#A81 INTEGERS 24 (2024)

SOME DIRECT AND INVERSE PROBLEMS FOR THE
RESTRICTED SIGNED SUMSET IN THE SET OF INTEGERS

Mohan
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee,
Uttarakhand, India
mohan98math@gmail.com

Raj Kumar Mistri
Department of Mathematics, Indian Institute of Technology Bhilai, Durg,
Chhattisgarh, India
rkmistri@iitbhilai.ac.in

Ram Krishna Pandey'
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee,
Uttarakhand, India
ram.pandey@ma.iitr.ac.in

Received: 5/1/23, Accepted: 8/19/24, Published: 9/16/24

Abstract
Given a positive integer h and a nonempty finite set of integers A = {ay, as, ..., ar},
the restricted h-fold signed sumset of A, denoted by h’t A, is defined as

k k
WA= {Zmizxi €{-1,0,1} fori=1,2,...,kand Y _|)| :h}.

i=1 i=1

A direct problem associated with this sumset is to find the optimal lower bound
for |} A], and an inverse problem associated with this sumset is to determine
the structure of the underlying set A when |h/} A| attains the optimal lower bound.
Bhanja, Komatsu and Pandey studied these problems for the restricted h-fold signed
sumset for h = 2, 3, and k, and conjectured some direct and inverse results for
h > 4. In this paper, we prove these conjectures for h = 4. We also prove some
direct and inverse theorems for arbitrary h under certain restrictions on the set A,
which are particular cases of the conjectures. Moreover, we prove the conjectures
for arithmetic progressions.
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1. Introduction

Let Z denote the set of integers. For integers a and b with a < b, we denote the set
{n €Z:a<n<b} by [a,b]. For a nonempty finite set A of integers, let max(A),
min(A), max_(A), and min, (A) denote the largest, the smallest, the second largest
and the second smallest elements of A, respectively. For an integer ¢, we denote
the set {ca : a € A} by ¢ A, and write —A for (—1) x A. By a k-term arithmetic
progression of integers with common difference d, we mean a set A of the form
{a+id:i=0,1,...,k—1}. Let a,b,u,v,u1,us,...,u, be integers. Then we write
a < {uy,uz,...,up} < btomean a < u; < bforalli=12,...,n. We also write
a < {u or v} < b to mean either a < u < bora < v <b. A setS is said to be
symmetric if whenever z € S, it is also true that —x € S.

Let A = {aj,as,...,ax} be a nonempty finite subset of an additive abelian group
(. For a positive integer h, the usual h-fold sumset hA and the restricted h-fold
sumset h A are defined as follows:

k k
hA = {Zmi:&»e [0,h] fori=1,2,...,k and Z)\i:h},
=1

i=1

and

k k
WA = {Zmi A €01 fori=1,2,... . kand » X = h}
i=1 i=1

Other related sumsets of two subsets A and B of G are the Minkowski sumset
A+ B :={a+b:a € A,be B} and the restricted sumset A+B :={a+b:a € Abe
B,a # b}. The study of sumsets dates back to Cauchy [7] who obtained a lower
bound for the cardinality of the sumset A+ B, where A and B are nonempty subsets
of the group of residue classes modulo a prime p. The result is known as the Cauchy-
Davenport Theorem after Davenport rediscovered this result in 1935 [8, 9]. These
types of sumsets have been studied extensively in the literature. A classical book by
Nathanson [19] on additive number theory contains a detailed study of these sumsets
and other kind of sumsets, and has a comprehensive bibliography (see [22] and [4]
also). For some old and recent articles in the context of h-fold sumsets and restricted
h-fold sumsets and their generalizations, see [10, 11, 14, 15, 18, 23, 16, 20, 21, 17].

Two other variants of these sumsets that appeared recently in the literature
[1, 4, 6, 12, 13] are the h-fold signed sumset hy A and the restricted h-fold signed
sumset h’} A of the set A. These are defined as follows:

k k
hid = {ZAM i i € [h,h] fori=1,2,... kand Y |\i| = h}
=1

i=1
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and

k k
LA = {Z)‘iai N e[-1L1)fori=1,2,...,k and Z\/\A = h}.
i=1

i=1

The study of the optimal lower bound for the cardinality of a sumset of a given
set A is called a direct problem and the study of the structure of the underlying set
A when the optimal lower bound of the cardinality of the sumset is known, is called
an inverse problem. The problems associated with the sumsets hy A and h} A are
these direct and inverse problems.

The signed sumset first appeared in the work of Bajnok and Ruzsa [1] in the
context of the independence number of a subset of an abelian group. Later, it also
appeared in the work of Klopsch and Lev [12, 13] in a different context. Not much
is known about the signed sumset. For the results in this contex, one may refer
Bajnok and Matzke [2, 3]. Recently, Bhanja and Pandey [5] have studied some
direct and inverse problems in the group of integers. They obtained the optimal
lower bound for the cardinality of the sumset hiA. They also proved that if the
optimal lower bound is achieved by the cardinality of h4 A, then A must be an
arithmetic progression.

Much less is known about the restricted signed sumset h’t A. Recently, Bhanja
et al. [6] solved some cases of the above mentioned direct and inverse problems for
h’} A in Z and made conjectures in the rest of the cases. More precisely, they proved
the following result.

Theorem 1 ([6, Theorem 2.1, Theorem 3.1]). Let h and k be positive integers with
h < k. Let A be a set of k nonnegative integers. If 0 ¢ A, then

h(h+1)

[PLA] = 2(hk — h?) + ==

+1. 1)

If0 € A, then

. h(h —1)
2

These lower bounds are best possible for h = 1,2, and k.

|WiA| > 2(hk — h?) + 1. 2)

In the same paper, they also proved some inverse theorems for h = 2 and h = k
(see [6, Theorem 2.2, Theorem 2.3, Theorem 3.2, and Theorem 3.3]). It can be
verified that the lower bounds in (1) and (2) are not optimal for 3 < h < k — 1.
In this case, they made conjectures and proved them for the case h = 3 (see [6,
Theorem 2.5 and Theorem 3.5])). The precise statements of the conjectures are the
following.

Conjecture 1 ([6, Conjecture 2.4, Conjecture 2.6]). Let A be a set of k > 4 positive
integers and let h be an integer with 3 < h < k — 1. Then

|WLA| > 2hk — B? + 1. (3)
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This lower bound is best possible. Moreover, if |h} A| = 2hk — h? + 1, then A =
d*{1,3,...,2k — 1} for some positive integer d.

Conjecture 2 ([6, Conjecture 3.4, Conjecture 3.7]). Let A be a set of &k > 5
nonnegative integers with 0 € A and let h be an integer with 3 < h < k — 1. Then

|WLA| > 2hk — h(h + 1) + 1.

This lower bound is best possible. Moreover, if ’h$A| = 2hk — h(h+ 1) + 1, then
A =d=* [0,k — 1] for some positive integer d.

In Section 3, We prove these conjectures for the case h = 4. In Section 2, we
prove some auxiliary lemmas which are crucial for the proofs of the conjectures for
h = 4. Using these lemmas, we also prove the conjectures for certain special type of
sets including arithmetic progression (see the results in Subsection 2.2). We remark
that Bhanja et al. [6] proved the lower bound in (3) for super increasing sequences.

2. Two Auxiliary Lemmas and Some Special Cases

2.1. Auxiliary Lemmas

We need the following result for the proofs of Lemma 1 and Lemma 2.

Theorem 2 ([19, Theorem 1.9, Theorem 1.10]). Let A be a nonempty finite set of
integers and let 1 < h < |A|. Then

|h"A| > h|A| = h% + 1.

Furthermore, if |A| > 5, 2 < h < |A| — 2, and |h"A| = h|A| — h® + 1, then A is an
arithmetic progression.

Lemma 1. Let h and k be integers such that 3 < h < k—1. Let A = {a1,a2,...,ax}
be a finite set of k positive integers with a1 < ay < --- < ag. Let Apy1 =
{a1,az2,...,ap+1} C A. If |h§Ah+1‘ > (h+1)2 +t, where t > 0, then

|WLA| > 2hk —h? +1+t.
Proof. Let A’ = {ag,as,...,a;}. Then (—h"A") Uh) Ap4q URNA" C BY A, Since
Wy ApaNRNA ={as +as+ -+ apy1}
and
R Apir 0 (= A) = {~(a2 + a3 + -+ + ant1)},
it follows from Theorem 2 that

|RAA| > | Apgr|[+2]|R N A'|=2 > (h+1)2+t+2(h(k—1)—h*4+1)—2 = 2hk—h>+1+t.

This proves the lemma. O
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A similar argument also proves the following lemma.

Lemma 2. Let h and k be integers such that k > 5 and 3 < h < k—1. Let A =
{ag,a1,az,...,ax_1} be a finite set of k nonnegative integers with 0 = ag < a1 <
ag < -+ < ag_1. Let A, ={ag,a1,as,...,a} C A. If’h/i\Ah| >hh+1)4+1+t¢,
where t > 0, then

|WiA| > 2hk — h(h+1) +1+t.

2.2. Some Special Cases

First we verify the Conjectures 1 and 2 for finite arithmetic progression.

Theorem 3. Let h > 3 be an integer and let A be a (h + 1)-term arithmetic
progression of positive integers with common difference d. Then

{h/\A} < (h+1)2, if d = 2min(A);
= (h+1)2+1, otherwise.

Furthermore, |hi A| = (h +1)? if and only if d = 2min(A).

Proof. Let A ={ay,az,...,ap41}, where a; = a1 + (i —1)dfori=1,2,....,h + 1.
Set Ap, = A\ {an+1}. We use induction on h to prove the result. If h = 3, then
A ={a1,a2,a3,a4} with ag — a; = a3 — az = a4 — a3 = d. Consider the following
increasing sequence of the elements of 3/ A:

—ag—az—as < —ag—az—a; < —ag—as—ay < {—az—as—aj; or —ag—as+ay}
< —az3—ag+ta1 < —ag+tazx—a; < —az+ax—a; < —az+aq4—a3 < —ay+asz—az

<ay—a2+az3<a; —az+ag < —a;+ag+az<a;+a+az <ap+az+ay

<a;+az+ag <ag—+as+ ay.
Since d = 2a; if and only if —a3z — as — a3 = —a4 — as + ay, it follows that

1 if d = 2aq;
|3/i\A| Z 67 1 ay;
177 1fd7é2a1.

Now assume that the result holds for h — 1 > 3. Then

h2, if d = 2aq;

h—12A, >
|(h =% h‘_{h2+1, if d # 2a;.

Since (h—1)} Ap+ap+1 ChYAand [(h—1)2 A +apt1] = [(h—1)2 Ay, we have at
least h? elements in h)} A if d = 2a; and at least h? + 1 elements in h} A if d # 2a;.
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Now we construct some more elements of h@A which are distinct from the elements
of (h—1)2 Ay + apt1. For each i € [3,h + 1], let

h+1

S; = —as +a; — Z a;
J=3,j#i
For each i € [3, A,
h+1
T, =—a1 +a; — a; | -
j=3,j#i
Let
h41 h41
UOZ—ZCL]‘, U1:— Z Qj,
=2 J=1,#2
and for each i € [2,5],
h+1
Ui =a1 — Z a;
J=2,j#1

It is easy to see that

min((h — 1)$Ah +aps1) =Sh41>Th > Sp > Thoy > Sp1 > > T3
>8S3=Us>Us >U3>U; >U; > Uy :min(h/j\[A).

Hence
2 eog )
WA > (h+1)%, %fd72a1,
(h+1)2+1, ifd+#2a.

If d = 2ay, then A = a;%{1,3,5,...,2h+1}. Therefore, if h is a positive odd integer,
then A’} A contains only odd multiples of a; and if h is a positive even integer, then
h} A contains only even multiples of a;. Since hY A C ay*[—(h+1)*+1, (h+1)%—1],
we get |thEA‘ < (h+ 1)2. This completes the proof of the theorem. O

Corollary 1. Let h > 3 be an integer. Let A = {ay,aa,...,ar} be an arithmetic
progression of integers of length k > h + 1 with common difference d with 0 < ay <
as < -+ < ag. Then

2hk —h% +1, if d = 2ay;
|h$A| > hk h2—|— , ifd 'al,
2hk — h* + 2, otherwise.

Furthermore, h@A’ = 2hk — h% + 1 if and only if d = 2min(A).
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Proof. Let Apt1 = {a1,a2,...,ap11} and A" = {ag,as,...,ar}. Then (—h"A") U
h Api1 URMNA" C b A. Note that

Wy ApaNRNA ={az +as+ -+ aps1}

and
héAthl N (—h/\A/) = {—(a2 +as+--- + ah+1)}.

Using Theorem 2 and Theorem 3, we have

|RLA| > |hL Apgr| + 2|0 A =2 (4)
P20 - - R -2, ifd =2
Tl (h+1)2+1+2(h(k—1)—h?+1)—2, otherwise.

B 2hk —h? +1, ifd=2a;;
| 2nk — K2+ 2, otherwise.

Now if d = 2ay, then A =ay % {1,3,5,...,2k — 1} and so |hL A| = 2hk — h* + 1. If
|h A| = 2hk — h? +1, then by (4), we get |hi Apt1| = (h+1)? and so d = 2a;. O

Theorem 4. Let h and k be integers such that 4 < h < k—1. If A is an arithmetic
progression of k nonnegative integers with 0 € A, then |h} A| = 2hk — h(h+1) + 1.

Proof. If A is an arithmetic progression of k nonnegative integers with 0 € A, then
A =dx* [0,k — 1], where d is the common difference of the arithmetic progression.
Since the cardinality of the restricted h-fold signed sumset is dilation invariant, we
may assume A = [0,k — 1]. Clearly, h} A contains disjoint sets A" A and h"(—A).

Plh = 1) g - MAED T 4 pA—A) = —(hh ),

It is easy to see that h"A =

Now we construct some more elements of h’} A that are different from the elements
of WA and h(—A). It is easy to see that

max(h"(=A4) =0—-1-2—---—(h—2) — (b — 1)
<0+1-2—---—(h=2)—nh
<0+1-2—--—(h=2)—(h—1)
<0-142—---—(h—=2)—h
<0-142—-—=(h=2)—(h—1)
<0-1—-+=(h=3)+(h—2)—(h—1)
<0+1——(h=3)+(h—-2)—h
<04+1—--—=(h=3)+(h—2)—(h—1)
<0—-142---—(h—=3)+(h—2)—h
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<0—-1+42-—(h=3)+(h—2)—(h—1)

<O0+1+2+-+(h—2)—(h—1)
=0-142+--+(h=3)—(h—2)+(h—1)
<0-1+2+--4+(h=3)—(h—2)+h
<0—1424-—(h=3)+(h—2)+(h—1)

<0-1-24---+(h=2)+h

<04+1-2+4---4+(h—2)+(h—1)

<0+1-24---+(h=2)+h

<0-1+2+4---4+(h—2)+(h—1)

<0-142+ -+ (h=2)+h<04+1+2+ -4 (h—2)+ (h—1) = min(h"A).
Hence h} A = |—hk + wahk—w and |} A| = 2hk—h(h+1)+1. O

Next theorem is a partial inverse theorem.

Theorem 5. Let h and k be integers with4 < h < k—1. Let A ={a1,as,...,ar} be
a set of k positive integers with a; < ag < -+ < ay. Let Apy1 = {a1,a2,...,an41}
and A" = A\ {a1}. If

|h2A| = 2hk — h? +1 (5)

and at least one of the following holds:

a) A is an arithmetic progression,

(a)

(b) Apy1 is an arithmetic progression,

(c) [h2Aps1| > (h+1)* and 4 < h <k -3,

(d) W A=n"(—A"YUhY Apy1 URMNA and A’ is an arithmetic progression,
(e) |hiAns1| > (h+1)? and A’ is an arithmetic progression,

then A =a; %{1,3,5,...,2k — 1}.

Proof. We have
(=R A" YU R} Apya URMAT C R AL
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(a) If A is an arithmetic progression, then Corollary 1 implies that A = a; *

(b) If Ap4q is an arithmetic progression, then by Theorem 3,

{1,3,5,...,2k — 1}.

hiAnga| > (h+
)2 If k = h+ 1, then |} Apy1| = |[W2A] = (h+1)2. So, by Theorem 3,
we have Ap41 = a1 *{1,3,5,...,2h + 1}. Assume k > h + 2. Note that
(=h"A")UhL Apyq URMAT C B A and there is exactly one element in each of
hy A, NhMA" and b Ap, N (—h"A’). Therefore, by Theorem 2, we have
2hk — h? +1 = [} A
> [hLApia | + [N A+ [RN (AT - 2
> (h+1)>+2h(k —1) —2h% +2 -2 =2hk — h? + 1.

This gives
W) Apa] = (h+ 1) (6)

So, by Theorem 3, Apy1 = a3 *{1,3,5,...,2h + 1}. Also, we have
[P A 4 [N (=AD)| = 2h(k — 1) — 2R% + 2 (7)

and
hYA=h"(-A)YUh} Ay URNA (8)

Let x = a1 +as+ -+ ap + apyo € K A. Note that
max_(h} Apy1) = a1 +ag+ - +ap+apy <
<az+az+---+ap+apio =ming (A" A)
and
max_ (h} Apy1) < max(h} Ap41) = min(h"A") < ming (" A").
From (6), (7), and (8), we have
r=aj+az+-+ap+apa=az+az+--+ap+aprs = max(hl Api1).

This gives apt2 — apt1 = a2 — ag. Therefore, if K = h + 2, then A = aq *
{1,3,5,...,2h +3}. If 4 < h < k — 3, then from (7) and Theorem 2, A’ is an
arithmetic progression. Hence A = a; *{1,3,5,...,2k — 1}.

If |h’j\[Ah+1’ > (h+1)%2 and 4 < h < k — 3, then by the similar argument
as in (b), we get apio — apy1 = ag — ay and |hWNA'| = h(k — 1) — h? + 1.
So, by Theorem 2, A’ is an arithmetic progression. Consequently, A is an
arithmetic progression. Since |h} A| = 2hk — h? + 1, we have by Corollary 1
that A = a; * {1,3,5,...,2k — 1}.
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(d) fhYA=h"(—A")URY Apiq1URMA" and A’ is an arithmetic progression, then
WA = h(k —1) — h2 + 1 and
2hk — h* +1 = |4 A
R Apsa| + RN A+ [ (A7) - 2

=|h
= |n} Apsa| +2h(k —1) — 2% +2 2.

Therefore, |h% Api1| = (h+1)%. By the similar argument as in (b), we get
apt2 — apy1 = az — ay. So, A is an arithmetic progression. Since |h} A| =

2hk — h? + 1, we have by Corollary 1 that A = a1 * {1,3,5,...,2k — 1}.
(e) This case is similar to the case (d).

O

Using a similar argument as in Theorem 5, we can also prove the following
theorem.

Theorem 6. Let h and k be integers with4 < h < k—1. Let A = {ag,a1,az2,...,ak-1}
be a set of k monnegative integers with 0 = ag < a1 < as < -+ < ax—1. Let
Ap ={ag,a1,as,...,ap} and A’ = A\ {ao}. If

|h} Al =2hk —h(h+1) + 1 9)
and at least one of the following holds:

a) A is an arithmetic progression,

(
(b

A is an arithmetic progression,

)
)

(c) [h2AL| = h(h+1)+1 and 4 < h <k -3,

(d) P A=h"-A")UhLA,URA" and A’ is an arithmetic progression,
)

(e) |hiAn| = h(h+1)+1 and A" is an arithmetic progression,

then A =ay x [0,k — 1].

Theorem 7. Let h > 3 be an integer. Let A = {ay,aq,...,ant1} be a set of positive
integers with a1 < ag < -+ < apq1 and a; > a;—1 +a;—o fori=4,...,h+1. Then

|[PAA] > (h+1)* + 1. (10)

Proof. We use induction on h to prove the lower bound in (10). The base case
h = 3 was proved by Bhanja et al. (see the proof of Theorem 2.5 in [6]). So h >4
and assume that the result holds for h — 1. Let A, = {a1,as,...,an}. Then by the
induction hypothesis,

[(h— 12 Ap| > 1% + 1.
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Since (h — 1)} Ap + ap+1 € WA, it is sufficient to construct 2k + 1 more elements
to complete the proof. Since —ap_1 — ap + ap+1 > ap—1 + ap — ap41, we have

min((h — 1)@Ah + ah_H) =—a2 — a3 — ... — Qp—1 — Qp + Ap41

> —a2...—ap—2+ap—1 +ap — apy1.

Consider the following elements of k) A:

h—1
S, =— Z aj | +a;+ap —apyr fori=2,3,...,h—1;
i=2.3%#i
h+1
T, = — Z aj | +a;fori=2,...,h—1;
i=2.0#i
h+1 h+1
Yma [ S a] o X—a- (z)
i=3,i%h i=3
h+1 h+1
Yi=—-a - Z a; | +an, ¥ =—a1 — (Z%‘);
i=3,i£h i=3
h+1 h+1
Z1=— Z a; | + an, ande—(Za,).
i=2,i%£h i=2

It is easy to see that

min((h - 1)/:LAh + ah+1) >Sh_1>8,0>-->8>X1>Y>7;
>Tho1>Tho>-->Ty>X >Y > Z=min(h} A).

Hence
|hY Al > (h+1)* + 1.

O
Theorem 8. Let h > 3 be an integer. Let A = {ay,az2,...,an41} be a set of h+1
positive integers with a1 < az < -+ < apy1, a3 —az < 2a, and a; — a;_y > ;al

fori=4,....h+1. Then
|h2 Al > (h+1)2 +1.

Proof. We use induction on h to prove the lower bound. The base case h = 3 is
proved by Bhanja et al. (see the proof of Theorem 2.5 in [6]). Let h > 4 and
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assume the result holds for h — 1. Let A, = {a1,as2,...,an} € A. Then the
induction hypothesis implies that
[(h =12 A| > 1* + 1.

Since (h — 1)} Ap + ap+1 C WA, it is sufficient to construct 2k + 1 more elements
to complete the proof. Let

h+1

Slzal— E aj
=3

For each i € [2,h + 1], let

For i € 3, h], let

For each i € [1,3], let

It is easy to see that

min((h — 1)2A+ ant1) = Spg1 > Th > Sp > Thoy > Spoy > - > T
> 83> 55> 81 > Us > Up > Uy = min(h} A).

Hence
|h2A| > (h+1)* + 1.

3. Proofs of Conjecture 1 and Conjecture 2 for h = 4

In this section, we prove the following theorem which is a special case of Conjecture
1 in the case h = 4.

Theorem 9. Let A be a set of k > 5 positive integers. Then
|43 A| > 8k —15.
Furthermore, if |4QA| = 8k — 15, then A =min(A) x {1,3,...,2k — 1}.
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In view of Lemma 1 and Theorem 5, it suffices to prove the following theorem.

Theorem 10. Let A be a set of positive integers with |A| = 5. Then
|43 A| > 25.
Furthermore, if |4$A| = 25, then A = min(A) * {1,3,5,7,9}.

For the proof, we consider various cases as lemmas. Throughout this section, the
following list of (not necessarily distinct) elements of 47 A is used in the proofs:

T1 = —a1 +az —az + aq, z1 = a1 +az +aq4 — as,
T2 = a1+ az — a3 + aq, Zo = a1+ az — a4 + as,
T3 = a1 — az + a3z + aq, z3 = a1 +az — az + as,
Ty = —a1 +az +az + aq, zZ4 = a1 — Gz + a3 + as,
T5 = a1 + a2 +asz + aq, z5 = —ay + a2 + a3 + as,
T = a1 + az +as + as, a1 = —ag +az —aq + as,
Tr = a1 + a2+ aq + as, oy = —ag —asz +aq + as,
Tg = ay +az + as + as, a3 = —agz +az + aq + as,
T9 =az + a3+ as +as, B1 = —ai — az +az + ag,
Y1 = —ai +az + a4 — as, B2 = —ai — az + a3 + as,
Y2 = —a1 +az —aq4 + as, Y1 = —a1+ az + a3z — aq,
Ys = —a1 —az + a4 + as, Y2 = a1 + ag + az — agq,
Y4 = —ay — az + ay + as, 01 = az — a3z — ag + as,
Ys = a1 —az + a4 + as, 0y = —ay + az — a3 + as,
Y6 = —a1 + az + a4 + as, €1 = —a1 +az +aqg — as,

Y7 = —a1 + a3z +aq + as, €2 =ay +az+as—as.
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It is easy to see that

O0<z;<xiyyr fori=1,2,...,8 y1 < 2z,

Yi < Yip1 fori=1,2,...,6, {—’71,’}/1}<$1<,61<.’L‘3,
21 < 29 < 23 <2zy<zs, —(51<O¢1<042<043,
11 < B < P, 71 <72,

51 < (52, €1 < €9,

Tq < Y7 < Ts, Tq4 < Yo < T7, (11)
Tq < 25 < Tg, Y1 < Y2 < T,

a2 < Y3, z5 < Y6,

Tro < 23, r3 < 24 < Ys,

z3 <ys < ys < T7, B2 < 24,

52 < z3, 1 < 52.

In (11), {—y1,m} = {0} if 1 = 0 and {—71,71} is a symmetric set of cardinality
two if 1 # 0.

Lemma 3. Let A = {a1,a2,as,a4,as5} be a set of positive integers with a1 < as <
as < a4 < as. Let a; —a;—1 # 2ay for exactly one i € [2,5] and a; — a;—1 = 2a; for
the remaining i € [2,5]. Then |[43A| > 26.

Proof. Since signed sumset is symmetric, it suffices to prove that there are at least
13 positive integers in 4/ A.

Case A: as — a1 # 2a; and a5 — ay = a4 — a3 = az — az = 2a;. In this case,
7 = —a1 +az+ a3 —ag = —3a; + ag,
Y2 =a1+az +az —aqs = az —ap,
T1 = —a1+az —az+ a4 =az +ai,
To = a1 + as — a3z + ag = 3a1 + ao,
f1 = —ay —az +az + as = 3a; + as,
T3 = a1 —as + a3z + ag = 3a1 + ay,
a1 = —ag + a3z —aq + as = 4aq.
Clearly,
01 <ve <z, 71 <0 <xy < fP1 <w3, and oy # x1. (12)

If ag—a; = a1, then A = ayx{1,2,4,6,8}, and so ‘4QA| > 26. If ap —ay # a1, then
Y9 # —y1. Note that, if 73 > 0, then we have the following 12 distinct elements of
44 A:

O<m<ym<r<z<pf1<r3<wy4<a;<z6 <27 <8< X9, (13)



INTEGERS: 24 (2024) 15

and if —y; > 0, then we have the following 12 distinct elements of 4/ A:
O0<{—v,712} <z <2a< f1 <3<y <5< <x7 <8< Tyg. (14)

Therefore, in each case, we have at least 12 positive integers in 44 A. Next we
show the existence of at least one more positive integer in 4} A which is different
from the elements listed in (13) and (14). Consider the positive integer ;. Since
-7 < a1 < xg and ay # 1, we have the following subcases.

(1) If v1 > 0, @1 # 71, and ay # 72, then we can include oy in the list (13) to get
the required number of elements as follows:

0<{"/1,’72,0l1,$1}<1’2 <51 T3 <y <25 < Tg<xT7 <28 < X9.

(#4) If —y; > 0 and a1 # 72, then we can add «; in (14) to get required number of
elements:

0<{—7,7,a1,x1} <x2 < P1 <3 <y <5 < xg <7 <5< Tyg.

(#7) If oy = 71, then ay = T7ay. This gives A = a3 % {1,7,9,11,13}, and so

|44 A] > 26.

(iv) If iy = 72, then ag = 5ay. This gives A = a1 %{1,5,7,9,11}, and so |4} 4] > 26.
In each of the cases, either |4} A| > 26 or there are at least 13 distinct positive

elements in 4/ A.

Case B: az —as # 2a; and a5 — ay = a4 — a3 = as — a1 = 2a;. In this case,
ap = 3a1, az # Say,

Y2 = a1 +asz +az — ag = 2ay,

T = —a1 +ax — a3+ as = 4aq,

a1 = —ag +az —ayq +as = —ay + as,
oy = —ag —az +ag +as = —ay + as,
Y3 = —a1 —az + aq4 + as,

Ty = a1+ az + a4 + as,
Y7 = —a1 + a3z +aq + as,
rg = a1 + as + a4 + as,
Y6 = —a1 +azx +aq4 + as,

2o =a1 + as — ayg + a5 = 6a;.
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Clearly,
0 <72 <A{z1, aa}, 21 # o, yr # 7, 21 < 22, (15)

and
T1 < 29 =6a; = 3a1 +as < 3a1 +az =a1 +ag = —ay + as = as. (16)

It follows from (15), (16), and (11) that
0<vy<{xi,a1} <as<ys <ys <ys <ys <{yr,x7} < xs < Xg. (17)

Therefore, we have at least 12 positive integers in 4} A. Now we show the existence
of at least one more positive integer in 42 A which is different from the integers in
(17). Since 21 < 23 < g, we have the following cases.

(i) If 23 # a1, then we have at least 13 positive integers in 44 A as follows:

0<’)/2 < {31‘1,041,2’2} <oy <Ys <ys <yYs < Ysg < {y7,x7} < xg < Tyg.

(i) If 2o = aq, then azg = 7a;. This implies that A = a1 x {1,3,7,9,11}. So
140 A| > 26.

Case C: aq — a3 # 2a; and a5 — ay = a3 — ag = as — a; = 2a;. In this case,

as = 3a1,a3 = Sa; < ag,a4 # Tay,

Y1 =—a1+az+az —as="Tay — ay,
T = —a1 + as — a3z + ag = —3a1 + ag,
T9 = a1 +az —asz+ a4 = —ay + aq,
B1 = —a; —az +az+ ag = aj + ay,

T3 =a1 — a2 +az + a4 = 3a1 + aq,
z1=a1 + as + aqg — a5 = 2aq,

Tg = aj + as + asz + as = 9a; + as,

Y6 = —a1 +az + aq + a5 = 2a1 + a4 + as.

Clearly,
—m <21 <22 < Py < x3 and xg # ys- (18)

Also
v1=—a1+ay+az—as=2a1+a3—as <2a; =21 < —3a1 +aq4 =z, (19)

and
x5:a1+a2+a3+a4<a1+a2+2a4:2a1+a4+a5:y6. (20)
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Since y1 # 0, it follows from (18), (19), (20), and (11) that
O<{—morm}<z <za<f1<a3<mg<25<{T6,y6} <7 <28 < Ty,

and
7 <z <.

Therefore, we have at least 13 positive integers in 4} A except for the case 21 =
—v1. If 21 = —, then a4 = 9a;y, which implies that A = a1 % {1,3,5,9,11}. So
|4} A] > 26.

Case D: a5 — a4 # 2a1 and a4 — a3 = a3 — as = as — a1 = 2a1. In this case,
as = 3a1,a3 = dai,a4 = Taq,
as # 9ay,a5 > Taq,
Y2 = a1+ az + az — aq = 2ay,
T = —a1 + as — az + a4 = 4aq,
To = ay + az — a3z + ag = 6ay,
f1 = —a1 —az + a3 + a4 = 8ay,
T3 = a; — as + az + ag = 10aq,
T4 = —a1 + as + az + ag = 14aq,
25 = —ay1 + as + a3 + a5 = 7a; + as,
T5 = ay + as + az + ag = 16a4,
T = a1 + as + a3z + as = 9a1 + as,
Yo = —ay +az —ag + a5 = 2a; — ag + as.
Clearly, we have
0<ye<x <x2<f1 <wg <wg <{25,05} <6 <27 <28 < Xg. (21)

Therefore, we have at least 12 positive integers in 4} A. Next, we show the existence
of at least one more positive integer in 4} A which is different from the elements
listed in (21). Since ys # 1 and 2 < Y2 < 25 < xg, we have the following subcases.
(i) If yo & {2, 01,3, T4, 75}, then we have at least 13 positive integers in 4} A as
follows:

0 <y < A{x1,22,B1,23,24, 25,25, y2} < 6 < T7 < 8 < Tg.
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(i) If yo = @2, then a5 = 11ay. This gives A = a3 x {1,3,5,7,11}. So |4} A| > 26.
(i74) If yo = B1, then as = 13ay. This gives A = ay * {1,3,5,7,13}. So |4} A| > 26.
(iv) If yo = w3, then a5 = 15a;. This gives A = a; * {1,3,5,7,15}. So |4} A] > 26.
(v) If yo = x4, then a5 = 19a;. This gives A = ay *{1,3,5,7,19}. So |4} A| > 26.
(vi) If yo = x5, then a5 = 2lay. This gives A = ay x {1,3,5,7,21}. So |4} A| >
26. O

Lemma 4. Let A = {a1,a2,a3,a4,a5} be a set of positive integers with a; < az <
as < ag < as. Let a; — a;—1 # 2aq for exactly two i € [2,5] and a; — a;—1 = 2a; for
the remaining two i € [2,5]. Then |42 A| > 26.

Proof. To prove }4QEA| > 26, it is sufficient to prove that there are at least 13
positive integers in 4/ A.

Case A: ay — a4 = aq4 — a3z = 2ay, ag — as # 2ay, and as — a1 # 2a;. In this case,

z1 =a1+ a2+ a4 —as = —ay + ag,

€2 = a1 +asz+aq4 —as = —ap + as,

1 = —a1 +az —asz+aqg =a; + as,

B1 = —ai —az +az + ag = a; — az + 2as,

B2 = —a1 — az + a3 + as = ay — az + az + ay,
Y4 = —a1 — az +aq +as = a1 — az + 2ay4,

T5 = a1 + az + a3z + ag = a1 + az + 2ag,
T = a1 + a2 +as + as,
T7 = a1 + a2 +aq + as,
Y7 = —a1 + a3 + aq + as,
rg = a1 + a3 +aq + as,
Tg = az + az + aq + as,
Ty = —a1 +az +az + aq,
zz3=a1+ay —az+ as = a1 + as + 4a1 = day + as.
Clearly, €3 # x1, 7 # y7, T < y7, and x5 > y4. Therefore, we have
0<z <{eg,m1} <P1 <Ba<ys<uzs<zg <{x7,y7} < 28 < Ty, (22)

B2 < x4 < s,
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and
r1 < 23 < Yq.

In (22), we have 12 distinct positive integers of 4} A. Now, we show that there
exists at least one more positive integer in 4} A which is distinct from the integers
n (22). Consider the positive integers x4 and z3. If 24 # y4, then we have at least
13 positive integers in 4/} A as follows:

0<z1 < {62,$1} < ﬁl < 52 < {y4,$4} x5 < T < {{)37,y7} < xg < Xg.

Assume x4 = y4. Then as = 2a;. Now consider the following subcases.
(i) If z3 ¢ {€2, b1, B2}, then we have at least 13 positive integers in 4 A as follows:

0 <z <{ez,21,P1,P2, 23} <ya <5 <6 < {x7,yr} < 28 < T.

(i) If z3 = €2, then ag = 8ay. This gives A = ay % {1,2,8,10,12}. So |42 A| > 26.
(#it) If z3 = By, then ag = 4ay. This gives A = aq % {1,2,4,6,8}. So ’4@A| > 26.
(iv) If 23 = B2, then az = 3ay. This gives A = a; = {1,2,3,5,7}. So [42A] > 26.

Case B: a5 — a4 = a3z — az = 2a1, a4 — a3 # 2a1, and as — a1 # 2a;. In this case,
as —as > as — a4 = 2a1,
a4—a2>a37a2:2a1,

z1 =a1 +az+ a4 —as =az — ax,

T1 = —a1 +az —az + a4 = —3a1 + aq,
Ty = a1+ a2 —a3z+ag = —ag + ay,
B1=—a1 — a2+ as + a4 = a1 + aq,

T3 =a1 — a2 +az + as = 3a1 + aq,

T4 = —a1+az +asz+as = a1 + 2a2 + ag,
T5 = a1 + as + a3z + ag = 3a1 + 2a2 + ag,
g = a1 + az + asz + a5 = 3a; + 2a2 + as,
Y6 = —a1 +az +ay + as,

T7 = a1+ az + aq4 + as,

T8 = a1 + az + a4 + as,

Tg = az + az + as + as,
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Zo =a1 + as —aq + a5 = 3aq + as,
zZ4 =a1 — as +az + as = 3a1 + as.
Note also that zg = a1 + as + a3 + a5 # —a1 + as + a4 + a5 = yg. S0, we have
0<z1 <@ <29 <1 <3<z <5 <{T6,Y5} <7 < 28 < Ty, (23)

and
21 < zg <x3 <24 <Ts.

In (23), we have 12 distinct positive integers of 4} A. Next, we show that there is
at least one more positive integer in 4 A which is distinct from the elements listed
n (23). Consider the following subcases.

(i) If 24 # x4, then we have at least 13 positive integers in 4/} A as follows:

0<z1 <21 <l‘2<61<$3<{$4,Z4}<$5<{l‘6,y6}<$7<$g<$9.

(it) If z4 = x4 and 29 # x1, then ay = 2a1, az = 4aq, 20 < 1, and 22 # .
Therefore, we have at least 13 positive integers in 4} A as follows:

0< 1 < {371,.’[72,22} <51 T3 < xyg <5 < {l‘g,yﬁ} <7 <xg < 9.

(it7) If z4 = x4 and 29 = x1, then as = 2a1, az = 4aq, and ay = 8a;. This gives
A =ayx{1,2,4,8,10}. So |42 A| > 26.

Case C: a4 — a3 = az — ag = 2a1, a5 — a4 # 2a1, and as — a1 # 2a;. In this case,
az # 3(11,

M =—a1+ax+as—as #0,

Y2 =a1 +az + a3z —aqg = —a; + ag,
T = —aj +as — a3z + ag = —3a1 + aq,
To =ay +az —az+ a4 = —ay + ay,
B1 = —a1 —az +az+ ag = a1 + ay,

T3 =a; —as + az + aqg = 3a1 + ay,

T4 = —a1+az +asz+as = a1 + 2a2 + aq,
T5 = a1 + az + as + a4 = 3a1 + 2a2 + aq,
T = a1 + as + a3z + as = 3a1 + 2a2 + as,

25 = —ay +az + az + as = ay + 2az + as,
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Yo = —a1 —az + a4 + as.
Clearly,
O0<ye<x<m2<f1<wg <wyg <{w5,25} <6 <7 <28 < Xg. (24)

In (24), we have 12 distinct positive integers of 4} A. Next, we show the existence
of at least one more positive integer in 4} A which is different from the elements
listed in (24). Now consider the following subcases.

(i) If 41 > 0, then we have at least 13 positive integers in 47 A as follows:

O<’}/1<’)/2<J?1<$2<ﬁ1<£L‘3<$4<{175,Z5}<$6<$7<1‘8<139.

(i7) If —y1 > 0 and 2 # —v1, then we have at least 13 positive integers in 4} A as
follows:

0< {—717’72} <T1<Toa<Pr<w3< T8 < {335,2’5} <xg <27 <T8g < XTyg.

(ii7) If —y1 > 0, 72 = —71, and y4 # x5, then ay = 2a1, ag = 4aj, a4 = 6a; < as,
and y4 = —a; —az + a4 + a5 = 3a; + as. It is easy to see that z3 < y4 < 25 < xg
and y4 # x4. Therefore, we have at least 13 positive integers in 4 A as follows:

0<y2 <21 <22 < B < x3 <{$4,$5,Z5,y4}<$6 < xr7 <8 < Xg.

(i) If —y1 > 0, 72 = —71, and yy4 = x5, then ay = 2a1, a3 = 4ay,a4 = 6ay, and
as = 10a;. So A = a; *{1,2,4,6,10}.
In each of these subcases, we have |4QA| > 26.

Case D: a5 — ag = ag — a1 = 2a1, aq — ag # 2aq, and ag — az # 2a;. In this case,
a2:3a17a37é5a1,a3 >3(Ll,
21:a1+a2+a4—a5:2a1,
Yo = —a1 + az — a4 + a5 = 4aq,
Ty =ay + as — a3z + ays = 4a; — ag + ag,
zo = a1 + as — aq + a5 = 6aq,
23 = ai +az — a3z + a5 = 6a; — a3 + ag,
z4 = ay —az + a3z +as = —2a; + a3z + as,
Ys = a1 — az +aq + a5 = —2a1 + aq + as,
Yo = —a1 +az + ag + a5 = 2a1 + a4 + as,

Tr = a1+ az + a4 +as = 4a; + aq + as,
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Y7 = —a1 +ag + aq + as,

T = —a1 +as —az + ag = 2a7 — az + aq,
B = —a1 —as +az + a5 = —2a1 + az + a4.
Clearly,
0 <21 <y2 <{w2,22} <23 <21 <yYs <ys <{T7,yr} < 8 < 9, (25)
T1 F Y2,21 < X1 < To < z3, and To < P < z4. (26)

We have 12 distinct positive integers in the list (25). Now we show the existence
of at least one more positive integer which is different from the integers in (25).
Consider x; and B2, and the following subcases.

(i) If &1 # 22, then we have at least 13 positive integers in 4/} A as follows:

0< 2 < {y2,1‘1,$2,22} <23 <zy <yYs <yg < {x7,y7} < rg < I9g.

(i1) If 21 = 2z and B2 # 23, then we have at least 13 positive integers in 4} A as
follows:

0<21<y2<331<£L‘2<{23,62}<24<y5<y6<{x7,y7}<x8<mg.

(#i7) If ©1 = 22 and Po = z3, then as = 4a1, a4 = 8ay, and a5 = 10a;. This implies
that A = ay = {1,3,4,8,10}. So |42 A| > 26.

Case E: a4 — a3 = as —a; = 2a1,a3 — az # 2a1, and a5 — aq # 2a;. In this case,
a2:3a1,
ay = 2a1 + a3z > 2a1 + as = baq,
Y2 = a1+ az + a3z — aq = 2ay,
1 = —a1 + ay — az + a4 = 4aq,
Ty = ay + az — a3z + ag = 6aq,
T3 =a1 —az + a3+ ag = —2a1 + as + aq,
Ty = —a1 + az + a3z + aqg = 2a1 + asz + aq,
x5:a1+a2+a3+a4:4a1+a3+a4,
z5 = —aq1 + as + ag + a5 = 2a1 + a3 + as,
Tg = a1 + az + a3z + a5 = 4a1 + ag + as,

ZTr = a1+ az + a4 +as = 4a; + aq + as,
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B1=—a1 —az +az +as = —2a1 + 2as,
Z4 =a1 — as +as + as = —2a1 + az + as,
Y7 = —ay1 + a3z +aq + a5 = a1 + 2a3 + as.

Clearly,
0<")/2<l'1, x57éz5, $77éy7,

and
Y7 = a1 + 2as + as > a1 + as + as + a5 = .

Therefore, we have
O< e <a <ae<a3 <24 < {.%5,25} <xg < {1’7,y7} < xg < X9 (27)
and
$1<61<x3<z4<25.

We have 12 distinct positive integers in (27). Next, we show the existence of at
least one more positive integer which is different from the elements listed in (27).
Consider the following subcases.

(i) If B1 # x2, then we have at least 13 positive integers in 47 A as follows:

O<y<r < {132,,81} <x3 <y < {I5,Z5} < < {I7,y7} < xg < Tg.

(i3) If 24 # x4 and 24 # x5, then we have at least 13 positive integers in 4} A as
follows:

0<ye <z <mp <3 <{T4,25,24,25} < wg < {x7,9y7} < 23 < Tyg.

(#i7) If B1 = x2 and z4 = x4, then a3 = 4aj, a4 = 6a1, and a5 = 10a;. This implies
that A = ay *{1,3,4,6,10}. So |42 A| > 26.

(iv) If By = a9 and z4 = x5, then a3 = 4ay,a4 = 6a1, and a5 = 12a;. So A =
a1 *{1,3,4,6,12}, hence |42 A| > 26.

Case F: a3z —as = as — a1 = 2a1, a5 — a4 # 2a1, and a4 — a3 # 2a;. In this case,

as = 3a1, ag = da1 < a4 7é Taq,

7 = —a1+az+az—as="Ta; — ay,
T1 = —a1 +az —az+as = —3a; + aq,
T2 = a1+ a2 —a3z+aqg = —ay + ay,
B1=—a1 —as+az+as =ai + ay,

x3:a17a2+a3+a4:3a1+a4,
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T4 = —a1 +as + a3+ ag = Tay + ag,
T5 = ay + az + az + ag = 9aq + ay,
25 = —a1 + a2 + a3z +as = 7a; + as,
T = a1 + as + az + as = 9a1 + as,
Y = —a1 +as +aq4 + as > Taq + as,
Tr = ay + a2 +asq + as,
01 =ag —as —as + as.
Clearly,
O<{yior —m}<a1 <x2<P1 <xg <4 <{5,25} <6 < 7 < g < g, (28)

Ty < 25 < yYg < x7, and yg # Tg.

In (28), we have 12 distinct positive integers of 4} A. Next, we show the existence
of at least one more positive integer in 4 A which is different from the elements
listed in (28). Consider the following subcases.

(@) If yg # x5, then we have the following list of 13 positive integers:

O<{mor —m}<z <x2<f1 <3 <4 <{T5,25,Y6,T6} <7 < x5 < Tyg.

(it) If y¢ = x5 and —d6; # 71, then a5 = 7a;,y1 > 0, and 0 < =61 = —as + a3z +
a4 —as = —bag + a4 < x1. Thus we have the following list of 13 positive integers:

0< {’}/1,—51} < T < To <B1 <T3 <y < {1‘5,2’5} <Tg < T7 <8 < Tg.
(#i7) If yg = x5 and —d0; = 71, then a5 = Ta; and a4 = 6ay, which implies that
A=ay+{1,3,5,6,7}. So [42A| > 26. O

Lemma 5. Let A = {a1,a2,a3,a4,a5} be a set of positive integers with a; < az <
az < a4 < as. Let a; —a;—1 = 2ay for exactly one i € [2,5] and a; — a;—1 # 2a; for
the remaining i € [2,5]. Then |42 A| > 26.

Proof. 1t is sufficient to prove that there are 13 positive integers in 47 A. Consider
the following cases.

Case A: a5 — a4 # 2a1, a4 — a3 # 2a1, a3 — as # 2a1, and as — a; = 2a,. Consider
the following list of integers which are elements of 4/} A:
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Y1 = —a1+ a2 + a3 — ay, T7 = a1 + a2 + a4 + as,

T1 = —a1 +azx —az + aq, rg = ai; + a3z + a4 + as,

T2 =a;+az —as+a
S A T9 = az +az +aq + as,

0y = —ay + az — az + as,

Y7 = —a1 +ag + aq + as,
z3 = a1 + a2 — az + as,

Y2 = a1+ az + ag — aq,
zZ4 = a1 — a2 + az + as,

Ts5 = a1 + as + az + aq,

25 = —a1 + a2 + az + as,

6 = a1 + az + as + as, Y5 = a1 — az + a4 + as,

Y6 = —a1 + az + as + as, Yo = —ay + as — ay + as.
Note that

0< {’71 or —’}/1} <z < {.%'2,52} <23 <z4<25< {.’L‘ﬁ,yg} < x7 < x8 < X9. (29)
Also
z5 < Yo < Yr <xs, Y7 # w7, and 24 <y5 < ys < 7.

Therefore, we have at least 12 distinct positive integers in 47 A that are listed in
(29). Next, we show the existence of at least one more positive integer in 4 A which
is different from the elements listed in (29). Consider the following subcases.

(i) If y7 # w6, then we have a list of 13 distinct positive integers of 4} A as follows:

0<{yior —m} <z <{me,d2} < 23 < 24 < 25 < {mg, Y6, 27, Y7} < Tg < Tg.
(#4) If y; = a6, then ay = 5ay and ys5 < z5. Therefore, we have
0< {’71 or —’yl} <rT < {.7;2,52} <23 <z <yYs <zs < {xﬁ,y6} <x7r <xg < X9g.

Thus, we have at least 26 elements in 4} A in this case.

Case B: as — a4 # 2a1, ag — a3 # 2a1, a3 — ag = 2a1, and ag — a1 # 2a;. Consider
the following list of integers which are elements of 4/ A:

r1 = —ay1 + az — az + aq, B2 = —a1 — as + a3 + as,
T2 = a1+ az — a3 + ay, Y4 = —a1 — az + a4 + as,
B1 = —a1 —as + az + aq, Z4 = a1 — ag + as + as,

z3 = a1 +az —as + as, Ys = a1 — az + a4 + as,
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Y6 = —a1 + as + ag + as, 02 = —ai + az — az + as,

T7 = a1 + az + a4 + as,
01 = az — a3 — a4 + as,
rg = a1 +as + aqg + as,

Tg9g = az + a3+ aq + as, Yo = —a1 + a2 — a4 + as.
Note that
O<x <a9 < {6172’3} < 52 < {y4,24} <Ys <Y < x7 < X8 < X9. (30)
Also
:L'1<($2<23<ﬂ2, 51<y2<52<23<[32, and527£12.

In (30), we have 12 distinct positive integers of 4} A. Next, we show the existence
of at least one more positive integer in 42 A which is different from the elements
listed in (30). Consider the following subcases.

(i) If 53 # B1, then we have at least 13 positive integers in 47 A as follows:

0 <z < A{wa,B1,23,02} < P2 < {Ya, 24} <ys < ys < x7 < 8 < Tg.

(it) If 0o = 51 and §1 # x1, then a5 — ag = 2a3 — 2a3 = 4ay and 01 = 2a; < .
Therefore, we have at least 13 positive integers in 4} A as follows:

O<{ml,él}<x2<62<z3<62<{y4,z4}<y5<y6<x7<x8<xg.

(#it) If 53 = By and §; = a1, then ay = 5ay and a5 = 9a;. Consequently, xo < yo <
z3. 8051:1’1<:cg<y2<52:51<23<52<{y4,24}<y5<y6<x7<x8<
zg. Thus, we have at least 26 elements in 4} A.

Case C: as — a4 # 2a1, a4 — a3 = 2a1, a3 — az # 2a1, and ag — a; # 2a;. Consider
the following list of positive integers which are elements of 4/ A:

Y1 = —a1+ a2+ a3z — aq, z5 = —aq1 + as + a3 + as,

Z1 = —a1+az —az+aq, Teg = a1 + az + asz + as,

To = a1+ az —az + ay,

T7 = a1 +az +aq + as,
B1 = —a1 — az + a3 + aq,

Y7 = —a1 +as + aq + as,
T3 = a1 — az + a3 + ayg,

rg = a1 + as + a4 + as,

T4 = —a1 + a2 + az + aq,
Ts = a1 +ag +az+ aq, X9 = ag +as+aqg + as.
Clearly,

1 < P <3, 14 < 25 < Tg, Ts # 25, T7 # Y7, and Y7 < Ts.
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Since a4 — ag > a4 — a3 = 2a;, we have xg < y7. Therefore from (11), we have at
least 12 distinct positive integers in 4 A as follows:

O<{mor—m}t<az <zo<a3z<axyg<{x5,25} <6 <{T7,97} < T8 < Tg9. (31)

Next, we show the existence of at least one more positive integer in 4} A which is
different from the elements listed in (31). Consider the following subcases.
(@) If x5 # (1, then we have at least 13 positive integers as follows:

O<{mor —m} <z <{ze, 01} <z3<zg <{xs5,25} < a6 < {27,97} < 28 < X9.

(it) If zo = f1, then as — as = ay. Therefore, a5 > a4 = as + 2a; = as + 3a1 > 4ay.
Counsider the following increasing sequence of elements of 4/ A:

0< —4a; +a5=—a1+as —ag+as < —ay+a3 —as+as < —ay +as —as + as
<ai+az—ag+a5 < —a;—az+az+as < —ay—asz+ags+a5 <a; —as+az+as
<ay—az+ags+as <ay—ax+ag+as < —ay+a2+ag+as5 <ay+az+aq4+as
<ai+agz+aqg+as <az+azg+ag+as.

Thus, we have at least 26 elements in 4/ A.

Case D: a5 — a4 = 2a1, ag — a3 # 2a1, a3 — az # 2a1, and as — a; # 2a;. Consider
the following list of positive integers which are elements of 4/ A:

z1 = a1+ az + a4 — as, Ys = a1 — az + a4 + as,
1 =—a1+as—as+a
1 1+ az —az +ag, Y6 = —a1 + a2 + as + as,
Yo = —a1 +az —aq + as,

T7 = a1 + a2 + a4 + as,
0o = —a1 +as —az + as,

Y7 = —a1 + a3 + aq + as,
B2 = —a1 — az + as + as,

rg = a a a a
Ys = —a1 — az + aq + as, 8 =01+ 03+ a4+ as,
24 =a1 —ag +as + as, Tg = ag + a3z +ayg + as.

Note that 0 < z1 < {z1,y2} < 62 < B2 < {ya, 24} < ys <y < {x7,97} < 28 < T9.
Thus, we have at least 26 elements in 4/ A. O

Lemma 6. Let A = {a1,a2,a3,a4,a5} be a set of positive integers with a; < as <
az < ag < as. If a; —a;—1 # 2aq for all i € [2,5] and ag — a3 # as — a1, then
|42 A| > 26.

Proof. Consider the following list of necessarily distinct integers:
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Y1 = —ay1 + az + a3z — aq, T7 = a1 +as+ aq4 + as,
r1 = —ay +as — az + ayq, rg = a1 + a3z +aq + as,
T2 = a1 + az — a3z + aq, Tg = az + a3z +as + as,
B1 = —a; —as + az + ag, Ys = a1 — az + a4 + as,
r3 =a1 —a +az+aq, Yo = —a1 + ag + aq + as,
T4 = —a1 + a2 + az + ag, Y7 = —a1 + ag + a4 + as,
T5 = a1 + as + az + ay, €1 = —ai +az + a4 — as,
25 = —aq + as + az + as, do = —a1 + a2 — az + as,
T = a1 + ag + asz + as, 23 =aj + a2 —as + as.

Since a; — a;—1 # 2a; for all i € [2,5] and a4 — a3z # az — a1, we have
Yo # T6, Y7 # T7, T5 # 25, To # 02, and 71 # 0. (32)
Therefore, from (11) and (32), we have
O<{mor —m}<z <za<a3<a4<{2525}<x6<27 <28 < Tyg.
Also
Ty < 25 <Y < Ty, Ty < 25 <yr<xg, 1 < P1 <x3, and 1 < ds.

Consider the following cases.

Case A: a3 75 as + ay. In this case, xo = a1 +as —az+ay 75 —a1—as+az+ag = P
Now, consider the following subcases.
(i) If yg # w5, then we have at least 13 positive integers in 4/ A as follows:

0< {’}/1 or 7’}/1} < < {Iz,ﬂl} <3 <y < {25,I5,y6,l’6} < x7 <x8 < X9.

(i¢) If y¢ = x5 and y7 # x, then we have at least 13 positive integers in 4} A as
follows:

0<{yior —m} <z <{xe, b1} < w3 <4 <{25,Y6,yr, 6} < 27 < 28 < Tg.
(#i1) If y¢ = x5 and y; = xg, then a5 — a3 = 2a1 and a4 — agz = 2a;. Therefore,
€= —a1+az+ag—as=—a;+a4—2a; = —ay +az <1,

T1 <0y =—ai1+ay—az+as=ay+a <ay+a—az+as = x2,
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and
B1=—a1—az+as+as = a1 +as > a; + az = do.
It follows that
0<er <a1 <g < {1‘2,61} <r3 < Ty < {Z5,$5} <Tg < Ty <2y < Tg.

Therefore, in each of the above subcases, we have at least 13 positive integers in
44 A.

Case B: az = az + a;. From (11) and (32), we have
0<{yor —m} <z <{xg,00} <23 <24 <25 <{ws,ys} <7 <8 < Tyg.

Also
Ty <23 <24 <Ys5 <Y < Tr, 25 < Yo < Yr < xg, and y7 # x7.

Now, we have the following observations.
1. If y; = xg, then ags — as = 2a1. So y5 < xg.

2. If y; = z¢ and y5 = z5, then ag—as = 2a1,a4—a3 = a1, and ag—a3z = 2a2—2a;.
This gives 2a2 = 3a1,2a3 = baq, 2a4 = Taq, and x3 # z3.

Now, consider the following subcases.
(i) If y7 # w6, then we have at least 13 positive integers in 4/} A as follows:

0<{yior —m} <z <{me,d2} < 23 < 24 < 25 < {mg,Ys,27,y7} < Tg < Tg.

(i¢) If y7 = x6 and ys # 25, then we have at least 13 positive integers in 4} A as
follows:

0<{mor —m} <z <{x2,02} < 23 <24 <{25,¥5,Y6, T6, 07} < Tg < Tg.

(#it) If y; = g, ys = 25, and 3 # d2, then we have at least 13 positive integers in
4 A as follows:

0<{mor —m} <z <{ma,d2,25,23} < 24 < 25 < {T6,Y6} < T7 < T8 < Tg.

(i) If y; = x6,y5 = 25, and x5 = 09, then 2as = 3a1,2a3 = 5ay,2a4 = Tap, and
2a5 = 15a1. In this subcase, 2x A = a1 %{2,3,5,7,15}. So [4} A| = |42 (2% A)| > 26.
Therefore, in each of these subcases, we have at least 13 positive integers in 4} A. [

Lemma 7. Let A = {a1,a2,as,a4,as5} be a set of positive integers with a1 < as <
az < ag < as. If agy — a3 = a2 — a1, as — ag # 2a1, and a; — a;—1 # 2aq for all
i €[2,5], then |42 A| > 26.

Proof. Consider the following list of necessarily distinct positive integers in 47 A:
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Y1 = —a1+ a2 + a3 — ay, rg = a1 + as + a4 + as,

Ty = —ay + a2 —az + ag, Tg = as + as + aq + as,

To = aQ as — Qa a
2 1+ a2 3+ a4, Yo = —a1 + a2 + aq + as,

B1 = —a1 — az + a3 + aq,

Y7 = —a1 + az + aq + as,
T3 = a1 — a2 + a3 + aq,

Yo = a1 + ag + a3 — ag,
T4 = —a1 + az + az + ag,

24 = a1 — a2 + as + as,
Ts = a1+ az + a3 + aq,

=-—a1—azxt+ag+a
Z5 = —ai + a2 + az + as, Ya 1 2 4 55
Te = a1+ az + az + as, Ys = a1 — a2 + a4 + as,
7 = a1 +ag + a4 + as, 23 = a1 +ag —as + as.

Since a5 — asg # 2a; and a; — a;—1 # 2a; for all i € [2,5], we have

T5 # Yo, Y6 7 T, Y7 # T7, and 5 # z5. (33)

Therefore, from (11) we have
0<m <wo <zg<zg <{T5,25,%6,Ys} < T7 < xg < Tg. (34)

Consider the following cases.

Case A: aq # ag + a1. We have, 9 # (1. Since 0 < 79 < x5 and 1 < 51 < x3, we
have the following subcases.

(i) If v9 # x1 and B1 # x2, then we can add 5, and -, in the list (34) to get 13
positive integers in 4} A as follows:

0 <{z1,22,B1,72} <23 < w4 <{x5,25,%6,Ys} < T7 < g < Ty.

(#4) If y9 = 21 and 1 = xo, then a4 — a3 = a1 and a3 — as = a1. Since ay — a3z =
as — a1, we have as = 2a1,a3 = 3a1, and aq4 = 4a;. Therefore, x5 = 4ay, r3 = 6aq,
x4 = 8a1, r5 = 10a1, x¢ = 6a1 + as, z5 = 4a1 + as, ys = 3a1 + a5, Y4 = a1 + as,
and as # baj, a5 # 6a;. Hence xo < y4 < ys < 25 < wg. It is easy to verify
that ys ¢ {x3, x4, %6, 25,96} and ys ¢ {3, %6, 25,ys}.- Now, we have the following
observations.

1. If y4 # x4, y4 # x5, and y5 # x5, then we have

0 <z <@ < {T3,24,T5,25,T6, Y, Ys, Yo } < T7 < g < Tg.

2. If ys = x5 or ys = x4, then a5 = Tay. So A =a; *x{1,2,3,4,7}.



INTEGERS: 24 (2024) 31

3. If y4 = x5, then a5 = 9a1. So A = a1 x{1,2,3,4,9}.

In each of these observations, we have at least 13 positive integers in 4/ A.

(#i7) If o = x1 and By # x2, then ay — ag = a1 and ag — as # a;. Since ay — ag =
as — a1, 80 ag = 2a; and az # 3a;. Consider y5 and y7. Then we have the following
observations.

1. If ys = a1 —as+ags+as = —a1 +as+az+aq = x4, then a5 — a3 = 2a2 —2a; =
2(aq — az) = 2ay. But a5 — a3z # 2a;. Therefore, y5 # x4.

2. f ys = a1 —as+as+as = —ay; +as + a3+ as = z5, then ay —az = 2a2 — 2a;.
But a4 — a3 = as — ay. Therefore, y5 # zs5.

3. Ifys = a1 —as + a4 + a5 = a1 + as + az + a5 = xg, then ay — az = 2a. But
a4 — az = a1. Therefore, y5 # xg.

Since x3 < y5 < yg < X7, T4 < 25 < Y < yr < xg and y; # x7, we have the
following situations.

1. If y5 # x5, then we have

0 <z <{me,B1} < wg < {x4,5, 25 %6,Y5,Ys } < Ty < g < Tg.
2. If y5 = x5 and y; # xg, then we have

0 <1 <{ma,B1} < 3 < {74,75,25, %6, Ys, Y7, T7} < Tg < Tg.

3. If y5 = x5 and y; = xg, then a5 = a3 + 4a; and a4 = as + 2a; = 4a,. This
gives A =a; *x{1,2,3,4,7}.

In each of these situations, we have at least 13 positive integers in 4/ A.
(i) If 45 # x1 and B = x9, then az = as + a; and so ag = a3z + ag — a1 = 2as.
Consider z3 and y7. Then we have

To < 23 < Tg <7, 23 < 24 < Yo <Yy < Tg,
Ty < z5 <yYr < Iy, Y7 # 7.

Now consider the following subcases.

1. If y7 # x5 and y; # xg, then we have

0 < {y2, 21} < w2 < 23 < 24 < {5, 25, T6, Y65, Y7, T7} < T8 < Tg.

2. If y; = x5, then a5 = 2a1 + as. S0 23 = a1 + a2 —az + a5 = 2a1 + az <
2as 4+ 2a1 = a1 — as + az + a4 = x3. Therefore, we have

0< {’}/2,351} LT <23 <3<y < {:r5,25,x6,y6} <x7 < w8 < XT9.
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3. If y; = wg, then ay = as + 2a;. Since ay = 2a3, we have ay = 2a;, a3 =
ay+as = 3a1, and ag = 2a9 = 4a;. Clearly, 23 € {25, ys, 27} and x2 < 23 < wg.
Now, consider the following situations.

(a) If z3 ¢ {x3, 24,5}, then
0 <{v2, 21} < w2 < {23,23, 24,25, 25, T6, Y6 } < T7 < 28 < Tg.
(b) If z5 = a3, then a5 = a4 + 2a3 — 2a3 = 6a;. So A =a; *{1,2,3,4,6}.

(¢) If z3 = x4, then a5 = aq + 2a3 — 2a1 = 8ay. So A =a; *{1,2,3,4,8}.
(d) If z5 = x5, then a5 = a4 + 2a3 = 10a;. So A = a3 *{1,2,3,4,10}.

In each of these situations, we have |4§A| > 26.
Therefore, in the case as # as + a1, we have at least 13 positive integers in 4/ A.
Case B: a4 = ag + a1. In this case, a3 = 2a; and as < 2a;. Therefore,
1 = —a1 +as —ag +ayg = 2a2 —2a1 < 2a7 = a1 +az + a3 —ag = y2 and yg < xg.
It follows that
0<z1 <y <xy<a3 <4 <{ms,25 Y} < Tg <7 < g < Tg. (35)

In (35), we have 12 distinct positive integers of 4} A. Next, we show the existence of
at least one more positive integer in 4} A which is different from the elements listed
in (35). Note that y; = —a1 + a3+ aqs+as = as+az+as < a1 +az + az + a5 = x.
Since z4 < 25 < yg < y7, we have the following subcases.

() If y7 # 5, then we have

0<x1 <712 <22 <3< X4 <{,’B5,Z57y6,y7}<$6 <x7r <y < Xg.

(it) If y; = x5 and z4 # x4, then a5 —ag = 2a7. Therefore z4 = 5a1 < 3a;+as+ay =
5. Since r3 < z4, we have

0<x1 <y <@y <3 <{24,%4,%5,25,Y6} < Te < Ty < xg < Tg.

(#it) If y; = x5 and z4 = x4, then a5 — az = 2a; and 2ay = 3a;. This gives
2x A =1{2,3,4,5,7}. In this case also, |4/£A| = |4/j\:(2 *A)| > 26. Therefore, we
have at least 13 positive integers in 4/ A. O

Lemma 8. Let A = {a1,a2,a3,a4,a5} be a set of positive integers with a; < as <
az < ag < as. If ag —az = ag — a1, as — az = 2a1, and a; — a;—1 # 2a1 for all
i €[2,5], then |42 A| > 26.

Proof. Consider the following list of nonnegative integers:
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T, = —ai1+as—asg+as = 2a02—2aq, Ts = a1 + as + az + ay,
Yo = —a1 + as — aq4 + a5 = 2a;, Te = a1 + as + asz + as,
0y = —ay +ay —az +as = a; + ay, T7 = ai +az + a4 + as,
T2 = a1+ az —ag + aqg = 2ag, g = a1 + a3z + aq + as,
T3 = a; — az + a3z + ag = 2ag, Tg = a2 +as + aq + as,
x4 = —a1 + a2 + a3 + a4 = 2ay, Z4 = a1 — ag + ag + as,
z5 = —ay +azt+az+as = aq +as, Y7 = —a1 + a3 + aq + as.
Clearly,

0<ys <y <o <zy <y <{2525} <2<y <28 < Tyg.

Since a5 — az = a5 — a4 + a4 — a3 = 2ay, we have a5 — aq = 2a1 — a4 + a3 =
2a1 — az + a1 = 3a; — as and a5 — a4 < 2a;. Therefore, z5 < x5. Consider the
following cases.

Case A: as # 2a;. In this case, x1 # yo. Therefore, we have
0<{.’E1,y2}<(52<£U2<$3<1’4<Z5<1’5<(E6<.’E7<£B8<{E9.

Also
T3 < 24 < z5 < x5 < Y7 < vg and y7; # x7.

Now, consider the following subcases.
(i) If 24 # x4, then we have at least 13 positive integers in 4/ A as follows:

0 <{z1,y2} <o <y <a3<{w4g,24} < 25 < x5 < 26 < 7 < T8 < Tg.
(i2) If y7 # x6, we have at least 13 positive integers in 4} A as follows:
0 <{z1,y2} <o <y <3 <x4<25<a5<{T6,27,9y7} < T8 < Tg.

(ii7) If z4 = x4 and y7 = xg, then a5 — ay = 2a3 — 2a; and ay — as = 2a;.
This gives 3as = 5ay, az = 3a1, as = bay, and 3aq4 = 1la;. Therefore, we have
3% A=a1%{3,59,11,15}. So [4} A| = [42(3* A)| > 26.

Case B: as = 2ay. In this case, a5 — a4 = 3a; —as = a1 and ag —az = as — a1 =
2a1 — a; = a;. Consider the following list of nonnegative integers:

T, = —ay +az — a3z +ay = 2ay,

d2 = —a1 + a2 —asz + a5 = 3ay,
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To = a1 + ay — a3z + ag = 4aq,
z3 = a1 + as — as + a5 = day,
z4 = a1 — az + a3 + a5 = a1 + 2as,
Tq = —a1 +az +az+aqg = a1 +az+ ay,
Z5 = —a1 +az + a3 +as = az + az + aq,
Trs = a1 + az + a3z + aq,
Tr3 = a1 — as + a3z + ag = 2as.
Clearly,
0<a1 <P <Ty<z3<z4<my<z5<T5<x5<w7<x8<T9andzy <x3<24.

Now, consider the following subcases.
(i) If x5 # z3, then we have at least 13 positive integers in 4/} A as follows:

0<z <y <ao<{z3,23} <24 <y <25 <5 <5<y <8< Ty,

(@) If x5 = 23, then 2a3 = a; + 2a3 = 5ay. Thus 2x A = a; x {2,4,5,7,9}. So
|42 A| = [44(2 % A)| > 26. O

Combining Lemma 6, Lemma 7, and Lemma 8, we have the following lemma.

Lemma 9. Let A = {a1,a2,a3,a4,a5} be a set of positive integers with a; < az <
az < ay < as. If a; —a;—1 # 2ay for all i € [2,5], then |4$A’ > 26.

Now, we give a proof of Theorem 10.

Proof of Theorem 10. Let A = {a1, a9, as,a4,a5} be a set of positive integers with
0<a; <as <as<ayg<as Ifa; —a;—1 =2a; for all i € [2,5], then by Theorem
3, |4QA’ = 25. If a; — a;—1 # 2a; for some ¢ € [2,5], then by Lemma 3, Lemma 4,
Lemma 5, and Lemma 9, f4/i\A| > 26.

Conversely, if ’4@14} = 25, then a; — a;—1 = 2a; for all ¢ € [2,5]. Otherwise,
Lemma 3, Lemma 4, Lemma 5, and Lemma 9 imply that }4/i\A| > 26. Thus,
A=a;*x{1,3,5,7,9}. This completes the proof of the theorem. O

By arguments similar to those used in Theorem 9, we have verified and proved
the following theorem.

Theorem 11. Let k > 5 be a positive integer and A be set of k nonnegative integers
with 0 € A. Then
|43 A| > 8k —19.

Furthermore, if |4QA| =8k — 19, then A=dx* [0,k —1].
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