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Abstract

First, we present a new proof of Glaisher’s formula dating from 1900 and concern-

ing Wilson’s theorem modulo p2. Our proof uses p-adic numbers and Faulhaber’s

formula for the sums of powers (dating back to the 17th century), as well as more

recent results on Faulhaber’s coefficients obtained by Gessel and Viennot. Second,

by using our method, we find a simpler proof than Sun’s proof regarding a formula

for (p− 1)! modulo p3, and one that can be generalized to higher powers of p.

1. Introduction

For p a prime number, Wilson’s theorem states that

(p− 1)! ≡ −1 (mod p).

While there exist lots of proofs for Wilson’s theorem, much less has been done

regarding Wilson’s theorem modulo p2 or higher powers. It is mentioned at the

end of [9] that there is no simple function of p defining the integer n1 such that

(p− 1)! ≡ −1 + n1p (mod p2). In [11], Wilson’s theorem modulo p2 is only stated

as

(p− 1)! ≡ (−1)
p−1
2 22p−2

(
p− 1

2
!

)2

(mod p2).

However, British mathematician J.W.L. Glaisher found a formula for (p−1)!mod p2

in 1900 [7] that uses Bernoulli numbers. A hundred years later, in 2000, Z-H Sun

provided a different perspective [17]. His method even allowed him to compute

(p − 1)! (mod p3), thus generalizing Glaisher’s result, whose work had only led to

a formula for (p − 1)! (mod p2). Sun’s result modulo p3 is expressed in terms of

divided Bernoulli numbers. We outline Sun’s method below.
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First, he determines the generalized harmonic numbers Hp−1,k modulo p3. For

that, he uses a battery of tools, including:

1. Euler’s theorem;

2. Bernoulli’s formula for the sums of powers modulo p3;

3. The von Staudt–Clausen theorem [19][2] which determines the fractional part

of Bernoulli numbers;

4. An unpublished result of [18] providing formulas for pBk(p−1) modulo p2 and

p3 respectively, for k = p− 2 and k = p− 1;

5. Some generalizations modulo p2 [17] of the Kummer congruences [14] by Sun

himself.

Second, he uses Newton’s formulas, together with Bernoulli’s formula modulo

p2, in order to derive the Stirling numbers modulo p2. From there, he obtains

in particular a congruence for (p − 1)!mod p3 that was first proven by Carlitz [1].

Likewise, by using Newton’s formulas with generalized harmonic numbers and what

Sun denotes as the conjugates of the Stirling numbers, he finds a formula for the

conjugate Stirling numbers modulo p2, followed by a “conjugate Carlitz congru-

ence”. By combining the various identities, he then derives a pioneering formula

for (p− 1)!mod p3, that is expressed only in terms of Bernoulli numbers.

In this paper, we provide new proofs for the generalization of Wilson’s theorem

to each modulus p2 and p3. Contrary to each of Glaisher’s and Sun’s earlier works,

our method generalizes to higher moduli. This is one of the reasons to present it

here.

The paper arose from an analogy between two polynomials f and g defined as{
f = Xp−1 − 1 ∈ Z/pZ[X]
g = Xp−1 + (p− 1)! ∈ Zp[X],

where p is a prime number, Z/pZ denotes the field with p elements, and Zp denotes

the ring of p-adic integers; see [8]. The analogy is concerned with the way each

polynomial factors and with the congruence properties that can be derived in each

case from the relations between the coefficients and the roots.

We first investigate the factorization of f and the properties modulo p that can

be derived from it. By Fermat’s little theorem we have,

kp−1 = 1 in Z/pZ,

for all integers k with 1 ≤ k ≤ p− 1. This provides the (p− 1) roots of f , and so f

factors in Z/pZ[X] as

f = (X − 1)(X − 2) . . . (X − (p− 1)).
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From looking at the constant coefficient of f in both factored and expanded forms,

we retrieve Wilson’s theorem. This constitutes one of many proofs for Wilson’s

theorem. By looking at the other coefficients in both factored and expanded forms,

we derive more divisibility relations. Namely, for all integers k where 2 ≤ k ≤

p − 1, we have that p divides

[
p
k

]
. The latter numbers, referred to as un-

signed Stirling numbers of the first kind, are the respective unsigned coefficients

of x2, x3, . . . , xr+1, . . . , xp−1 in the falling factorial

x(x− 1)(x− 2) . . . (x− (p− 1)).

It is a well known fact that these numbers also count the number of permutations

of p elements that decompose into a product of k disjoint cycles.

Similarly, we now investigate the factorization of g. Let k be an integer with

1 ≤ k ≤ p− 1. First, we have

g(k) = kp−1 + (p− 1)! ∈ pZp, (1)

by definition of g and by using Wilson’s theorem modulo p. Moreover, we have

g
′
(k) = (p− 1) kp−2 ̸∈ pZp, (2)

as kp−2 = k−1 ̸= 0 in Z/pZ. Hence, by Hensel’s lemma [8], each nonzero k of

Z/pZ lifts to a unique root xk of g such that k−xk ∈ pZp. Let xk = k+ p tk, with

tk ∈ Zp. Then g factors in Zp[X] as follows,

g = (X − 1− p t1) . . . (X − (p− 1)− p tp−1).

We will see that, by looking at the constant coefficient of g modulo p2 Zp, we are

able to p-adically expand (p− 1)! further. Our result is the following.

Theorem 1. Let δ0(k) be defined for each integer k with 1 ≤ k ≤ p− 1 by

kp−1 ≡ 1 + p δ0(k) (mod p2).

Then, the following congruence holds:

(p− 1)! ≡ −1 + p

p−1∑
k=1

δ0(k) (mod p2).

By working out the sum of Theorem 1 modulo p2 using the Faulhaber polynomials

for the sums of powers of integers and by using Faulhaber’s neat statement on the

relationship between the two trailing coefficients of the polynomial for the odd

powers (work done in the 17th century [5]), we obtain Wilson’s theorem one step

further, namely modulo p2.
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Theorem 2. Let p be an odd prime number. Set p = 2l + 1 and a = p(p−1)
2 .

Let c1(l) be the trailing coefficient in the Faulhaber polynomial:

p−1∑
k=1

kp = cl(l) a
l+1 + . . . + c2(l) a

3 + c1(l) a
2. (3)

We have,
(i) for all i ∈ { 1, . . . , l}, ci(l) ∈ Zp ;

(ii) (p− 1)! ≡ 1
2 c1(l)− p (mod p2).

Corollary 1 (Wilson’s theorem modulo p2, [7]). Let p be a prime number and let

Bp−1 denote the Bernoulli number of order (p−1). The following congruence holds:

(p− 1)! ≡ pBp−1 − p (mod p2).

Wilson’s theorem modulo p2 was originally stated by Glaisher. Contrary to our

proof, his proof involves first finding the unsigned Stirling numbers of the first kind

modulo p2. Also, Glaisher’s method does not generalize to the modulus p3, while

ours does. Namely, Theorem 1 has a generalization to the modulus p3, as follows.

Theorem 3. Let δ1(k) denote the third residue in the p-adic expansion of kp−1,

namely:

kp−1 ≡ 1 + p δ0(k) + p2 δ1(k) (mod p3). (4)

Then, the following congruence holds:

(p− 1)! ≡ −1 + p

p−1∑
i=1

δ0(i) + p2
p−1∑
i=1

(
δ0(i) + δ1(i)

)

− p2

2

[( p−1∑
i=1

δ0(i)

)2

+

p−1∑
i=1

δ0(i)
2

]
(mod p3).

(5)

From there, it is easily seen that (p − 1)! modulo p3 can be written in terms of

sums of powers, and powers of sums of powers. We then derive a congruence for

(p− 1)! modulo p3 in terms of Bernoulli numbers.

Corollary 2. We have

(p− 1)! ≡ p

2
− 3

2
p2 + (2p+ 1)pBp−1 −

1

2
pB2p−2 −

1

2
p2 B2

p−1 (mod p3). (6)

We further show that this congruence, though of different expression, is equiv-

alent to the congruence obtained by Z-H. Sun in [17]. Again, our method can be

generalized to higher moduli, while Sun’s method does not apply to higher moduli.

The paper is divided into two parts, namely one presenting a proof of Wilson’s

theorem modulo p2 and one presenting a proof of Wilson’s theorem modulo p3.
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2. A Proof of Wilson’s Theorem Modulo p2

We recall that the polynomial g = Xp−1 + (p− 1)! ∈ Zp[X] factors as

g = (X − 1− p t1) . . . (X − (p− 1)− p tp−1).

In this part, we will work out the constant coefficient of the polynomial g modulo

p2 Zp, using both the factored form and the expanded form of g. This will lead

to the formula of Theorem 1. To that end, we will first need to investigate the

p-residues of the tk’s. For 1 ≤, k ≤ p− 1, we will denote the p-residue of tk by t
(0)
k .

Using Hensel’s lifting algorithm, we show the following result.

Lemma 1. Let k be an integer with 1 ≤ k ≤ p− 1. Then, we have

p t
(0)
k ≡ k(1 + (p− 1)! + p δ0(k)) (mod p2). (7)

Here, δ0(k) is defined as in the statement of Theorem 1; see Section 1.

Proof. We recall from the introduction that k ∈ Z/pZ lifts to a unique root k+ ptk
of g, with tk a p-adic integer. According to Hensel’s lifting algorithm, the second

coefficient t
(0)
k of the root expansion must satisfy

g(k + p t
(0)
k ) ∈ p2Zp.

Hence, we must have

kp−1 + p(p− 1)t
(0)
k kp−2 + (p− 1)! ∈ p2Zp. (8)

But,

kp−1 ≡ 1 + pδ0(k) (mod p2).

And so,

kp−2 ≡ k−1 + pδ0(k) k
−1 (mod p2).

Plugging the latter congruence into (8) and reducing modulo p2 yields the congru-

ence of Lemma 1.

Before moving any further, we will introduce some notation for the divided fac-

torials. Let r be an integer with 1 ≤ r ≤ p − 2 and let i1, i2, . . . , ir be r integers

with 1 ≤ ik ≤ p − 1 for all k with 1 ≤ k ≤ r. We define the divided factorial

(p− 1)!i1,..., ir as

(p− 1)!i1,..., ir :=
(p− 1)!∏r

k=1 ik
.

With Lemma 1, we are ready to prove Theorem 1, as follows.
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Proof of Theorem 1. By looking at the constant coefficient of g modulo p2, we

obtain
p−1∑
k=1

pt
(0)
k (p− 1)!k ≡ 0 (mod p2). (9)

Then, by using Lemma 1, we get

(p− 1)!

p−1∑
k=1

(1 + (p− 1)! + pδ0(k)) ≡ 0 (mod p2). (10)

We further derive

(p− 1)!
(
(p− 1)(1 + (p− 1)!) + p

p−1∑
k=1

δ0(k)
)
≡ 0 (mod p2). (11)

By using Wilson’s theorem modulo p inside the bracket, we derive in turn

(p− 1)!
(
− 1− (p− 1)! + p

p−1∑
k=1

δ0(k)
)
≡ 0 (mod p2). (12)

Finally, since p2 and (p− 1)! are relatively prime, we obtain the congruence of The-

orem 1. □

Using some of Faulhaber’s mathematics, we can now prove Theorem 2.

Proof of Theorem 2. First of all, Congruence (12) can be written in terms of a

sum of powers of integers as follows:

(p− 1)! ≡ −p+

p−1∑
k=1

kp−1 (mod p2). (13)

Sums of powers of integers were first studied by Faulhaber in 1631 [5]. He had

noticed that the sum of a fixed odd power of the first n integers is a polynomial in

a = n(n+1)
2 of the form

n∑
k=1

k2m+1 = c1(m)a2 + c2(m)a3 + · · ·+ cm(m)am+1. (14)

It was not until 1834 that his formula was given a rigorous proof, by Jacobi; see

[12]. Faulhaber’s formula for the even powers can be obtained from his formula for

the odd powers and reads

n∑
k=1

k2m =
n+ 1

2

2m+ 1
(2c1(m)a+ 3c2(m)a2 + · · ·+ (m+ 1)cm(m)am).
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Assume point (i) of Theorem 2 holds. Then, by using Faulhaber’s formula for sums

of even powers 2l of the first n integers with 2l = p− 1 and n = p− 1, we get

p

p−1∑
k=1

kp−1 ≡
(
p− 1 +

1

2

)(
2 c1(l)

p(p− 1)

2
+ 3 c2(l)

p2(p− 1)2

4

)
(mod p3). (15)

Further, back in the 17th century, Faulhaber states that the two trailing coefficients

in Equation (14) will have the form 4αa3−αa2. By using this fact and simplifying,

we obtain
p−1∑
k=1

kp−1 ≡ 1

2
c1(l) (mod p2). (16)

Combining Congruences (13) and (16) leads to Congruence (ii) of Theorem 2.

It remains to show (i). The starting point is Jacobi’s formula [12]. Using our

notation for a and letting u = 2a, Jacobi’s formula reads

p−1∑
k=1

k2l+1 =
1

p+ 1

(
A

(l+1)
0 ul+1 +A

(l+1)
1 ul + · · ·+A

(l+1)
l u

)
. (17)

In the most general form of the formula, the denominator p+ 1 should be replaced

with 2l + 2. Confronting Jacobi’s formula with Faulhaber’s formula in Equation

(3), we see that

A
(l+1)
l = 0 and ci(l) =

2i+1 A
(l+1)
l−i

p+ 1
. (18)

It is known that the coefficients A
(m)
k obey some recurrence formulas. Moreover,

an explicit formula for these coefficients was first obtained by Gessel and Viennot

in [6] and is provided by Knuth in [13]. Further, Edwards was the first to observe

from a recursive formula defining the A
(m)
k ’s and involving binomial coefficients,

that these numbers can be obtained by inverting a lower triangular matrix; see

[4]. From there, Gessel and Viennot expressed the coefficients in terms of a k × k

determinant, namely

A
(m)
k =

1

(1−m) . . . (k −m)

∣∣∣∣∣∣∣∣∣∣∣

(
m−k+1

3

) (
m−k+1

1

)
0 . . . 0(

m−k+2
5

) (
m−k+2

3

) (
m−k+2

1

)
. . . 0

...
...

...(
m−1
2k−1

) (
m−1
2k−3

) (
m−1
2k−5

)
. . .

(
m−1
1

)(
m

2k+1

) (
m

2k−1

) (
m

2k−3

)
. . .

(
m
3

)

∣∣∣∣∣∣∣∣∣∣∣
.

Of interest here, we note that this determinant is an integer. In fact, this determi-

nant has a neat combinatorial interpretation that is due to Gessel and Viennot. A

result in [6] states that this determinant counts the number of ways to put positive
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integers into a k-rowed tripled staircase, with numbers strictly increasing from left

to right and from top to bottom, and imposing also that an entry in row j is at

most m− k + j; see Figure 1.

Figure 1.

Our goal is to show that ci(l) ∈ Zp. For that, we use Formula (18). From the

discussion above, we know that

A
(l+1)
l−i =

1

l(l − 1)(l − 2) . . . (l − (l − i− 1))
× s,

for some integer s. Now l = p−1
2 < p, hence p does not divide the denominator of

A
(l+1)
l−i . Thus, A

(l+1)
l−i is a p-adic integer and so is ci(l) for each i. This closes the

proof of Theorem 2. □

We are now in a position to retrieve Glaisher’s result from 1900, stated in the

introduction as Corollary 1.

Proof of Corollary 1. It is known from [13] that

A
(m)
m−2 =

(
2m

2

)
B2m−2 for all m ≥ 2,

with the Bernoulli numbers defined recursively by

B0 = 1 and

n−1∑
k=0

(
n

k

)
Bk = 0, for n > 1.

Hence

c1(l) =
4A

(l+1)
l−1

p+ 1
=

4p(p+ 1)

2(p+ 1)
Bp−1 = 2pBp−1. (19)
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By (13), (16) and (19), we conclude that

(p− 1)! ≡ pBp−1 − p (mod p2).

This ends the proof of Corollary 1.

The method just exposed allows us to bypass the use of von Staudt-Clausen’s

theorem. Another way of getting Glaisher’s formula directly from Theorem 1 would

be to use Bernoulli’s formula together with von Staudt-Clausen’s theorem.

Bernoulli’s formula for the sums of powers reads

p∑
k=1

km =
1

m+ 1

m∑
j=0

(
m+ 1

j

)
Bj p

m+1−j , (20)

where we write the formula using Bernoulli numbers of the second type, that is,

B1 = 1
2 instead of B1 = − 1

2 and all the other Bernoulli numbers remain unchanged.

Since the Bernoulli numbers with odd indices are all zero, except for B1, this thus

avoids having to carry minus signs in the original Bernoulli formula. A trick first

noticed by Z-H. Sun consists of summing the (p− 1)th powers of integers up to p,

instead of (p− 1), since we work modulo small powers of p and the last term of the

sum will not contribute anyway. This way, Bernoulli’s formula can be expressed in

terms of powers of p instead of powers of (p− 1). We get:

p

p∑
k=1

kp−1 =

p−1∑
j=0

(
p

j

)
Bj p

p−j . (21)

By (13), we need to know p
∑p

k=1 kp−1 modulo p3. This is why we need to know

the p-divisibility properties of the denominators of the Bernoulli numbers. A con-

sequence of von Staudt-Clausen’s theorem is that the denominator of the Bernoulli

number B2n equals the product of all the primes p such that p − 1 divides 2n; see

[2], and independently [19]. Thus, amongst the Bernoulli numbers present in the

sum of Equation (21), the prime p divides the denominator of only Bp−1. We thus

deduce
p−1∑
k=1

kp−1 ≡ pBp−1 (mod p2Zp). (22)

Glaisher’s formula then follows from Congruences (13) and (22). □

We note from Glaisher’s formula an improvement for calculating (p−1)! modulo

p2. For instance, the one millionth Bernoulli number has 4767554 digits over 24

digits and the 1.5 millionth Bernoulli number has 7415484 digits over 55 digits. A

work by Derby dating from 2015 has provided an efficient method for computing

pBp−1. In order to explain Derby’s way, we must first introduce some new notation.
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Denote by P̂ T (n) the lower triangular matrix obtained by entering the coefficients

of the Pascal triangle with the ending 1 coefficient omitted.

Write

p−1∑
k=1

kp =
1

p+ 1

p∑
j=0

(
p+ 1

j

)
Bj (p− 1)p+1−j

= d1(p− 1) + d2(p− 1)2 + · · ·+ dp+1(p− 1)p+1,

according to Bernoulli’s formula. Derby’s result provides a way of computing the

coefficients di by simply inverting a matrix involving the Pascal triangle.

Fact 1 ([3]). We have

(1 p . . . p 1)P̂ T (p+ 1)−1 = (d1 d2 . . . dp+1),

with the leftmost parenthetical expression denoting the p-th row of the Pascal trian-

gle.

From there, since the second coefficient d2 is

1

p+ 1

(
p+ 1

p− 1

)
Bp−1 =

p

2
Bp−1,

it provides an efficient way of computing (p− 1)! modulo p2.

For interest and completeness here, we note that work similar to Derby’s, and ad-

ditional results involving the sums of powers and the Pascal triangle, were achieved

by Pietrocola and published electronically in 2017; see [15].

3. A Proof of Wilson’s Theorem Modulo p3

Like we did in the modulus p2 case, we must lift the root residues of g one p-

power further. First, we introduce a new notation. In what follows, the xk’s with

1 ≤ k ≤ p− 1 denote the (p− 1) p-adic integer roots of g = Xp−1 +(p− 1)!. Define

t
(1)
k as the p-adic residue such that

xk ≡ k + p t
(0)
k + p2 t

(1)
k (mod p3).

The following lemma will be useful for the proof of Theorem 3.

Lemma 2. We have

t
(1)
k ≡ k

(
δ0(k) + δ1(k) +

(
p−1∑
i=1

δ0(i)

)2

+ (1 + δ0(k))

p−1∑
i=1

δ0(i)
)

(mod p).
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Proof. Hensel’s lifting algorithm imposes

g(k + p t
(0)
k + p2 t

(1)
k ) ∈ p3Zp,

that is

(k + p t
(0)
k + p2 t

(1)
k )p−1 + (p− 1)! ∈ p3Zp.

Expanding yields

kp−1 + p(p− 1)t
(0)
k kp−2 +

(p− 1)(p− 2)

2
p2
(
t
(0)
k

)2
kp−3

+ p2(p− 1)t
(1)
k (k + p t

(0)
k )p−2 + (p− 1)! ∈ p3 Zp.

Another round of simplifications modulo p3 now leads to

kp−1 + p t
(0)
k (p− 1)kp−2 − p2t

(1)
k kp−2 + p2

(
t
(0)
k

)2
kp−3 + (p− 1)! ∈ p3 Zp.

Notice that since 0 ≤ t
(0)
k ≤ p− 1, we have t

(0)
k mod p2 ≡ t

(0)
k mod p. It follows that

pt
(0)
k mod p3 ≡ p t

(0)
k mod p2. Hence we have by Lemma 1,

pt
(0)
k ≡ k(1 + (p− 1)! + p δ0(k)) (mod p3).

We thus get

p2 t
(1)
k k−1 ≡ kp−1

(
1 + (p− 1)(1 + (p− 1)! + pδ0(k)) + (1 + (p− 1)! + pδ0(k))

2
)

+ (p− 1)! (mod p3).

After replacing

kp−1 ≡ 1 + pδ0(k) + p2δ1(k) (mod p3),

using Theorem 1 when appropriate, and reducing modulo p3, we obtain the expres-

sion of Lemma 2.

Theorem 3 is then derived by looking at the constant coefficient of g modulo p3

in both factored and expanded forms. The calculation gets detailed below.

Proof of Theorem 3. We have

(p− 1)! ≡ (p− 1)! +

p−1∑
k=1

p t
(0)
k (p− 1)!k +

p−1∑
k=1

p2 t
(1)
k (p− 1)!k

+
∑
i̸=j

pt
(0)
i pt

(0)
j (p− 1)!i,j (mod p3).
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Then, by factoring (p− 1)! and using Lemma 1 and Lemma 2, we obtain

(p− 1)!

(
p−1∑
k=1

(1 + (p− 1)! + pδ0(k)) + p2
p−1∑
k=1

(δ0(k) + δ1(k))

− p2
( p−1∑

i=1

δ0(i)

)2

+ p2
( p−1∑

i=1

δ0(i)

) p−1∑
k=1

(1 + δ0(k))

+
∑
i̸=j

(
1 + (p− 1)! + pδ0(i)

)(
1 + (p− 1)! + pδ0(j)

))
≡ 0 (mod p3).

We derive,

(p− 1)!

(
p2

p−1∑
i=1

δ0(i)− 1− (p− 1)! + p

p−1∑
i=1

δ0(i) + p2
p−1∑
i=1

(δ1(i) + δ0(i))

− p2
( p−1∑

i=1

δ0(i)

)2

− p2
p−1∑
i=1

δ0(i) + p2
( p−1∑

i=1

δ0(i)

)2

+
1

2

p−1∑
i=1

∑
j ̸=i

(
1 + (p− 1)! + pδ0(i)

)(
1 + (p− 1)! + pδ0(j)

))
≡ 0 (mod p3).

In the left-hand side above, some terms simplify. Denote by S the double sum. We

evaluate it as follows. We have

S ≡ 1

2

(
p−1∑
i=1

(1 + (p− 1)! + pδ0(i))

p−1∑
j=1

(1 + (p− 1)! + pδ0(j))

−
p−1∑
i=1

(
1 + (p− 1)! + pδ0(i)

)2
)

(mod p3).

A quick inspection shows that the first term of the difference above is congruent to

zero modulo p3. Thus, modulo p3, the double sum S reduces to

S ≡ −p2

2

(( p−1∑
i=1

δ0(i)

)2

+

p−1∑
i=1

δ0(i)
2

)
(mod p3).

By gathering the different parts, we obtain the congruence of Theorem 3. □

It remains to express (p− 1)! modulo p3 in terms of sums of powers, and powers

of sums of powers. From there, we will derive the congruence of Corollary 2, that

is, Wilson’s theorem modulo p3. To that end, we prove the following lemma.
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Lemma 3. We have

(p− 1)! ≡ −1− 1

2

(( p−1∑
i=1

ip−1

)2

+

p−1∑
i=1

(ip−1)2

)
+ (2p+ 1)

p−1∑
i=1

ip−1

− (p− 1)(
3

2
p+ 1) (mod p3).

Proof. We start from the congruence of Theorem 3. First, we group the terms so

as to use the expansion

ip−1 ≡ 1 + pδ0(i) + p2δ1(i) (mod p3).

We get,

(p− 1)! ≡ −1 +

p−1∑
i=1

(pδ0(i) + p2δ1(i)) + p2
p−1∑
i=1

δ0(i)

− 1

2

p−1∑
i=1

(ip−1 − 1− p2δ1(i))
2 − 1

2

(
p−1∑
i=1

ip−1 − (p− 1)− p2
p−1∑
i=1

δ1(i)

)2

(mod p3).

(23)

Denote the last two blocks of terms of (23) respectively by S3 and S4; that is,
S3 := − 1

2

∑p−1
i=1 (i

p−1 − 1− p2δ1(i))
2

S4 := − 1
2

(∑p−1
i=1 ip−1 − (p− 1)− p2

∑p−1
i=1 δ1(i)

)2
.

We proceed to the evaluation of these two sums. We have, by expanding the

square of S3,

S3 ≡ −1

2

p−1∑
i=1

i2p−2 − 1

2
(p− 1) +

p−1∑
i=1

ip−1 + p2
p−1∑
i=1

δ1(i)

(
ip−1 − 1

)
(mod p3).

Then, by using the expression for p2δ1(i) modulo p3 and replacing,

S3 ≡ −1

2

p−1∑
i=1

i2p−2− 1

2
(p−1)+

p−1∑
i=1

ip−1+

p−1∑
i=1

(ip−1−1−pδ0(i))(i
p−1−1) (mod p3).

By expanding the factor in the last sum above, and regrouping the terms, it follows

that

S3 ≡ 1

2

p−1∑
i=1

i2p−2 +
1

2
(p− 1)−

p−1∑
i=1

ip−1 + p

p−1∑
i=1

δ0(i)− p

p−1∑
i=1

δ0(i)i
p−1 (mod p3).
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From there, notice that

pδ0(i) pδ0(i) ≡ pδ0(i) (i
p−1 − 1) (mod p3).

Then, modulo p3, the linear combination of the last two sums of S3 above is nothing

other than 2S3. It follows that

S3 ≡ −1

2

p−1∑
i=1

i2p−2 +

p−1∑
i=1

ip−1 − 1

2
(p− 1) (mod p3). (24)

We now tackle S4. First, we expand the square. It yields

S4 ≡ −1

2

( p−1∑
i=1

ip−1

)2

− 1

2
(p− 1)2 + (p− 1)

p−1∑
i=1

ip−1

+

(
p2

p−1∑
i=1

δ1(i)

)( p−1∑
i=1

ip−1 − (p− 1)

)
(mod p3).

Next, by replacing p2δ1(i) modulo p3,

S4 ≡ −1

2

( p−1∑
i=1

ip−1

)2

− 1

2
(p− 1)2 + (p− 1)

p−1∑
i=1

ip−1

+

(
p−1∑
i=1

(
ip−1 − 1− pδ0(i)

))( p−1∑
i=1

ip−1 − (p− 1)

)
(mod p3).

Expanding the last term and simplifying leads to

S4 ≡ 1

2

( p−1∑
i=1

ip−1

)2

+
1

2
(p− 1)2 − (p− 1)

p−1∑
i=1

ip−1 + 2S4 (mod p3),

from which we finally derive

S4 ≡ −1

2

( p−1∑
i=1

ip−1

)2

− 1

2
(p− 1)2 + (p− 1)

p−1∑
i=1

ip−1 (mod p3). (25)

By plugging the respective expressions (24) and (25) for S3 and S4 into (23) and

simplifying, we obtain the congruence of Lemma 3.

We finally derive Corollary 2.

Proof of Corollary 2. From Lemma 3, deriving Wilson’s theorem modulo p3 as
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in Corollary 2, is simply a matter of applying von Staudt-Clausen’s theorem and

Sun’s congruence

Sm :=

p−1∑
k=1

km ≡ pBm +
p2

2
mBm−1 +

p3

6
m(m− 1)Bm−2 (mod p3) (26)

of [17]. Z-H. Sun derived the above congruence from a smart use of Bernoulli’s

formula, together with an application of von Staudt-Clausen’s theorem. □

Lastly, we establish below the a priori nontrivial equivalence between our con-

gruence and Z-H. Sun’s congruence dating from 2000. Sun’s formula from [17] reads

(p− 1)! ≡ −pBp−1

p− 1
+

pB2p−2

2(p− 1)
− 1

2

(pBp−1

p− 1

)2
(mod p3). (27)

First, we note that

(p− 1)−1 ≡ −p2 − p− 1 (mod p3). (28)

Next, it is a straightforward consequence of von Staudt-Clausen’s theorem that

pBp−1 ≡ −1 (mod pZp) and pB2(p−1) ≡ −1 (mod pZp). (29)

Then, Sun’s congruence can be rewritten as

(p− 1)! ≡ −2p2− p(p+ 1)

2
B2p−2+ p(p+1)Bp−1−

2p+ 1

2
p2B2

p−1 (mod p3). (30)

At this point, we need to expand pB2(p−1) one p-power further. By an unpublished

result of Sun from [18], we have the following.

Proposition 1 ([18]). Let k be a nonnegative integer. Then,

pBk(p−1) ≡ −(k − 1)(p− 1) + k pBp−1 (mod p2). (31)

This statement is a special case of his more general Corollary 4.2 appearing in

[16]. Applied with k = 2, it yields

pB2(p−1) ≡ 2pBp−1 − p+ 1 (mod p2Zp). (32)

We must introduce some new notation. Let x be a p-adic integer. We denote by

(x)k the (k + 1)-th p-residue in the p-adic expansion of x, that is

x =

∞∑
j=0

(x)j p
j .

Using this notation, writing{
pBp−1 ≡ p− 1 + p(pBp−1)1 (mod p2Zp)

pB2(p−1) ≡ p− 1 + p(pB2(p−1))1 (mod p2Zp)
,
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and plugging back into Congruence (32), we derive:

(pB2(p−1))1 ≡ 2(pBp−1)1 (mod pZp). (33)

By using (33) in (30), we finally obtain, following a routine calculation, the formula

of our Corollary 2. We conclude that Z-H. Sun’s congruence and our congruence

are both equivalent.

4. Conclusion

Our work involving the factorization of the polynomial Xp−1 + (p − 1)! in Zp[X]

also allows one to find congruences for the unsigned Stirling numbers of the first

kind modulo p2 and p3. It is interesting to note again that Glaisher’s proof of

Wilson’s theorem modulo p2 uses knowledge of the Stirling numbers modulo p2,

which he computes by quite original means. Thus, our method also allows us to

retrieve these results, but we do not use them for proving Wilson’s theorem modulo

p2. Sun’s method leads to the next modulus p3, but it involves a lot more work,

like working out the generalized harmonic numbers modulo p3. Also, his method is

specific to modulus p3 and does not generalize to modulus p4 and higher moduli.

On the contrary, our method for modulus p3 can be generalized to higher moduli.

It is based only on Hensel’s lifting algorithm, and on the conjunction of Bernoulli’s

formula for the sums of powers of integers and von Staudt-Clausen’s theorem for

Bernoulli numbers.

This field has very much drawn the attention of mathematicians over several

centuries and is still being researched today. A sign of the vibrant interest is that

many authors have also been investigating the quantum analogs. Amongst these

results, a quantum analog for Faulhaber’s formula is provided by the authors in [10].
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[14] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine
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