

PERMUTATION POLYNOMIALS OF THE FORM $\sum_{n=1}^{k} h(n) X^n$

Zhiguo Ding Department of Mathematics, University of Michigan, Ann Arbor, Michigan dingz@umich.edu

Michael E. Zieve Department of Mathematics, University of Michigan, Ann Arbor, Michigan zieve@umich.edu

Received: 6/10/24, Accepted: 9/25/24, Published: 10/9/24

Abstract Vishwakarma and Singh showed that $\sum_{n=1}^{k} n^{t} X^{n}$ permutes \mathbb{F}_{p} for certain choices of k and t. We give a simpler proof of a more general result.

1. Introduction

Vishwakarma and Singh proved the following result.

Theorem 1 ([1]). If p is an odd prime, and k and t are positive integers such that $k \equiv 1 \pmod{p(p-1)}$ and either $k \equiv 1 \pmod{p^2}$ or $(p-1) \nmid t$, then $\sum_{n=1}^k n^t X^n$ permutes \mathbb{F}_p .

This is [1, Lemma 5], whose proof comprises the bulk of the paper [1], and from which the main result of [1] follows at once via known methods. In this paper we give a much shorter and simpler proof of the following more general result.

Theorem 2. Let $q = p^{\ell}$ where p is prime and ℓ is a positive integer, and let k be a positive integer such that $k \equiv 1 \pmod{p(q-1)}$. Pick any $h(X) \in \mathbb{F}_q[X]$, and write $f(X) := \sum_{n=1}^k h(n)X^n$ and $h(X) = \sum_{i=0}^m b_iX^i$ with $b_i \in \mathbb{F}_q$. If q > 2 then f(X) acts as the identity map on \mathbb{F}_q if and only if h(1) = 1 and at least one of the following holds:

- 1. $k \equiv 1 \pmod{p^2}$; or
- 2. $\sum_{j=1}^{\lfloor m/(p-1) \rfloor} b_{j(p-1)} = 0.$

Remark 1. For completeness, we note that if q = 2 then the polynomial f(X) in Theorem 2 acts as the identity map on \mathbb{F}_q if and only if the integer M := (k+1)/2satisfies h(M) = 1.

DOI: 10.5281/zenodo.13909182

There are four main differences between Theorem 2 and Theorem 1. Most importantly, the coefficient of X^n in the polynomial f(X) in Theorem 2 is h(n), which is much more general than the coefficient n^t in Theorem 1. Next, Theorem 2 gives necessary and sufficient conditions rather than merely sufficient conditions. Theorem 2 applies to arbitrary finite fields \mathbb{F}_q with q > 2, while Theorem 1 restricts to the case that q is odd and prime. Finally, Theorem 2 shows that f(X) acts as the identity map on \mathbb{F}_q , while [1, Lemma 5] only asserts that f(X) is some permutation of \mathbb{F}_q ; however, the stronger assertion is shown in the proof of [1, Lemma 5].

2. Proof

In this section we prove Theorem 2. We use the following classical lemma.

Lemma 1. For any prime p and any positive integer t, the value $S_t := \sum_{a \in \mathbb{F}_p} a^t$ equals -1 if $(p-1) \mid t$, and equals 0 otherwise.

Remark 2. Lemma 1 has been known for hundreds of years. It is immediate when (p-1) | t. One proof for the nontrivial case $(p-1) \nmid t$ is that S_t is unchanged upon multiplication by b^t for any $b \in \mathbb{F}_p^*$, which forces S_t to be 0 since there exists b with $b^t \neq 1$. Another proof is by applying Newton's identities to $\prod_{a \in \mathbb{F}_p} (X-a) = X^p - X$.

Proof of Theorem 2. Write k = 1 + Np(q-1) where N is a nonnegative integer, and assume q > 2. Then k = q + (Np-1)(q-1), so that

$$f(X) = h(1)X + \sum_{n=2}^{k} h(n)X^n = h(1)X + \sum_{r=2}^{q} \sum_{s=0}^{Np-1} h(r+s(q-1))X^{r+s(q-1)}.$$

Since $c^{r+s(q-1)} = c^r$ for any $c \in \mathbb{F}_q$ and any integers r > 0 and $s \ge 0$, it follows that if $c \in \mathbb{F}_q$ then

$$f(c) = h(1) \cdot c + \sum_{r=2}^{q} \sum_{s=0}^{Np-1} h(r + s(q-1)) \cdot c^{r}.$$

As s varies over the integers $0, 1, \ldots, Np - 1$, exactly N of the values r + s(q - 1) lie in any prescribed congruence class mod p. Thus if $c \in \mathbb{F}_q$ then, writing $H := \sum_{a \in \mathbb{F}_p} h(a)$, we have

$$f(c) = h(1) \cdot c + NH \sum_{r=2}^{q} c^{r} = h(1) \cdot c + NH \sum_{r=1}^{q-1} c^{r}.$$

It follows that f(X) acts as the identity on \mathbb{F}_q if and only if the polynomial

$$(h(1) - 1)X + NH \sum_{r=1}^{q-1} X^r$$

vanishes on \mathbb{F}_q . Since this polynomial has degree less than q, it vanishes on \mathbb{F}_q if and only if it is the zero polynomial; since q > 2, this occurs if and only if NH = 0and h(1) = 1. Next, NH = 0 if and only if either $p \mid N$ or H = 0. Plainly $p \mid N$ if and only if $k \equiv 1 \pmod{p^2}$. Finally, by Lemma 1 we have

$$H = pb_0 + \sum_{a \in \mathbb{F}_p} \sum_{i=1}^m b_i a^i = \sum_{i=1}^m b_i \sum_{a \in \mathbb{F}_p} a^i = -\sum_{j=1}^{\lfloor m/(p-1) \rfloor} b_{j(p-1)},$$

so that H = 0 if and only if Item 2 in Theorem 2 holds.

Acknowledgement. The first author was supported in part by the Natural Science Foundation of Hunan Province of China (No. 2020JJ4164).

References

 C. K. Vishwakarma and R. P. Singh, A congruence identity on ordered partitions using permutation polynomials, *Integers* 24 (2024), #A12.