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Abstract

In 2023, the first author and Vandehey proved that the largest k for which the
string of equalities λ(n + 1) = λ(n + 2) = · · · = λ(n + k) holds for some n ≤ x,
where λ is the Carmichael λ function, is bounded above by O

(
(log x log log x)2

)
.

Their method involved bounding the value of λ(n+ i) from below using the prime
factorization of n + i for each i ≤ k. They then used the fact that every λ(n + i)
had to satisfy this bound. Here we improve their result by incorporating a reverse
counting argument on a result of Baker and Harman on the largest prime factor of
a shifted prime.

1. Introduction

For a given arithmetic function f , let Ff (x) be the largest k for which the set of

equalities f(n+1) = f(n+2) = · · · = f(n+ k) has a solution satisfying n+ k ≤ x.

In addition, let Gf (x) be the largest k for which the set of inequalities f(n+ 1) ≥
f(n+ 2) ≥ · · · ≥ f(n+ k) has a solution satisfying n+ k ≤ x.

The functions Ff and Gf have been studied for various functions f . Erdős [5]

conjectured that Fφ(x) → ∞ as x → ∞, where φ is Euler’s totient function. To

date, however, the only known solution to the equation φ(n + 1) = φ(n + 2) =

φ(n+ 3) is n = 5185. Pollack, Pomerance, and Treviño [9, Theorem 1.5] found an

asymptotic formula for Gφ(x).

Theorem 1 ([9]). As x → ∞, we have

Gφ(x) ∼ log3 x/ log6 x,
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where (here and below) logk x refers to the kth iterate of the logarithm.

There are also results for other arithmetic functions as well. By modifying the

proof of the previous theorem, one can also show that Gσ(x) ∼ log3 x/ log6 x, where

σ is the sum-of-divisors function. Spătaru [11] and the first author and Vandehey [8]

independently proved that Fd(x) = exp(O( 3
√
log x log2 x)), where d is the number

of divisors function. The first author and Vandehey [8] also showed that Gd(x) =

O(
√

log x log2 x). Their proofs relied on bounding the size of d(n+1), . . . , d(n+ k)

from below using the prime factorization of this common size.

In this note, we extend these results to the Carmichael λ function, which we

define below.

Definition 1. The Carmichael function λ(n) refers to the smallest number m for

which the congruence am ≡ 1 mod n holds for all a coprime to n.

The Fermat-Euler Theorem implies that λ(n) ≤ φ(n) for all n. Carmichael [3, 4]

first defined this function in 1910. He also found a simple formula for computing

λ(n).

Theorem 2. For all n, we have

λ(n) =

{
φ(n), if 8 ∤ n,
φ(n)/2, if 8 | n.

Fermat’s Little Theorem states that for a given prime p, we have ap−1 ≡ 1 mod p

for all non-multiples a of p. In particular, for a given prime p, we have λ(p) = p−1.

The number n is a Carmichael number if it is composite, but still satisfies λ(n) |
n− 1. Alford, Granville, and Pomerance [1] showed that there are infinitely many

Carmichael numbers. Last year, Larsen proved that for all C > 1/2, there is a

Carmichael number in the interval [x, x + x/(log x)C ] for all sufficiently large x.

(For a survey of results on Carmichael numbers, see [10].)

The first author and Vandehey proved that Fλ(x) = exp(O(log x log log x)2). In

this note, we obtain a better bound for Fλ(x) by incorporating a result of Baker

and Harman [2] on the largest prime factor of a shifted prime.

Theorem 3. As x → ∞, Fλ(x) = O
(
(log x)1/0.677

)
.

Note. For notational convenience, we let c = 0.677 from this point on. The quantity

0.677 in the previous theorem is not exact and refers to the exponent in [2, Thm.

2].

2. Proof of Theorem 3

Our proof begins with the following result of Baker and Harman [2], quoted as

Theorem 1 in [6].
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Note. Throughout the rest of the paper, we let p and q denote prime values.

Lemma 1. For every a ∈ Z and 0 < θ ≤ c there exists 0 < δ(θ) < 1 such that, for

sufficiently large x > X(a, θ), we have∑
p≤x

P (p+a)>xθ

1 > δ(θ)
x

log x
,

where P (n) is the largest prime factor of n.

We use Lemma 1 to derive the following result.

Lemma 2. There exists a constant C > 0 such that for sufficiently large x, we have

x0.677

log x
≤ C ·#{q : q > xc, there exists p ≤ x such that p ≡ 1 (mod q)}.

Proof. Fix a positive integer a and some θ ≤ c. The previous lemma implies that

there exists δ := δ(θ) ∈ (0, 1) such that if x is sufficiently large, then∑
p≤x

P (p+a)>xθ

1 > δ
x

log x
.

In particular, setting a = −1 and θ = c, we may choose δ so that∑
p≤x

P (p−1)>xc

1 >
δx

log x
,

for all sufficiently large x. Put another way, we have

#{p ≤ x : there exists q > xc such that p ≡ 1 (mod q)} >
δx

log x
.

For any p in the set on the left-hand of the above inequality, the existence of q is

unique since if there were two such values of q, say q1 and q2, for any p we would

have p − 1 > q1q2 > x2c = x1.354 > p1.354, a contradiction. Therefore, we may

partition the above set as⋃
xc<q<x

{p : p ≤ x, p ≡ 1 (mod q)}.

Therefore,

#{p : p ≤ x, there exists q > xc, p ≡ 1 (mod q)}

=
∑

xc<q≤x
there exists p≤x such that p≡1 (mod q)

#{p ≤ x : p ≡ 1 (mod q)}.
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Since for each q > xc

#{p ≤ x : p ≡ 1 (mod q)} ≤
⌊
x− 1

q

⌋
≪ x

q
< x1−c,

we have

x

log x
≪ #{q : q > xc, there exists p ≤ x such that p ≡ 1 (mod q)} · x1−c.

Thus,

xc

log x
≪ #{q : q > xc, there exists p ≤ x such that p ≡ 1 (mod q)}.

Using this result, we can bound the length of a sequence of numbers with the

same value on the Carmichael function.

Lemma 3. Let

T = λ(n+ 1) = λ(n+ 2) = · · · = λ(n+ k).

Let C be the constant in Lemma 1. Then,

exp

(
c

C
·
(
k

2

)c)
≤ T.

Proof. We may assume that k is sufficiently large so that Lemma 1 holds with

x = k/2. Consider a prime q >
(
k
2

)c
such that there exists a prime p ≤ k

2 with

p ≡ 1 (mod q). Then for any integer n, there exists 1 ≤ i ≤ k such that p ∥ n+ i,

where pa ∥ n means pa is the highest power of p dividing n. Therefore, p−1 | T and

hence q | T . Therefore, T is bounded below by the product of all such q. Lemma 2

therefore implies

exp

(
c

C
·
(
k

2

)c)
=

(
k

2

)c· ( k
2 )

c

C(log k−log 2)

≤ T.

We now show that Lemma 3 directly implies Theorem 3.

Proof of Theorem 3. By Lemma 3, there exists a constant D > 0 such that

T ≥ exp (Dkc) .

By Mertens’ Theorem, we have T ≪ x log log x. Therefore, kc ≪ log x. Thus,

k ≪ (log x)1/c.
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Remark 1. The above proof also works with λ replaced with φ, σ, or σd, the sum

of the dth powers of all the divisors function, where d is any positive odd integer.

The proof is identical in the case of φ. For σ, one just has to take a = 1 in applying

Lemma 1 and replacing the congruence p ≡ 1 (mod q) in Lemma 2 with p ≡ −1

(mod q). Of course, in both of these cases, the resulting bound is still much weaker

than Pollack, Pomerance, and Treviño’s result [9] as their method and result also

holds for σ. For σd, where d is any positive odd integer, one simply makes the

observation in the proof of Lemma 3 that p | n + i also implies that pd + 1 | T ,
where T = σd(n+ i) so that p+1 | T since p+1 | pd +1. Unfortunately, this proof

does not work for positive even values of d.

Remark 2. The Elliott-Halberstam Conjecture [12, pg. 403] implies that we can

increase the range of θ to 0 < θ < 1 in Lemma 1. If this is true, we can replace tse

exponent of 1/c in Theorem 3 with 1 + o(1).
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