3 ([7]). We have

E1E2 =
E6E

4
9

E3E2
18

− qE9E18 − 2q2
E3E

4
18

E6E2
9

. (42)

Lemma 4 ([5, Theorem 2.2]). For any prime p ≥ 5, then

E1 =

p−1
2∑

k= 1−p
2

k ̸=±p−1
6

(−1)kq
3k2+k

2 E

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q
p2−1
24 Ep2 , (43)
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where
±p− 1

6
:=

{
p−1
6 , if p ≡ 1 (mod 6),

−p−1
6 , if p ≡ −1 (mod 6).

Lemma 5. For any prime p and positive integer n, then

Epn

1 ≡ Epn−1

p (mod pn). (44)

3. Proofs of Main Results

In this section, we provide the proofs of Theorems 1 to 3. For brevity, we omit the

proofs of Theorems 4, 5, 8 and 11 as they closely resemble the proof of Theorem 1.

Similarly, we omit the proofs of Theorems 6 and 9 as well as Theorems 7 and 10

since they are similar to the proofs of Theorems 2 and 3, respectively.

Proof of Theorem 1. Employing (40) in (1), we arrive at

∞∑
n=0

bt(n)qn =
E3

4E
15
8

E18
2 E6

16

+ 6q
E5

4E
9
8

E18
2 E2

16

+ 12q2
E7

4E
3
8E

2
16

E18
2

+ 8q3
E9

4E
6
16

E18
2 E3

8

. (45)

Extracting the terms involving odd powers of q from (45), we deduce that

∞∑
n=0

bt(2n+ 1)qn = 6
E5

2E
9
4

(E2
1)

9E2
8

+ 8q
E9

2E
6
8

(E2
1)

9E3
4

. (46)

Employing (40) in (46), we obtain

∞∑
n=0

bt(2n+ 1)qn ≡ 6
E9

4E
43
8

E40
2 E18

16

+ 108q
E11

4 E37
8

E40
2 E14

16

+ 96q2
E13

4 E31
8

E40
2 E10

16

+ 64q3
E15

4 E25
8

E40
2 E6

16

+ 64q4
E17

4 E19
8

E40
2 E2

16

+ 8q
E51

8

E36
2 E3

4E
18
16

+ 16q2
E45

8

E36
2 E4E14

16

(mod 128). (47)

Extracting the terms involving odd powers of q from (47), we see that

∞∑
n=0

bt(4n+ 3)qn ≡ 108
E11

2 E37
4

(E2
1)

20E14
8

+ 64q
E15

2 E25
4

(E2
1)

20E16
8

+ 8
E51

4

(E2
1)

18E3
2E

18
8

(mod 128). (48)
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Employing (40) in (48), we arrive at

∞∑
n=0

bt(4n+ 3)qn ≡ 12
E37

4 E86
8

E89
2 E40

16

+ 8
E51

4 E108
8

E93
2 E36

16

(mod 34). (49)

Congruence (2) follows from (49).

Extracting the terms involving even powers of q from (47), we have

∞∑
n=0

bt(4n+ 1)qn ≡ 6
E9

2E
43
4

E40
1 E18

8

(mod 8). (50)

Using (44) in (50), we obtain

∞∑
n=0

bt(4n+ 1)qn ≡ 6
E7

4

E11
2

(mod 8). (51)

Congruence (3) follows from (51).

Extracting the terms involving even powers of q from (51), we see that

∞∑
n=0

bt(8n+ 1)qn ≡ 6
E7

2

E11
1

(mod 8). (52)

Using (44) in (52), we get

∞∑
n=0

bt(8n+ 1)qn ≡ 6E1E2 (mod 8). (53)

Employing (42) in (53), we obtain

∞∑
n=0

bt(8n+ 1)qn ≡ 6
E6E

4
9

E3E2
18

+ 2qE9E18 + 4q2
E3E

4
18

E6E2
9

(mod 8). (54)

Extracting the terms involving q3n+1 from (54), we arrive at

∞∑
n=0

bt(24n+ 9)qn ≡ 2E3E6 (mod 8). (55)

Congruences (4) and (5) follow from (55).

Extracting the terms involving q3n from (55), we deduce that

∞∑
n=0

bt(72n+ 9)qn ≡ 2E1E2 (mod 8). (56)

In view of congruences (56) and (53), we establish that

bt(72n+ 9) ≡ bt(8n+ 1) (mod 8). (57)
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Using (57) and by the principle of mathematical induction, we have

bt
(
8 · 9α+1n+ 9α+1

)
≡ bt(8n+ 1) (mod 8). (58)

Using (4) in (58), we get (6).

Proof of Theorem 2. Extracting the terms involving q3n from (54), we arrive at

∞∑
n=0

bt(24n+ 1)qn ≡ 6
E2E

4
3

E1E2
6

(mod 8). (59)

Using (44) in (59), we obtain

∞∑
n=0

bt(24n+ 1)qn ≡ 2E1 (mod 4). (60)

Employing (43) in (60), we deduce that

∞∑
n=0

bt

(
24

(
pn+

p2 − 1

24

)
+ 1

)
qn ≡ 2Ep (mod 4), (61)

which implies
∞∑

n=0

bt
(
24p2n+ p3

)
qn ≡ 2E1 (mod 4). (62)

Therefore, it follows that

bt
(
24p2n+ p3

)
≡ bt(24n+ 1) (mod 4).

Using the above relation and by the principle of mathematical induction on α, we

arrive at (7).

Proof of Theorem 3. Combining Equation (61) with Equation (7), we derive that

for α ≥ 0,
∞∑

n=0

bt
(
24p2α+1n+ p3α

)
qn ≡ 2Ep (mod 4).

Therefore, it follows that

bt
(
24p2α+1(pn+ l) + p3α

)
≡ 0 (mod 4).

where l = 1, 2, ..., p− 1, we obtain (8).
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