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Abstract

In this paper, for any positive integer ℓ ≥ 2, we define the ℓ-generalized Fibonacci
zeta function. We then study its analytic continuation to the whole complex plane
C. Further, we compute a possible list of singularities and residues of the function at
these simple poles. Moreover, we deduce that the special values of the ℓ-generalized
Fibonacci zeta function at negative integer arguments are rational.

1. Introduction

Let ℓ ≥ 2 be an integer. The nth ℓ-generalized Fibonacci sequence
(
F

(ℓ)
n

)
n≥2−ℓ

is

defined as

F (ℓ)
n = F

(ℓ)
n−1 + F

(ℓ)
n−2 + · · ·+ F

(ℓ)
n−ℓ

with the initial conditions

F
(ℓ)
−(ℓ−2) = F

(ℓ)
−(ℓ−3) = · · · = F

(ℓ)
0 = 0, and F

(ℓ)
1 = 1.

Also, F
(ℓ)
n is called the nth ℓ-generalized Fibonacci number. From [3], we obtain

that

F (ℓ)
n = 2n−2 for all 2 ≤ n ≤ ℓ+ 1, and F (ℓ)

n < 2n−2 for all n ≥ ℓ+ 2.

The characteristic polynomial of the ℓ-generalized Fibonacci sequence is given by

ϕℓ(x) = xℓ − xℓ−1 − · · · − x− 1. (1)
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It is irreducible over Q[x] and has one root outside the unit circle. Let α = α1

be that single root which lies between 2
(
1− 2−ℓ

)
and 2 (see [10]), which is the

dominant root of ϕℓ(x). Let the other roots of the polynomial (1) be α2, . . . , αℓ.

When ℓ is an even integer, ϕℓ(x) has one negative real root which lies in the interval

(−1, 0). In 2014, Dresden and Du [4] gave the “Binet-like formula” for the terms

F
(ℓ)
n which is given by

F (ℓ)
n =

ℓ∑
i=1

αi − 1

2 + (ℓ+ 1)(αi − 2)
αn−1
i . (2)

From [4], it is also known that∣∣∣∣F (ℓ)
n − α− 1

2 + (ℓ+ 1)(α− 2)
αn−1

∣∣∣∣ < 1

2
for all n ≥ 2− ℓ.

In 2013, Bravo and Luca [2] obtained that

αn−2 ≤ F (ℓ)
n ≤ αn−1 holds for all n ≥ 1 and ℓ ≥ 2. (3)

When ℓ = 2, F
(ℓ)
n is same as the Fibonacci number Fn, and when ℓ = 3, it coincides

with the Tribonacci number Tn.

The Fibonacci zeta function is defined by the series

ζF (s) =

∞∑
n=1

1

F s
n

, Re(s) > 0.

The analytic continuation of the Fibonacci zeta function was studied by Navas [8] in

2001. The arithmetic nature of the special values of the Fibonacci zeta function and

of the Riemann zeta function ζ(s) behave similarly. The irrationality of ζF (1) was

proved by André-Jeannin [1] in 1989, while the transcendence of ζF (2m), form ∈ N,
was given by Duverney et al. [5] in 1997. Furthermore, in 2007, Elsner et al. [6]

showed that ζF (2), ζF (4), ζF (6) are algebraically independent over Q. Murty [7]

deduced that ζF (2m), for m ∈ N, is transcendental by using the theory of modular

forms and a result of Nesterenko [9].

In this paper, we introduce the ℓ-generalized Fibonacci zeta function which is

defined by

ζF (ℓ)(s) =

∞∑
n=1

1(
F

(ℓ)
n

)s .
When ℓ = 2, it is same as the Fibonacci zeta function ζF (s). In this paper, we

study the analytic continuation of the ℓ-generalized Fibonacci zeta function. We

also give a list of possible singularities of the function ζF (ℓ)(s) and calculate their

residues. Moreover, we discuss the arithmetic nature of the ℓ-generalized Fibonacci

zeta function at negative integer arguments.
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The paper is organized as follows. In Section 2, we prove that ζF (ℓ)(s) is abso-

lutely convergent in Re(s) > 0. In Section 3, we obtain the analytic continuation

of the ℓ-generalized Fibonacci zeta function ζF (ℓ)(s), and compute a list of possi-

ble poles and their residues. In Section 4, we prove that the special values of the

ℓ-generalized Fibonacci zeta function at negative integer arguments are rational.

2. Preliminaries

Proposition 1. The infinite series
∑

n>0

(
F

(ℓ)
n

)−s

converges absolutely in the right

half plane {s ∈ C : Re(s) > 0}.

Proof. From (3), we get∣∣∣∣(F (ℓ)
n

)−s
∣∣∣∣ = (F (ℓ)

n

)−σ

≤
(
αn−2

)−σ
= α2σ

(
α−nσ

)
. (4)

Since σ = Re(s) > 0, from (4), we obtain

∞∑
n=1

∣∣∣∣(F (ℓ)
n

)−s
∣∣∣∣ ≤ α2σ

∞∑
n=1

(
α−nσ

)
=

α2σ

ασ − 1
< ∞.

The next lemma tells us that the integer closest to the first term of the Binet-like

formula is the ℓ-generalized Fibonacci number.

Lemma 1 (Dresden and Du [4]). Let F
(ℓ)
n be the nth ℓ-generalized Fibonacci num-

ber. Then

F (ℓ)
n = rnd

(
α− 1

2 + (ℓ+ 1)(α− 2)
αn−1

)
for all n ≥ 2− ℓ,

where α is the unique positive dominant root and rnd(x) = ⌊x+ 1
2⌋ denotes the value

of x rounded to the nearest integer.

3. Analytic Continuation of the ℓ-Generalized Fibonacci Zeta Function

Theorem 1. The ℓ-generalized Fibonacci zeta function ζF (ℓ)(s) can be meromor-

phically continued to the whole complex plane C with possible simple poles at

s=sk,k2,...,kℓ,n=−k+
2niπ + k2 logα2 + · · ·+ kℓ logαℓ

logα
, n ∈ Z, k, k2, k3, ..., kℓ ∈ N0

(5)
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such that k = k2 + k3 + · · ·+ kℓ, where N0 denotes the set of non-negative integers

and log(αi) (i = 1, 2, . . . , ℓ) are the principal values whose imaginary parts lie in

the interval (−π, π]. Moreover, the residue of ζF (ℓ)(s) at s = sk,k2,...,kℓ,n is(
α− 1

2 + (ℓ+ 1)(α− 2)
α−1

)−sk,k2,...,kℓ,n
(
−sk,k2,...,kℓ,n

k

)(
α− 1

2 + (ℓ+ 1)(α− 2)
α−1

)−k

× k!

k2! · · · kℓ!

ℓ∏
i=2

(
αi − 1

2 + (ℓ+ 1)(αi − 2)
α−1
i

)ki 1

logα
.

Proof. Because of Lemma 1 and the fact that F
(ℓ)
n ∈ Z>0, we have∣∣∣∣( α− 1

2 + (ℓ+ 1)(α− 2)
αn−1

)∣∣∣∣ ≥ 1

2
.

Therefore, we get that∣∣∣∣∣∣
∑ℓ

i=2

(
αi−1

2+(ℓ+1)(αi−2)α
n−1
i

)
(

α−1
2+(ℓ+1)(α−2)α

n−1
)

∣∣∣∣∣∣ =
∣∣∣F (ℓ)

n − α−1
2+(ℓ+1)(α−2)α

n−1
∣∣∣∣∣∣( α−1

2+(ℓ+1)(α−2)α
n−1
)∣∣∣ <

1/2

1/2
= 1.

Now, we express(
F (ℓ)
n

)−s

=

((
(α− 1)αn−1

2 + (ℓ+ 1)(α− 2)

)
+

ℓ∑
i=2

(
αi − 1

2 + (ℓ+ 1)(αi − 2)
αn−1
i

))−s

=

(
(α− 1)αn−1

2 + (ℓ+ 1)(α− 2)

)−s
1 +

∑ℓ
i=2

(
αi−1

2+(ℓ+1)(αi−2)α
n−1
i

)
(

α−1
2+(ℓ+1)(α−2)α

n−1
)

−s

=

(
(α− 1)αn−1

2 + (ℓ+ 1)(α− 2)

)−s ∞∑
k=0

(
−s

k

)∑ℓ
i=2

(
αi−1

2+(ℓ+1)(αi−2)α
n−1
i

)
(

α−1
2+(ℓ+1)(α−2)α

n−1
)

k

.

Using Proposition 1, observe that

∞∑
n=1

∣∣∣∣∣∣∣
(

(α− 1)αn−1

2 + (ℓ+ 1)(α− 2)

)−s ∞∑
k=0

(
−s

k

)∑ℓ
i=2

(
αi−1

2+(ℓ+1)(αi−2)α
n−1
i

)
(

α−1
2+(ℓ+1)(α−2)α

n−1
)

k
∣∣∣∣∣∣∣

=

∞∑
n=1

∣∣∣∣(F (ℓ)
n

)−s
∣∣∣∣ < ∞.



INTEGERS: 24 (2024) 5

On interchanging the order of summation and using the multinomial expansion

formula, we get that

∞∑
n=1

(
F (ℓ)
n

)−s

=

∞∑
n=1

(
(α− 1)αn−1

2 + (ℓ+ 1)(α− 2)

)−s ∞∑
k=0

(
−s

k

)∑ℓ
i=2

(
αi−1

2+(ℓ+1)(αi−2)α
n−1
i

)
(

α−1
2+(ℓ+1)(α−2)α

n−1
)

k

=

∞∑
k=0

(
−s

k

) ∞∑
n=1

(
(α− 1)αn−1

2 + (ℓ+ 1)(α− 2)

)−s
∑ℓ

i=2

(
αi−1

2+(ℓ+1)(αi−2)α
n−1
i

)
(

α−1
2+(ℓ+1)(α−2)α

n−1
)

k

=

(
α− 1

2 + (ℓ+ 1)(α− 2)
α−1

)−s ∞∑
k=0

(
−s

k

){(
α− 1

2 + (ℓ+ 1)(α− 2)
α−1

)−k

×
∑
k2+···
+kℓ=k

k!

k2! · · · kℓ!

ℓ∏
i=2

(
(αi − 1)α−1

i

2 + (ℓ+ 1)(αi − 2)

)ki ∞∑
n=1

(
αk2
2 · · · αkℓ

ℓ

αs+k

)n}
.

Note that

∣∣∣∣αk2
2 ···αkℓ

ℓ

αs+k

∣∣∣∣ ≤ αk2+···+kℓ

ασ+k = 1
ασ < 1 for σ > 0. Therefore, the above series

becomes

ζF (ℓ)(s) =

(
α− 1

2 + (ℓ+ 1)(α− 2)
α−1

)−s ∞∑
k=0

(
−s

k

){(
α− 1

2 + (ℓ+ 1)(α− 2)
α−1

)−k

×
∑
k2+···
+kℓ=k

k!

k2! · · · kℓ!

ℓ∏
i=2

(
(αi − 1)α−1

i

2 + (ℓ+ 1)(αi − 2)

)ki
1

αs+kα−k2
2 · · · α−kℓ

ℓ − 1

}
.

(6)

From (2), it is clear that for any integer i with 1 ≤ i ≤ ℓ, we have 2+(ℓ+1)(αi−2) ̸=
0. Note that the function

hk,k2,...,kℓ
(s) =

1

αs+kα−k2
2 · · · α−kℓ

ℓ − 1

has poles at

s = −k +
2niπ + k2 logα2 + · · ·+ kℓ logαℓ

logα
, n ∈ Z, k, k2, k3, ..., kℓ ∈ N0

with k = k2 + k3 + · · ·+ kℓ.

Consider the function

gk,k2,...,kℓ
(s) = αs+kα−k2

2 · · · α−kℓ

ℓ − 1.
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Then, we have

g′k,k2,...,kℓ
(s) = αs+kα−k2

2 · · · α−kℓ

ℓ logα.

Thus, the value of g′k,k2,...,kℓ
(s) at

s = sk,k2,...,kℓ,n = −k +
2niπ + k2 logα2 + · · ·+ kℓ logαℓ

logα

is logα, which is non-zero. Therefore, the poles of hk,k2,...,kℓ
(s) are simple.

The series (6) determines a holomorphic function on C except for the poles de-

rived from the function hk,k2,...,kℓ
(s). Hence, the function ζF (ℓ)(s) can be meromor-

phically continued to the whole s-plane and it has the possible simple poles at

s = sk,k2,...,kℓ,n = −k +
2niπ + k2 logα2 + · · ·+ kℓ logαℓ

logα
.

Since the residue of

hk,k2,...,kℓ
(s) =

1

αs+kα−k2
2 · · · α−kℓ

ℓ − 1

at

s = sk,k2,...,kℓ,n = −k +
2niπ + k2 logα2 + · · ·+ kℓ logαℓ

logα

is

Ress=sk,k2,...,kℓ,n
hk,k2,...,kℓ

(s) =
1

d
ds

(
αs+kα−k2

2 · · · α−kℓ

ℓ − 1
)∣∣∣∣∣

s=sk,k2,...,kℓ,n

=
1

logα
,

the residue of ζF (ℓ)(s) at s = sk,k2,...,kℓ,n is

Ress=sk,k2,...,kℓ,n
ζF (ℓ)(s)

=

(
(α− 1)α−1

2 + (ℓ+ 1)(α− 2)

)−sk,k2,...,kℓ,n
(
−sk,k2,...,kℓ,n

k

)(
(α− 1)α−1

2 + (ℓ+ 1)(α− 2)

)−k

× k!

k2! · · · kℓ!

ℓ∏
i=2

(
αi − 1

2 + (ℓ+ 1)(αi − 2)
α−1
i

)ki 1

logα
.

Remark 1. When ℓ = 2, we have αα2 = −1, and thus α2 = −1
α . Since α is a

positive real number, argα2 = π. From (5), we get that

s = sk,k2,n =− k +
2niπ + k logα2

logα
= −k +

2niπ + k log |α2|+ ik argα2

logα

=− k +
2niπ − k log |α|+ ik argα2

logα
= −2k + i

2nπ + k argα2

logα

=− 2k +
iπ(2n+ k)

logα
.
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This is the same list of poles as obtained by Navas [8].

Next, we discuss the special cases of singularities for our better understanding.

Corollary 1. Let n ∈ Z, k ∈ N0 such that (ℓ − 1)|k. Then, the possible poles of

ζF (ℓ)(s) are given by

sk, k
ℓ−1 ,...,

k
ℓ−1 ,n

=

{
−(k + k

ℓ−1 ) + i
π(2n+ k

ℓ−1 )

logα if ℓ is even ,

−(k + k
ℓ−1 ) + i 2nπ

logα if ℓ is odd .
(7)

Proof. Note that αα2 · · ·αℓ = (−1)ℓ+1. Therefore, we have |αα2 · · ·αℓ| = 1. This

implies that

logα+ log |α2|+ · · ·+ log |αℓ| = 0. (8)

Observe that α > 1 and for 1 ≤ j ≤ ℓ, we can write logαj = log |αj | + i argαj ,

where i =
√

(−1) and argαj ∈ (−π, π]. Since the logαj ’s are principal values of

complex logarithms, if ℓ is odd,

argα2 + · · ·+ argαℓ = 0, (9)

and if ℓ is even,

argα2 + · · ·+ argαℓ = π. (10)

Now using (8), (9), and (10) in (5) with k2 = k3 = · · · = kℓ = k
ℓ−1 ∈ N0, we get

(7).

Remark 2. From Corollary 1, we can see that some of the possible poles lie on

the lines Re(s) = −(k + k
ℓ−1 ) spaced at intervals of length 2πi

logα . In particular, for

k ∈ N0, the possible simple poles of ζF (ℓ)(s) are s = −(k + k
ℓ−1 ), when ℓ is odd,

and s = −(k+ k
ℓ−1 ) + i kπ

(ℓ−1) logα , when ℓ is even. In this section, when ℓ is an even

integer and k = −2n(ℓ− 1), then from (7), we obtain s = 2nℓ, n ∈ Z≤0, which are

the possible simple negative integer poles.

4. Special Values at Negative Integer Arguments

Furthermore, we will discuss the values of ζF (ℓ)(s) at negative integers.

Theorem 2. Let m be a positive integer such that −m is not a pole of ζF (ℓ)(s).

Then ζF (ℓ)(−m) ∈ Q.

Proof. Let m be a positive integer such that −m is not a pole of ζF (ℓ)(s). Then
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from (6), we have

ζF (ℓ)(−m) =

m∑
k=0

(
m

k

)(
α− 1

2 + (ℓ+ 1)(α− 2)
α−1

)m−k

×

( ∑
k2+···+kℓ=k

k!

k2! · · · kℓ!

ℓ∏
i=2

(
(αi − 1)α−1

i

2 + (ℓ+ 1)(αi − 2)

)ki
1

α−(m−k)α−k2
2 · · ·α−kℓ

ℓ − 1

)
.

(11)

Note that, since 0 ≤ k ≤ m, we have 0 ≤ m− k ≤ m. Let b be a fixed integer with

0 ≤ b ≤ m. If we choose m − k = b, then k = m − b and −m + k = −b. Then, the

coefficient of
(

α−1
2+(ℓ+1)(α−2)α

−1
)b

in equation (11) is

(
m

m− b

) ∑
k2+···+kℓ
=m−b

(m− b)!

k2! · · · kℓ!
∏
i=2ℓ

(
(αi − 1)α−1

i

2 + (ℓ+ 1)(αi − 2)

)ki
1

α−bα−k2
2 · · ·α−kℓ

ℓ − 1
.

Let σ : Q(α, α2, · · · , αℓ) → Q(α, α2, · · · , αℓ) be a non-trivial field automor-

phism. We know that σ permutes the roots of the irreducible polynomial ϕℓ(x).

We choose r and j (1 ≤ j, r ≤ ℓ) such that σ(α) = αr and σ(αj) = α. Just for

abbreviation, we denote the term αr−1
2+(ℓ+1)(αr−2)α

−1
r by ar. Then, we have

σ(ζF (ℓ)(−m)) (12)

=

m∑
k=0

(
m

k

)
am−k
r

( ∑
k2+···+kℓ=k

k!

k2! · · · kℓ!

ℓ∏
i=2

(
σ(αi)− 1

2 + (ℓ+ 1)(σ(αi)− 2)
σ(αi)

−1

)ki

× 1

α
−(m−k)
r σ(α2)−k2 · · ·σ(αℓ)−kℓ − 1

)

=

m∑
k=0

(
m

k

)
am−k
r

( ∑
k2+···+kℓ=k

k!

k2! · · · kℓ!

ℓ∏
i=2
i ̸= j

(
σ(αi)− 1

2 + (ℓ+ 1)(σ(αi)− 2)
σ(αi)

−1

)ki

×
(

(α− 1)α−1

2 + (ℓ+ 1)(α− 2)

)kj 1

α
−(m−k)
r σ(α2)−k2 · · ·σ(αℓ)−kℓ − 1

)
.
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In (12), the coefficient of
(

α−1
2+(ℓ+1)(α−2)α

−1
)b

is

m∑
k=b

(
m

k

)
am−k
r

( ∑
k2+···+kj−1+kj+1···+kℓ=k−b

k!(∏ℓ
i=2
i ̸= j

ki!

)
b!

×
ℓ∏

i=2
i ̸= j

(
(αi − 1)α−1

i

2 + (ℓ+ 1)(αi − 2)

)ki
1

α−bα
−(m−k)
r

∏ℓ
i=2
i ̸= j

α−ki
i − 1

)

=

(
m

m− b

) m∑
k=b

am−k
r

1

(m− k)!

( ∑
k2+···+kj−1+kj+1···+kℓ=k−b

(m− b)!(∏ℓ
i=2
i̸= j

ki!

)
×

ℓ∏
i=2
i ̸= j

(
(αi − 1)α−1

i

2 + (ℓ+ 1)(αi − 2)

)ki
1

α−bα
−(m−k)
r

∏ℓ
i=2
i ̸= j

α−ki
i − 1

)
.

Note that (m − k) + (k − b) = m − b. Since k varies from b to m, we have 0 ≤
m− k ≤ m− b, and 0 ≤ ki ≤ m− b. Thus, the above sum will be(

m

m− b

) ∑
k2+···+kℓ
=m−b

(m− b)!

k2! · · · kℓ!

ℓ∏
i=2

(
(αi − 1)α−1

i

2 + (ℓ+ 1)(αi − 2)

)ki
1

α−bα−k2
2 · · ·α−kℓ

ℓ − 1
.

For any integer b with 0 ≤ b ≤ m, we have proved that the coefficient of(
α−1

2+(ℓ+1)(α−2)α
−1
)b

in ζF (ℓ)(−m) is equal to that in σ(ζF (ℓ)(−m)). Therefore, for

any field automorphism σ, we have σ(ζF (ℓ)(−m)) = ζF (ℓ)(−m). Hence ζF (ℓ)(−m) ∈
Q.

5. Concluding Remark

Analogous to the Fibonacci zeta function, it is interesting to find the zeros of the ℓ-

generalized Fibonacci zeta function. The study of arithmetic nature of special values

of the ℓ-generalized Fibonacci zeta function at positive even integer arguments is

another important object for future discussion.
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