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Abstract

We prove that the Brocard–Ramanujan equation m! + 1 = u2 has no integer solu-
tion where u is a Tribonacci number. This is motivated by a previously published
incorrect proof of this statement, which followed a sound idea but was based on an
incorrect formula for the 2-adic valuation of shifted Tribonacci numbers. Here we
resolve the question using the same idea with respect to the more convenient prime
p = 47. We then return to the original idea using p = 2 to furnish a valid proof for
the corresponding statement involving Tetranacci numbers.

– Dedicated to the memory of Tamás Lengyel

1. Introduction

One of the most famous Diophantine equations involving factorials is the Brocard–

Ramanujan equation

m! + 1 = u2, (1.1)

which was initially proposed by Brocard [5] in 1876, and independently by Ramanu-

jan [11] in 1913. It is conjectured that there are no positive integer solutions other

than (m,u) ∈ {(4, 5), (5, 11), (7, 71)}, and it has been shown [2] that there are no

others with m < 109.

Among the many variant problems is to prove that (1.1) has no integer solutions

m where u has a particular form. For example, Marques [9] has shown that there are

no solutions, excepting (m,u) = (4, 5), where u is a Fibonacci number, and Ismail

et al. [8] have shown that there are no solutions where u is a Narayana number. In

this note we take u to be either a Tribonacci number or a Tetranacci number (see

Section 2) and prove that there are no solutions to (1.1) for such u.

Theorem 1. There are no solutions (m,u) to the Brocard–Ramanujan equation

m! + 1 = u2, where u is a Tribonacci number.
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Theorem 2. There are no solutions (m,u) to the Brocard–Ramanujan equation

m! + 1 = u2, where u is a Tetranacci number.

Our primary motivation arises from a published proof [7] of Theorem 1, which

was subsequently discovered [14, Corollary 2] to be based on an incorrect formula

for the 2-adic valuation of shifted Tribonacci numbers. As detailed in Remark 3 in

Section 4 below, it is not clear how to make the original argument work using the

2-adic valuation. In Sections 3 and 4 we provide a proof of Theorem 1 using the

same idea as in [7] but replacing the troublesome 2-adic valuation with the better

behaved 47-adic valuation. Then in Section 5 we return to the 2-adic valuation as

in [7] to give a proof of Theorem 2.

Since several recent papers [1, 7, 8, 9, 10, 13] have employed p-adic valuations in

the study of Diophantine problems, we consider it important to provide a correct

proof of Theorem 1, while emphasizing that the basic idea of the proof appearing in

[7] was sound. Indeed, in [8] the same argument as in [7] was applied, with 3-adic

valuations, to a different linear recurrent sequence. The basic idea is to show that

the p-adic valuation of u2
n−1 grows only logarithmically in n, where (un) is a linear

recurrence and p is a convenient prime. With respect to (1.1), such growth is much

slower than the linear growth of the valuation of m!, forcing an upper bound on m

and n for any solutions.

2. Preliminaries

For k ⩾ 2, the generalized Fibonacci sequence (F
(k)
n ) of order k is defined [1, 4, 6]

by the recurrence F
(k)
n = F

(k)
n−1 + · · · + F

(k)
n−k, with initial conditions F

(k)
1 = 1

and F
(k)
n = 0 for 2 − k ⩽ n ⩽ 0. For order k = 2 we have the usual Fibonacci

sequence, while for k = 3 we have the Tribonacci sequence (Tn) := (F
(3)
n ), and for

k = 4 we we have the Tetranacci sequence (τn) := (F
(4)
n ). When considering the

p-adic valuations of these sequences it is useful to include negative indices, while for

Diophantine equations as in Theorems 1 and 2 we consider only positive indices;

thus we use Tribonacci number and Tetranacci number to refer to values of F
(3)
n and

F
(4)
n , respectively, with n > 0.

For any order k ⩾ 2 we have the Binet formula [6]

F (k)
n =

k∑
i=1

1− α−1
i

2 + (k + 1)(αi − 2)
αn
i =

k∑
i=1

aiα
n
i (2.1)

for all n ∈ Z, where {αi}ki=1 are the zeros of the characteristic polynomial

fk(x) = xk − xk−1 − · · · − x− 1.
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For any order k ⩾ 2, there is precisely one zero αk of fk(x) which lies outside the

unit circle, which is real and lies in (2 − 21−k, 2). For this dominant root we have

the estimate

αn−2
k ⩽ F (k)

n ⩽ αn−1
k (2.2)

[4, Lemma 1] for all n > 0.

For a prime p, the p-adic valuation νp(n) of an integer n denotes the highest

power of p which divides n, with convention νp(0) = +∞. This valuation extends

uniquely to the field Qp of p-adic numbers, on which it takes integer values. We

require the well-known formula

νp(m!) =
m− Sp(m)

p− 1
⩾

m

p− 1
− logp(m+ 1) (2.3)

where Sp(m) denotes the sum of the base p digits of m, and logp denotes the real

base p logarithm.

3. The 47-adic Valuation of Shifted Tribonacci Numbers

For −10 ⩽ n ⩽ 10, the values of Tn are

. . . , 5,−8, 4,1,−3, 2, 0,−1,1, 0, 0∗,1,1, 2, 4, 7, 13, 24, 44, 81, 149, . . .

where the boldface values are T−3 = −1 and T1 = T2 = T−2 = T−7 = 1, and

0∗ represents T0 = 0. Throughout this section we take p = 47 and determine the

p-adic valuation of Tn±1. There are two important properties that make the choice

of prime p = 47 convenient for our purposes. First, it happens that p = 47 is the

smallest prime for which the characteristic polynomial f3(x) = x3−x2−x−1 factors

into distinct linear factors in Fp[x]. By the Binet formula (2.1), this means that for

all integers j, the lacunary subsequences r 7→ T(p−1)r+j ± 1 on congruence classes

modulo p−1 are interpolated by p-adic analytic functions on large disks containing

the ring of p-adic integers Zp. Second, and more importantly, it happens that the

only zeros in Zp of these analytic functions correspond to the zeros {1, 2,−2,−3,−7}
of the sequences (Tn ± 1) indicated above. This results in a formula for νp(T

2
n − 1)

which may be conveniently bounded.

Proposition 1. Let p = 47. For j ∈ {1, 2,−2,−3,−7} we have Tj ∈ {±1} and

νp(T(p−1)r+j − Tj) = 1 + νp(r) for all r ∈ Z,

and we have νp(Tn ± 1) = 0 for all other integers n.

Remark 1. This formula for the 47-adic valuation shows that n = −3 is the only

integer solution to Tn = −1, and n ∈ {1, 2,−2,−7} are the only solutions to Tn = 1.
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Proof. Modulo p = 47, we find that f3 factors into distinct linear factors, as

f3(x) = x3 − x2 − x− 1 ≡ (x− 5)(x− 17)(x− 26) (mod pZ[x]),

which means that in Zp[x] we have the factorization

f3(x) = x3 − x2 − x− 1 = (x− α1)(x− α2)(x− α3)

with p-adic zeros αi ≡ 5, 17, 26 (mod pZp) for i = 1, 2, 3. Using the Binet formula

(2.1), we may write Tn =
∑3

i=1 aiα
n
i with p-adic unit coefficients ai ≡ 39, 29, 26

(mod pZp) for i = 1, 2, 3, respectively. By Fermat’s little theorem, for i = 1, 2, 3 we

have αp−1
i = 1 + λi with νp(λi) ⩾ 1. Therefore the p-adic logarithm

ηi := Logp(1 + λi) :=

∞∑
m=1

(−1)m−1λ
m
i

m
in Zp

is convergent and satisfies νp(ηi) = νp(λi) ⩾ 1 for i = 1, 2, 3, so that by (2.3) each

p-adic exponential

α
(p−1)x
i := Expp(xLogp(1 + λi)) :=

∞∑
m=0

ηmi
m!

xm =

∞∑
m=0

bi,mxm

converges to an analytic function [12] on a p-adic disk containing Zp, with coeffi-

cients bi,m = ηmi /m! satisfying νp(bi,m) ⩾ (p − 2)m/(p − 1) + Sp(m)/(p − 1). By

the Binet formula (2.1), for any j ∈ Z there is an analytic function

gj(x) :=

3∑
i=1

aiα
j
iα

(p−1)x
i =

∞∑
m=0

aj,mxm (3.1)

for x ∈ Zp, satisfying gj(x) = T(p−1)x+j for x ∈ Z, with coefficients aj,m =∑3
i=1 aiα

j
i bi,m satisfying νp(aj,m) ⩾ 1 for m ⩾ 1, and νp(aj,m) ⩾ 2 for m ⩾ 2.

Recalling that Tj ∈ {±1} for j ∈ {1, 2,−2,−3,−7}, by (3.1) we have

T(p−1)x+j − Tj =

∞∑
m=1

aj,mxm

for such j. Taking x = 1, we check numerically that νp(Tp−1+j − Tj) = 1 for

j ∈ {1, 2,−2,−3,−7}. Since νp(
∑∞

m=1 aj,m) = 1 and νp(aj,m) ⩾ 2 for m ⩾ 2, we

conclude that νp(aj,1) = 1 and thus

νp(T(p−1)x+j − Tj) = νp(aj,1x) = 1 + νp(x)

for x ∈ Z and j ∈ {1, 2,−2,−3,−7}. If −23 < j ⩽ 23 and j ̸∈ {1, 2,−2,−3,−7},
we check numerically that νp(Tj ± 1) = 0. Therefore for such j we have by (3.1)

T(p−1)x+j ± 1 =

∞∑
m=0

aj,mxm with νp(aj,0) = 0
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and νp(aj,m) ⩾ 1 for m ⩾ 1, so that νp(T(p−1)x+j ± 1) = 0 for all such j and all

x ∈ Z.

Remark 2. It appears that simple formulas for p-adic valuations as in Proposition

1 above should be viewed as exceptional rather than typical. Marques and Lengyel

[10, Conjecture 8] had conjectured that for some N ∈ N, the p-adic valuation of

Tn on each congruence class n ≡ i (mod N) should always be a linear function of

νp(n−ai) for some integer ai; however, in [3] it was shown that this conjecture fails

for infinitely many primes, and in fact holds for at most seven of the 109 primes

p < 600; in particular, it fails for p = 47 [3, Theorems 1.5, 1.7]. In this context

it is rather surprising that the analogous statement with p = 47 actually holds for

both shifted sequences (Tn ± 1), according to Proposition 1. For this purpose the

sequences (Tn ± 1) may also be viewed as fourth order linear recurrences satisfying

an = 2an−1 − an−4 with initial conditions (1, 2, 2, 3) or (−1, 0, 0, 1), respectively.

4. Proof of Theorem 1

Proof of Theorem 1. Take p = 47. By Proposition 1, if we can write the index

n = u(p−1)pe+j with j ∈ {1, 2,−2,−3,−7} and (u, p) = 1, then νp(T
2
n−1) = 1+e;

for all other n > 2 the valuation is zero. Thus for n = u(p− 1)pe + j as described,

we have

νp(T
2
n − 1) = 1 + logp

(
n− j

u(p− 1)

)
⩽ 1 + logp(n+ 7)− logp(p− 1)

< logp(n+ 7) + 0.006, (4.1)

which implies νp(T
2
n − 1) < logp(n+ 7) + 0.006 for every integer n > 2.

Thus if T 2
n − 1 = m! is a solution with n > 2, we must have νp(m!) = νp(T

2
n − 1),

so that by (2.3) and (4.1) we must have

m

p− 1
− logp(m+ 1) < logp(n+ 7) + 0.006. (4.2)

Since the dominant zero of f3(x) is α3 = 1.8392867552 · · · , the estimate (2.2) implies

(1.83)2n−4 < T 2
n = m! + 1 < mm for m > 1. Taking base 2 logarithms gives

n < 0.6m log2 m+ 2. (4.3)

Therefore any solution m! = T 2
n − 1 with m > 1, n > 2 requires

m

p− 1
− logp(m+ 1) < logp(0.6m log2 m+ 9) + 0.006,
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which we rearrange to

m < 46 log47(m+ 1) + 46 log47(0.6m log2 m+ 9) + 0.28. (4.4)

Since the right side of (4.4) is concave down as a function of real m > 1, a routine

computation shows that this inequality requires m ⩽ 134. Since there are no so-

lutions to (1.1) with m < 109 except (m,u) ∈ {(4, 5), (5, 11), (7, 71)} [2], and none

of 5, 11, or 71 are Tribonacci numbers, we conclude that there are no solutions to

m! + 1 = T 2
n with m,n > 0.

Remark 3. In [14, Corollary 2] we find the 2-adic valuation of Tn + 1 given as

ν2(Tn + 1) =


0, if n ≡ 0, 3 (mod 4),

1, if n ≡ 1,±2 (mod 8),

3 + ν2(m) + ν2(m− z), if n = 8m− 3,

(4.5)

where z is some 2-adic integer satisfying z ≡ −601592 (mod 220Z2); and [1, Propo-

sition 6.3] gave the refined estimate z ≡ 46354247908274767076446728 (mod 292Z2)

for this value. It will be observed that the term ν2(m) in the formula (4.5) accounts

for the value T−3 = −1; however, by Remark 1, n = −3 is the only solution n ∈ Z to

Tn = −1, so the value z in (4.5) cannot be an integer. The argument in [7] used an

incorrect formula [7, Lemma 2] for ν2(Tn + 1), which essentially replaced the term

ν2(m− z) with ν2(m− 8), to deduce a bound of the form ν2(Tn +1) ⩽ A+B log n.

Such a bound would not be valid, for example, if z were a p-adic Liouville number

([12, Section 66,67]). As the nature of z remains unknown, it does not seem that

the proof of [7] can be easily fixed using 2-adic valuations. Our modified proof using

47-adic valuations works because of the absence of such “extraneous” z values.

5. Proof of Theorem 2

In this final section we employ the 2-adic valuation as in [7] to show that there are

no solutions to m! + 1 = u2 where u is a Tetranacci number τn = F
(4)
n with n > 0.

For −15 ⩽ n ⩽ 10 the values of τn are

. . . , 8,−1, 5,−8, 4, 0,1,−3, 2, 0, 0,−1,1, 0, 0, 0∗,1,1, 2, 4, 8, 15, 29, 56, 108, 208, . . .

where the boldface values are τ−4 = τ−14 = −1 and τ1 = τ2 = τ−3 = τ−9 = 1, and

0∗ represents τ0 = 0.

Our proof uses the 2-adic valuations of (τn ± 1) which were determined in [1,
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Propositions 4.1, 4.2] as

ν2(τn − 1) =


0, n ≡ 0, 3, 4 (mod 5),

1, n ≡ 6 (mod 10),

2 + ν2(r), n = 10r + 2, n = 10r − 3,

4 + ν2
((

2r+3
4

))
, n = 10r + 1,

(5.1)

and

ν2(τn + 1) =


0, n ≡ 0, 3, 4 (mod 5),

1, n ≡ 1, 2, 7 (mod 10),

4 + ν2
((

2r+2
4

))
, n = 10r − 4.

(5.2)

Considering a binomial coefficient
(
x
4

)
= x(x − 1)(x − 2)(x − 3)/4 as a polynomial

in x, we see that these formulas account for each value n ∈ {1, 2,−3,−4,−9,−14}
where τn = ±1, with no “extraneous” zeros as in (4.5); this is crucial to the proof.

Proof of Theorem 2. For an integer b ⩾ 4, the 2-adic valuation of the binomial

coefficient
(
b
4

)
is equal to the number of carries in the binary addition of b− 4 and

4, and is therefore bounded above by log2 b. Therefore, for n = 5a+ 1 with a > 0,

we find from (5.1) and (5.2) that

ν2(τ
2
n − 1) = 5 + ν2

((
a+ 3

4

))
< 5 + log2(n/5 + 3), (5.3)

and a check of the remaining cases shows that this bound (5.3) actually holds for

all integers n > 2. Thus if τ2n − 1 = m! with n > 2 then ν2(m!) = ν2(τ
2
n − 1), so by

(2.3) and (5.3) we have

m− log2(m+ 1) < 5 + log2(n/5 + 3).

Since the dominant zero α4 of f4(x) is α4 = 1.9275619754 · · · , the bound (2.2)

gives (1.92)2n−4 < τ2n = m! + 1 < mm, so we have n < 0.6m log2 m+ 2 as in (4.3).

Thus ,any solutions require

m < 5 + log2(m+ 1) + log2(0.12m log2 m+ 3.4). (5.4)

Since the right side of (5.4) is concave down as a function of real m > 1, a routine

computation shows that m ⩽ 11. Thus we are reduced to the known solutions

(m,u) ∈ {(4, 5), (5, 11), (7, 71)}, but none of 5, 11, or 71 are Tetranacci numbers.

Thus there are no solutions to m! + 1 = τ2n with m,n > 0.
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