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Abstract

Recently, a generalization of hyperbolic Pascal triangles was introduced. These tri-
angles are based on the regular mosaics in the hyperbolic plane and the number
of shortest paths in a graph-theoretical sense. A previous paper by the authors
describes a generalization with several properties, such as the recurrence relation
satisfied by the row sums. In the present paper, we describe the alternating sums
of rows linked to the regular square mosaic {4, q} with q ≥ 5, providing the corre-
sponding recurrence relations, explicit formula, and generating function.

1. Introduction

In the hyperbolic plane, there exist infinitely many types of regular mosaics denoted

by Schläfli’s symbol {p, q}, where the positive integers p and q satisfy the condition

(p− 2)(q − 2) > 4 (see [4]). The parameters p and q signify that exactly q regular

p-gons meet at each node of the mosaic. Each regular mosaic induces a so-called

hyperbolic Pascal triangle, following and generalizing the connection between the

classical Pascal triangle and the Euclidean regular square mosaic {4, 4}.
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The hyperbolic Pascal triangle based on the mosaic {p, q} can be represented as

a directed graph, where the vertices and the edges correspond to the vertices and

edges of a well-defined part of the lattice {p, q}, respectively. For {4, q}, the base

vertex has two edges, while the leftmost and rightmost vertices have three edges

each, and the remaining vertices have q edges. The square-shaped cells, surrounded

by appropriate edges, correspond to the squares in the mosaic. Apart from the

leftmost and the rightmost elements, referred to as winger elements, specific vertices,

designated as Type A vertices, have two ascendants and q−2 descendants; while the

other vertices, termed Type B vertices, have one ascendant and q − 1 descendants.

The general method of drawing is the following. Going along the vertices of

the jth row, according to the type of the elements (winger, A, B), we draw the

appropriate number of edges downwards (2, q−2, q−1, respectively). The edges of

two neighboring vertices in the jth row meet in the (j + 1)
th

row, forming a vertex

of type A. Apart from the wingers, the other descendants of row j in row (j + 1)

are of type B (see [1] for more details). Some interesting properties of hyperbolic

Pascal triangles have been investigated, including power sums, alternating sums,

and the connection between Fibonacci words and hyperbolic Pascal triangles (see,

for instance, [1, 5, 6, 7]).

Recently, generalized hyperbolic Pascal triangles (GHPT ) were introduced in

[2], which are structurally identical to the hyperbolic Pascal triangles associated

with {4, q}. In this generalization, two arbitrary sequences, {αn}n≥0 and {βn}n≥0,

define the leg-sequences. Figure 1 illustrates the GHPT for q = 5 with αn = 3n and

βn = 3n. In the figure, vertices of type A are represented by red circles, vertices of

type B by cyan diamonds, and wing vertices by white diamonds. The vertices that

are n edges away from the base vertex belong to row n.

Figure 1: Rows 0, 1, . . . , 5 of a GHPT linked to {4, 5}{3n,3n}
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In the sequel, )nk (
{αn,βn}

denotes the kth element in row n of GHPT generated

by the sequences {αn}n≥0 and {βn}n≥0, which are located on the left and right leg,

respectively. This element is either the sum of the values of its two ascendants or

the value of its unique ascendant.

Regardless of whether α0 ̸= β0, we replace all terms with Ω as an indeterminate

object. For convenience, we define σn = αn + βn and δn = αn − βn.

In the next section, we will summarize some key results from [1] and [2], which

are essential for proving the main result of this paper.

2. Previous Results

Fixing q, we consider the hyperbolic Pascal triangle {4, q}. Let sn denote the

number of vertices in row n. The sequence sn is detailed in [1]. According to the

types of the entries, we write

sn = an + bn + 2,

where an and bn denote the number of vertices of type A and B of the nth row,

respectively.

The three sequences {an}, {bn}, and {sn} satisfy the same ternary recurrence

relation for n ≥ 4:

xn = (q − 1)xn−1 − (q − 1)xn−2 + xn−3, (1)

with initial values a1 = 0, a2 = 1, a3 = 2; b1 = 0, b2 = 0, b3 = q − 4; s1 = 2, s2 =

3, s3 = q.

As previously noted, a generalized hyperbolic Pascal triangle is structurally iden-

tical to the hyperbolic Pascal triangle {4, q}. Therefore, the arguments presented

above remain applicable to GHPT .

Now, we state two consequences of Relation (1), upon which the proof of the

main result in this paper partially relies. For n ≥ 1, if q is even, then

sn ≡
{

0 (mod 2), for n = 2t+ 1,
1 (mod 2), for n = 2t.

(2)

Otherwise, if q is odd, then

sn ≡
{

0 (mod 2), for n = 3t+ 1,
1 (mod 2), for n ̸= 3t+ 1.

(3)

Moreover, let ân, b̂n, and ŝn denote the sum of elements of type A, the sum

of elements of type B, and the sum of all elements of the nth row in GHPT ,
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respectively. In [2], it was established that each of the three sequences {ân}{αn,βn},

{b̂n}{αn,βn}, and {ŝn}{αn,βn} satisfy the recurrence relation:

x̂n = (q − 1)x̂n−1 − 2x̂n−2 + wn−2, n ≥ 3, (4)

where the initial values and the sequence {wn} are given, respectively, by

1. â1 = 0, â2 = σ1, wn = σn+1 − (q − 3)σn for n ≥ 1,

2. b̂1 = 0, b̂2 = 0, wn = (q − 4)σn for n ≥ 1,

3. ŝ1 = σ1, ŝ2 = σ1 + σ2, wn = σn+2 − (q − 2)σn+1 + σn for n ≥ 1.

We also proved a practical general theorem in [2], which will be used later

under specific circumstances. Given a positive integer k and complex numbers

f0, f1, . . . , fk−1, define

fn = A1fn−1 +A2fn−2 + · · ·+Akfn−k (n ≥ k), (5)

where the coefficients A1, . . . , Ak−1, 0 ̸= Ak are fixed complex numbers. Moreover,

suppose that {wn}n≥0 ∈ C∞ is an arbitrary sequence. Based on the notation above,

we construct the linear recurrence

Gn = A1Gn−1 +A2Gn−2 + · · ·+AkGn−k + wn−k (n ≥ k), (6)

assuming that the complex initial values G0, G1, . . . , Gk−1 are also given. Note that

formulae (5) and (6) essentially differ only in the diverting sequence {wn}.

Theorem 1. For n ≥ k the terms of the sequences {fn}, {wn}, and {Gn} satisfy

the identity

k−1∑
j=0

fjGn+k−j =

k−1∑
j=0

k−1−j∑
i=0

fn−jAj+1+iGk−1−i +

k−2∑
j=0

k−1−j∑
i=1

fjAiGn+k−j−i

+

n∑
j=0

fn−jwj . (7)

The coefficients A1, . . . , Ak in the definition of {fn} are important in the sense

that they, together with {wn} also establish the sequence {Gn}. But, generally,

the initial values f0, . . . , fk−1 can be chosen as simply as possible. Therefore it is

natural, if there is no other reason, to put f0 = · · · = fk−1 = 0, fk−1 = 1. The next

corollary describes this situation.

Corollary 1. Assume that f0 = · · · = fk−2 = 0, fk−1 = 1. Then (7) simplifies to

Gn+1 =

k−1∑
j=0

k−1−j∑
i=0

fn−jAj+1+iGk−1−i +

n∑
j=0

fn−jwj . (8)
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The next section is the main focus of this paper, where we describe the alternating

sums of GHPT based on the {4, q} mosaic with q ≥ 5. We provide a recurrence

relation, an explicit formula, and the generating function.

3. Main Results

Let s̃n denote the alternating row sum

s̃n =
sn−1∑
i=0

(−1)i )nk (
{αn,βn}

of elements of the generalized hyperbolic Pascal triangle in row n. Put

q̃ =

{
1, if q is odd,

0, if q is even,

and

χn =


σn, if (q = 2k and n = 2t)

or (q = 2k + 1 and n ̸= 3t+ 1),

δn, if (q = 2k and n = 2t+ 1)

or (q = 2k + 1 and n = 3t+ 1).

(9)

Note that the two branches formulate the two cases sn even and odd, respectively.

Theorem 2. Assume n ≥ 4 if q is even, and n ≥ 6 otherwise. The sequence (s̃n)n
satisfies the recurrence relation

s̃n = 2q̃(5− q)s̃n−2−q̃ + wn−2−q̃, (10)

where

wn−2−q̃ = χn − χn−1 − q̃χn−2 − 2q̃(5− q)χn−2−q̃ + 2q̃χn−3−q̃,

and the initial values are as follows:

• For q even: s̃1 = δ1, s̃2 = σ2 − σ1, s̃3 = δ3 − δ2;

• For q odd: s̃1 = δ1, s̃2 = σ2 − σ1, s̃3 = σ3 − σ2 − σ1, s̃4 = δ4 − δ3 − δ2,

s̃5 = 2(q − 4)σ1 − σ3 − σ4 + σ5.

Proof. The basis of the proof is to consider the vertices of types A and B of row n

and to observe their influence either on s̃n+2 or on s̃n+3, depending on the parity

of q. We separate the contribution of each )nk({αn,βn}
individually, and then take

their superposition. Let s̃
(A)
n and s̃

(B)
n be the subsum of s̃n restricted only to the
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elements of type A and B, respectively. Since )n0( = αn and ) n
sn−1( = βn, we see

that:

s̃n = s̃(A)
n + s̃(B)

n + δn (11)

if sn is even. Otherwise,

s̃n = s̃(A)
n + s̃(B)

n + σn. (12)

Keeping the notation of [1], we use xA and xB to denote the value of an element

of type A and B, respectively. Their contributions to s̃n+k (k ≥ 1) are denoted

by Hk(xA) and Hk(xB), respectively. We also use the notation H(A)
k (xA) and

H(B)
k (xA) to represent the contribution of the type A element xA from row n to

the alternating sum of row n + k restricted to the elements of types A and B,

respectively. In accordance with [1], we express this as:

Hk(xA) =H(A)
k (xA) +H(B)

k (xA),

Hk(xB) =H(A)
k (xB) +H(B)

k (xB).

As the alternating sum begins with a positive coefficient, the contribution of the

leftmost element from row n to the alternating sum of row n + k is given by the

equation

Hk(αn) = H(A)
k (αn) +H(B)

k (αn) + αn+k. (13)

However, the contribution of the rightmost element from row n to the alternating

sum of the (n+ k)th row depends on the parity of sn the number of elements of the

nth row. Clearly,

Hk(βn) = H(A)
k (βn) +H(B)

k (βn)− (−1)snβn+k. (14)

It is easy to see that s̃0 = Ω, s̃1 = δ1, and s̃2 = σ2 − σ1 hold for all q ≥ 5.

Now, let us consider two cases:

Case 1: q is even. In this case, there is a connection between the alternating

sums of rows n and n+ 2. Specifically, as indicated in [5], the contributions of xA

and xB from row n to the alternating sum of row n+ 2 are given by:

H(A)
2 (xA) = −2(q − 4)ε1xA, H(B)

2 (xA) = (q − 4)ε1xA,

and

H(A)
2 (xB) = −2(q − 3)ε2xB , H(B)

2 (xB) = (q − 3)ε2xB ,

respectively. Here, ε1 = ±1 and ε2 = ±1 when considering the vertex of type A

and the vertex of type B, respectively.

Figure 2 shows the contributions of the influence of the leftmost element of row

n to row n+ 2. Thus,

H(A)
2 (αn) = −αn+1, H(B)

2 (αn) = 0.
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Figure 2: The influence of H2(αn)

Similarly, the contributions of the influence of the rightmost element of row n to

row n+ 2, which depend on the parity of sn, are given by:

H(A)
2 (βn) = (−1)snβn+1, H(B)

2 (βn) = 0.

We have described the influence of an element x (whether of type A, of type

B, or a winger element) located in row n on row n + 2. Let us suppose that y is

the value of the neighboring element of x in row n. The signs of x and y in the

alternating sum in row n are different, and the signs on the left hand side of their

influence structures are also different in row n+ 2. The change in the sign from x

to y entails the same change in the sign from H2(x) to H2(y). In other words, the

signs of the alternating sum in row n descend to row n + 2 in this manner. Thus,

according to [1] we can describe the changes in the alternating sums from row n to

row n+ 2.

Summarizing the results, we obtain the system of two recurrence equations as

follows.

Subcase (a): sn is even. In this case, for n ≥ 0, we get
s̃
(A)
n+2 = −2(q − 4)s̃

(A)
n − 2(q − 3)s̃

(B)
n − δn+1,

s̃
(B)
n+2 = (q − 4)s̃

(A)
n + (q − 3)s̃

(B)
n .

(15)

First, we multiply the first equation of the system by −1/(2(q − 3)) and eliminate

the term

s̃(B)
n =

−s̃
(A)
n+2

2(q − 3)
− (q − 4)

(q − 3)
s̃(A)
n − δn+1

2(q − 3)
.
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Then, by replacing s̃
(B)
n and the shifted term s̃

(B)
n+2 in the second equation of the

system, we immediately obtain

s̃
(A)
n+4 = (5− q)s̃

(A)
n+2 + (q − 3)δn+1 − δn+3, (n ≥ 0).

To find s̃
(B)
n+4, we follow the same approach that we used above. We divide the

second equation of system (15) by (q−4), eliminate s̃
(A)
n , and replace both s̃

(A)
n and

s̃
(A)
n+2 with the appropriate expressions. It leads right away to

s̃
(B)
n+4 = (5− q)s̃

(B)
n+2 − (q − 4)δn+1.

From (12), we conclude that for (n ≥ 0),

s̃n+4 = (5− q)s̃
(A)
n+2 + (5− q)s̃

(B)
n+2 + δn+1 − δn+3 + δn+4

= (5− q)s̃n+2 + δn+1 − (5− q)δn+2 − δn+3 + δn+4.

Subcase (b): sn is odd. In this case, for n ≥ 0, we get
s̃
(A)
n+2 = −2(q − 4)s̃

(A)
n − 2(q − 3)s̃

(B)
n − σn+1,

s̃
(B)
n+2 = (q − 4)s̃

(A)
n + (q − 3)s̃

(B)
n

(16)

holds. The analogous operations we applied to the system (15) now lead to

s̃
(A)
n+4 = (5− q)s̃

(A)
n+2 + (q − 3)σn+1 − σn+3,

and

s̃
(B)
n+4 = (5− q)s̃

(B)
n+2 − (q − 4)σn+1.

For n ≥ 0, it implies, by (11), that

s̃n+4 = (5− q)s̃
(A)
n+2 + (5− q)s̃

(B)
n+2 + σn+1 − σn+3 + σn+4

= (5− q)s̃n+2 + σn+1 − (5− q)σn+2 − σn+3 + σn+4.

For q even and n ≥ 4 the two cases above can be united as

s̃n = (5− q)s̃n−2 + (χn − χn−1 − (5− q)χn−2 + χn−3︸ ︷︷ ︸
wn−2

),

where χn is given in (9), and s̃1 = δ1, s̃2 = σ2 − σ1, s̃3 = δ3 − δ2.

Case 2: q is odd. In this case, we replicate the treatment from the previous case,

with some exceptions to be addressed. The key difference is that now we need to
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examine the influence of the elements from row n on row n + 3, as the property

regarding the signs first appears three rows later.

According to [5], the contributions of xA and xB from row n to the alternating

sum of row n+ 3 are given by

H(A)
3 (xA) = −4(q − 4)ε1xA, H(B)

3 (xA) = 2(q − 4)ε1xA,

and

H(A)
3 (xB) = −4(q − 3)ε2xB , H(B)

3 (xB) = 2(q − 3)ε2xB ,

where εi ∈ {±1} (i = 1, 2).

Figure 3 illustrates the contributions of the influence of the leftmost element in

row n to row n+ 3. Thus,

H(A)
3 (αn) = −2αn+1 − αn+2, H(B)

3 (αn) = αn+1.

Figure 3: The influence of H3(αn)

Then similarly, the contributions of the influence of the rightmost element in row

n to row n+ 3 are given by:

H(A)
3 (βn) = (−1)sn(2βn+1 + βn+2), H(B)

3 (βn) = −(−1)snβn+1.

Combining the information above results in the two systems of recurrence rela-

tions as follows. In Subcase (a), sn is even. In this case, for n ≥ 0, we get
s̃
(A)
n+3 = −4(q − 4)s̃

(A)
n − 4(q − 3)s̃

(B)
n − 2δn+1 − δn+2,

s̃
(B)
n+3 = 2(q − 4)s̃

(A)
n + 2(q − 3)s̃

(B)
n + δn+1.

(17)



INTEGERS: 24 (2024) 10

The elimination process leads to

s̃
(A)
n+6 = 2(5− q)s̃

(A)
n+3 − δn+5 − 2δn+4 + 2(q − 3)δn+2, n ≥ 0;

s̃
(B)
n+6 = 2(5− q)s̃

(B)
n+3 + δn+4 − 2(q − 3)δn+2, n ≥ 0.

From (12), we conclude that for n ≥ 0, we have

s̃n+6 = 2(5− q)s̃
(A)
n+3 + 2(5− q)s̃

(B)
n+3 + δn+6 − δn+5 − δn+4

+2δn+2

= 2(5− q)s̃n+3 + δn+6 − δn+5 − δn+4 − 2(5− q)δn+3

+2δn+2.

Subcase (b): sn is odd. In this case, for n ≥ 0, we get
s̃
(A)
n+3 = −4(q − 4)s̃

(A)
n − 4(q − 3)s̃

(B)
n − 2σn+1 − σn+2,

s̃
(B)
n+3 = 2(q − 4)s̃

(A)
n + 2(q − 3)s̃

(B)
n + σn+1.

(18)

In this case, The elimination process leads to

s̃
(A)
n+6 = 2(5− q)s̃

(A)
n+3 − σn+5 − 2σn+4 + 2(q − 3)σn+2,

s̃
(B)
n+6 = 2(5− q)s̃

(B)
n+3 + σn+4 − 2(q − 4)σn+2.

Then, we get

s̃n+6 = 2(5− q)s̃
(A)
n+3 + 2(5− q)s̃

(B)
n+3 + σn+6 − σn+5 − σn+4

+2σn+2

= 2(5− q)s̃n+3 + σn+6 − σn+5 − σn+4 − 2(5− q)σn+3

+2σn+2.

It follows that for q odd and n ≥ 6, we have

s̃n = 2(5− q)s̃n−3 + (χn − χn−1 − χn−2 − 2(5− q)χn−3 + 2χn−4︸ ︷︷ ︸
wn−3

).

The initial values are given by s̃1 = δ1, s̃2 = σ2 − σ1, s̃3 = σ3 − σ2 − σ1, s̃4 =

δ4 − δ3 − δ2, and s̃5 = 2(q − 4)σ1 − σ3 − σ4 + σ5.

Remark 1. In case αn = βn, the alternating sum would return 0 when sn is even,

since the triangle would be vertically symmetrical.

Remark 2. In the specific case where αn = 1, βn = 1, and q = 4, the theorem

implies that the alternating sum s̃n evaluates to 0. This result aligns with the

well-known property of the original Pascal’s triangle, where s̃n = 0.
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Assume that the root element Ω equals 0. Then it is easy to check that taking

σ0 = δ0 = 0, s̃0 = 0

recurrence (10) holds for n ≥ 2 if q is even, and n ≥ 3 otherwise. Now

w0 =

{
σ3 − σ2 − σ1, if q is odd,

σ2 − σ1, if q is even.

These extensions facilitate the work with generating functions. Assume that the

generating functions of the sequences {s̃n} and {wn} are denoted by S(t) =
∑∞

i=0 s̃it
i

and W (t) =
∑∞

i=0 wit
i, respectively.

Theorem 3. The generating function of {s̃n} is given as follows. Let cf (t) =

t2+q̃ − 2q̃(5 − q) denote the generating function of the recursive sequence fn =

2q̃(5− q)fn−2−q̃ for n ≥ 2 + q̃ (with arbitrary initial values).

• If q is even, then

S(t) =
s̃1t+ t2W (t)

t2cf (1/t)
.

• If q is odd, then

S(t) =
s̃1t+ s̃2t

2 + t3W (t)

t3cf (1/t)
.

Proof. The standard method provides the identities above. This is the evaluation

of the equality

∞∑
i=2+q̃

ŝit
i = 2q̃(5− q)

∞∑
i=2+q̃

ŝi−2−q̃t
i +

∞∑
i=2+q̃

wi−2−q̃t
i.

Corollary 1, together with Theorem 2 and the sequence {fn} implies the following

explicit formula.

Theorem 4. The following formula holds for n ≥ 1 + q̃:

s̃n+1 = 2q̃(5− q) (fn−1δ1 + q̃fn−2(σ2 − σ1)) +

n∑
j=0

fn−jwj .

Proof. The recurrence in (8) is used in a direct manner. {fn} has just been fixed

in Theorem 3, and {Gn} is s̃n with the initial values described in Theorem 2, with

the extensions after its proof. The sequence {wn} is also given in Theorem 2.
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The order of the recurrence {fn} is 2 or 3 depending on the parity of q. The

(complex) zeros of the characteristic polynomial cf (t) = t2+q̃−2q̃(5−q) are distinct

if q > 5, and are given by 2+q̃
√
2q̃(5− q). Note that in the specific case when αn = 1

and βn = 1, the alternating sum has the following explicit formulas (see [5]). For q

even:

s̃n =

{
0, if n = 2t+ 1, n ≥ 1,

−2(5− q)t−1 + 2, if n = 2t, n ≥ 2.

For q odd (q ≥ 5):

s̃n =


0, if n = 3t+ 1, n ≥ 1,

(−2)t(5− q)t−1 + 2, if n = 3t− 1, n ≥ n1,

2(−2)t(5− q)t−1 + 2, if n = 3t, n ≥ n2,

where (n1, n2) = (2, 3) and (n1, n2) = (5, 6) if n > 5 and n = 5, respectively. In the

latter case, s̃2 = 0 and s̃3 = −2.

With the help of ŝn and s̃n we can easily determine the alternating sum with the

arbitrary weights v and w.

Corollary 2. We have

s̃(v,w),n =

sn−1∑
i=0

(vδ0,imod2 + wδ1,imod2) )n
k

(
{αn,βn}

=
ŝn + s̃n

2
v +

ŝn − s̃n
2

w

=
v + w

2
ŝn +

v − w

2
s̃n,

where δi,j is the Kronecker delta.
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