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Abstract

We prove that the Brocard-Ramanujan equation m! + 1 = «? has no integer solu-
tion where u is a Tribonacci number. This is motivated by a previously published
incorrect proof of this statement, which followed a sound idea but was based on an
incorrect formula for the 2-adic valuation of shifted Tribonacci numbers. Here we
resolve the question using the same idea with respect to the more convenient prime
p = 47. We then return to the original idea using p = 2 to furnish a valid proof for
the corresponding statement involving Tetranacci numbers.

— Dedicated to the memory of Tamds Lengyel

1. Introduction

One of the most famous Diophantine equations involving factorials is the Brocard-
Ramanujan equation
m!+1=u? (1.1)

which was initially proposed by Brocard [5] in 1876, and independently by Ramanu-
jan [11] in 1913. Tt is conjectured that there are no positive integer solutions other
than (m,u) € {(4,5),(5,11),(7,71)}, and it has been shown [2] that there are no
others with m < 10°.

Among the many variant problems is to prove that (1.1) has no integer solutions
m where u has a particular form. For example, Marques [9] has shown that there are
no solutions, excepting (m,u) = (4,5), where u is a Fibonacci number, and Ismail
et al. [8] have shown that there are no solutions where u is a Narayana number. In
this note we take u to be either a Tribonacci number or a Tetranacci number (see
Section 2) and prove that there are no solutions to (1.1) for such w.

Theorem 1. There are no solutions (m,u) to the Brocard—Ramanujan equation
m! + 1 =2, where u is a Tribonacci number.
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Theorem 2. There are no solutions (m,u) to the Brocard—Ramanujan equation
m! + 1 =u?, where u is a Tetranacci number.

Our primary motivation arises from a published proof [7] of Theorem 1, which
was subsequently discovered [14, Corollary 2] to be based on an incorrect formula
for the 2-adic valuation of shifted Tribonacci numbers. As detailed in Remark 3 in
Section 4 below, it is not clear how to make the original argument work using the
2-adic valuation. In Sections 3 and 4 we provide a proof of Theorem 1 using the
same idea as in [7] but replacing the troublesome 2-adic valuation with the better
behaved 47-adic valuation. Then in Section 5 we return to the 2-adic valuation as
in [7] to give a proof of Theorem 2.

Since several recent papers [1, 7, 8, 9, 10, 13] have employed p-adic valuations in
the study of Diophantine problems, we consider it important to provide a correct
proof of Theorem 1, while emphasizing that the basic idea of the proof appearing in
[7] was sound. Indeed, in [8] the same argument as in [7] was applied, with 3-adic
valuations, to a different linear recurrent sequence. The basic idea is to show that
the p-adic valuation of u2 — 1 grows only logarithmically in n, where (u,) is a linear
recurrence and p is a convenient prime. With respect to (1.1), such growth is much
slower than the linear growth of the valuation of m!, forcing an upper bound on m
and n for any solutions.

2. Preliminaries

For k > 2, the generalized Fibonacci sequence (F,E’“)) of order k is defined [1, 4, 6]
by the recurrence FF = Féli)l + o+ Fflli)k, with initial conditions Fl(k) =1
and FT(Lk) =0for 22—k <n <0. For order kK = 2 we have the usual Fibonacci
sequence, while for £ = 3 we have the Tribonacci sequence (T,,) = (F7(13)), and for
k = 4 we we have the Tetranacci sequence (1,,) = (F,S4 ). When considering the
p-adic valuations of these sequences it is useful to include negative indices, while for
Diophantine equations as in Theorems 1 and 2 we consider only positive indices;
thus we use Tribonacci number and Tetranacci number to refer to values of F,(L?’) and
Ff(fl)7 respectively, with n > 0.
For any order k > 2 we have the Binet formula [6]

k -1 k
1—«
k) — no_ sal 2.1
n 22+(k+1)(ai—2)a’ Zi:lao‘l 2.1)

i=1

<.

for all n € Z, where {a;}%_, are the zeros of the characteristic polynomial

fe(zx)=af —a" 1 - -1
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For any order k > 2, there is precisely one zero ay, of fi(x) which lies outside the
unit circle, which is real and lies in (2 — 2% 2). For this dominant root we have
the estimate

a2 < FW < ap! (2.2)

n

[4, Lemma 1] for all n > 0.

For a prime p, the p-adic valuation v,(n) of an integer n denotes the highest
power of p which divides n, with convention v,(0) = +oo. This valuation extends
uniquely to the field Q, of p-adic numbers, on which it takes integer values. We
require the well-known formula
m — S,(m) m

p— > =1 —log,(m +1) (2.3)

vp(m!) =

where S,(m) denotes the sum of the base p digits of m, and log,, denotes the real
base p logarithm.

3. The 47-adic Valuation of Shifted Tribonacci Numbers
For —10 < n < 10, the values of T;, are
.5,-8,4,1,-3,2,0,—1,1,0,0%,1,1,2,4, 7,13, 24, 44, 81, 149, . ..

where the boldface values are T_3 = —1 and Ty = Tp =T o = T_7 = 1, and
0* represents Ty = 0. Throughout this section we take p = 47 and determine the
p-adic valuation of T}, =1. There are two important properties that make the choice
of prime p = 47 convenient for our purposes. First, it happens that p = 47 is the
smallest prime for which the characteristic polynomial f3(x) = 2®—22—x—1 factors
into distinct linear factors in Fp,[z]. By the Binet formula (2.1), this means that for
all integers j, the lacunary subsequences r + T{,_1),4+; = 1 on congruence classes
modulo p — 1 are interpolated by p-adic analytic functions on large disks containing
the ring of p-adic integers Z,. Second, and more importantly, it happens that the
only zeros in Z, of these analytic functions correspond to the zeros {1,2, -2, -3, -7}
of the sequences (T}, & 1) indicated above. This results in a formula for v, (77 — 1)
which may be conveniently bounded.

Proposition 1. Let p =47. For j € {1,2,—-2,—-3, -7} we have T; € {£1} and
Vp(Tip—1yr45 — Tj) = 1+ vp(r) forall reZ,
and we have v,(T,, £ 1) = 0 for all other integers n.

Remark 1. This formula for the 47-adic valuation shows that n = —3 is the only
integer solution to T,, = —1, and n € {1,2, —2, =7} are the only solutions to T,, = 1.
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Proof. Modulo p = 47, we find that f3 factors into distinct linear factors, as
fa(x)=2® -2 —x—1=(z—5)(x —17)(z — 26) (mod pZ[z]),
which means that in Z,[z] we have the factorization
fa(x)=2 -2 —2—1=(z— 1)z —a)(z—as)

with p-adic zeros a; = 5,17,26 (mod pZ,) for i = 1,2,3. Using the Binet formula
(2.1), we may write T,, = Zle a;a with p-adic unit coefficients a; = 39,29, 26
(mod pZ,) for i = 1,2, 3, respectively. By Fermat’s little theorem, for i = 1,2, 3 we
have of 1 — 14\ with vp(A;) = 1. Therefore the p-adic logarithm

n; = Log, (1 + ;) := Z(fl)mflL in Z,

m
=1

m
is convergent and satisfies v, (n;) = vp(A\;) = 1 for i = 1,2, 3, so that by (2.3) each
p-adic exponential

agpfl)z — Expp(x Lng(l + ) = %xm = bima™
m=0 ! m=0

converges to an analytic function [12] on a p-adic disk containing Z,, with coeffi-
cients b; ,, = n"/m! satisfying v, (b; ) = (p —2)m/(p — 1) + Sp(m)/(p — 1). By
the Binet formula (2.1), for any j € Z there is an analytic function

3 0o
gj(x) == Zaiagagpfl)z = Z ajma™ (3.1)
i=1 m=0
for x € Z,, satistying g;(x) = T(p—1)a4; for x € Z, with coefficients a;,, =

Z?:1 aia{bi,m satisfying vp(ajm) = 1 for m > 1, and vp(ajm) > 2 for m > 2.
Recalling that T; € {£1} for j € {1,2,-2, -3, -7}, by (3.1) we have

Tp—1yet; =15 = Z ajmx™

m=1
for such j. Taking x = 1, we check numerically that v,(T,—14; — 1) = 1 for
j€{1,2,—2,-3,-7}. Since v,(3 7 _  ajm) = 1 and vp(ajm) = 2 for m > 2, we

conclude that v,(a;1) = 1 and thus

Vp(Ttp-1)ets = Tj) = vplajaz) = 1+ vp(z)
forx € Z and j € {1,2,-2,-3,-7}. If —23 < j <23 and j ¢ {1,2,-2,-3,-7},
we check numerically that v,(T; £ 1) = 0. Therefore for such j we have by (3.1)

T(p—l)w+j +1= Z aj,ma:m with Vp(aj,O) =0

m=0



INTEGERS: 24 (2024) )

and v,(aj,m) = 1 for m > 1, so that v,(T(,—1)e4; £ 1) = 0 for all such j and all
x € 7. O

Remark 2. It appears that simple formulas for p-adic valuations as in Proposition
1 above should be viewed as exceptional rather than typical. Marques and Lengyel
[10, Conjecture 8] had conjectured that for some N € N, the p-adic valuation of
T, on each congruence class n =i (mod N) should always be a linear function of
vp(n—a;) for some integer a;; however, in [3] it was shown that this conjecture fails
for infinitely many primes, and in fact holds for at most seven of the 109 primes
p < 600; in particular, it fails for p = 47 [3, Theorems 1.5, 1.7]. In this context
it is rather surprising that the analogous statement with p = 47 actually holds for
both shifted sequences (T, + 1), according to Proposition 1. For this purpose the
sequences (T3, = 1) may also be viewed as fourth order linear recurrences satisfying
an = 2ap—1 — ap—4 with initial conditions (1,2,2,3) or (—1,0,0, 1), respectively.

4. Proof of Theorem 1

Proof of Theorem 1. Take p = 47. By Proposition 1, if we can write the index
n=u(p—1)p°+j with j € {1,2,-2,-3, =7} and (u,p) = 1, then v,(T?—1) = 1+¢;
for all other n > 2 the valuation is zero. Thus for n = u(p — 1)p® + j as described,
we have

n—j
VP(T72L — ]_) = 1 + logp (u(p—l))
< 1+log,(n+7) —log,(p—1)

< log,(n + 7) + 0.006, (4.1)

which implies v,(T;; — 1) < log,(n + 7) 4 0.006 for every integer n > 2.
Thus if T2 — 1 = m! is a solution with n > 2, we must have v,(m!) = v,(T? — 1),
so that by (2.3) and (4.1) we must have

m
P log,(m 4 1) < log,(n 4 7) 4 0.006. (4.2)

Since the dominant zero of f3(x) is g = 1.8392867552 - - -, the estimate (2.2) implies
(1.83)2"=* < T2 = m! +1 < m™ for m > 1. Taking base 2 logarithms gives

n < 0.6mlogym + 2. (4.3)

Therefore any solution m! = T2 — 1 with m > 1, n > 2 requires

e log,,(m + 1) < log, (0.6mlogy m + 9) + 0.006,
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which we rearrange to
m < 46log,;(m + 1) + 46 1log,,(0.6m log, m + 9) + 0.28. (4.4)

Since the right side of (4.4) is concave down as a function of real m > 1, a routine
computation shows that this inequality requires m < 134. Since there are no so-
lutions to (1.1) with m < 10? except (m,u) € {(4,5), (5,11),(7,71)} [2], and none
of 5, 11, or 71 are Tribonacci numbers, we conclude that there are no solutions to
m!+1=T? with m,n > 0. O

Remark 3. In [14, Corollary 2] we find the 2-adic valuation of T}, 4+ 1 given as

0, ifn=0,3 (mod 4),
vo(Tp +1) =<1, ifn=1,£2 (mod 8), (4.5)
3+ va(m) +va(m —2), if n=8m— 3,

where 2 is some 2-adic integer satisfying z = —601592 (mod 22°Z,); and [1, Propo-
sition 6.3] gave the refined estimate z = 46354247908274767076446728 (mod 292Zs)
for this value. It will be observed that the term vo(m) in the formula (4.5) accounts
for the value T_3 = —1; however, by Remark 1, n = —3 is the only solution n € Z to
T, = —1, so the value z in (4.5) cannot be an integer. The argument in [7] used an
incorrect formula [7, Lemma 2] for v2(7), + 1), which essentially replaced the term
vo(m — z) with va(m — 8), to deduce a bound of the form v5(T),, +1) < A+ Blogn.
Such a bound would not be valid, for example, if z were a p-adic Liouville number
([12, Section 66,67]). As the nature of z remains unknown, it does not seem that
the proof of [7] can be easily fixed using 2-adic valuations. Our modified proof using
47-adic valuations works because of the absence of such “extraneous” z values.

5. Proof of Theorem 2

In this final section we employ the 2-adic valuation as in [7] to show that there are
no solutions to m! + 1 = u? where u is a Tetranacci number 7,, = F7$4) with n > 0.
For —15 < n < 10 the values of 7,, are

...,8,-1,5,-8,4,0,1,-3,2,0,0,—1,1,0,0,0%,1,1,2,4, 8,15, 29, 56, 108, 208, . ..

where the boldface values are 74y = 7_14 = —land 71 =79 =7_3 =T_9 = 1, and
0* represents 19 = 0.
Our proof uses the 2-adic valuations of (7, & 1) which were determined in [1,
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Propositions 4.1, 4.2] as

0, n=0,3,4 (mod 5),
1 =6 d 10

vo(tp —1)=<¢ "’ " (mo ), (5.1)
2+ 1a(r), n=10r +2,n = 10r — 3,

4+ vy ((27"2'3)) , n=10r+1,

and
0, n=0,3,4 (mod 5),
vo(th +1) =<1, n=1,2,7 (mod 10), (5.2)
44w ((*?), n=10r 4.

Considering a binomial coefficient () = z(z — 1)(z — 2)(z — 3)/4 as a polynomial
in x, we see that these formulas account for each value n € {1,2, -3, -4, -9, —14}
where 7, = £1, with no “extraneous” zeros as in (4.5); this is crucial to the proof.

Proof of Theorem 2. For an integer b > 4, the 2-adic valuation of the binomial
coefficient (Z) is equal to the number of carries in the binary addition of b — 4 and
4, and is therefore bounded above by log, b. Therefore, for n = 5a + 1 with a > 0,
we find from (5.1) and (5.2) that

Vo(T2—1) =5+ 1y ((“13» < 5+1log,(n/5+3), (5.3)

and a check of the remaining cases shows that this bound (5.3) actually holds for
all integers n > 2. Thus if 72 — 1 = m! with n > 2 then vo(m!) = v2(72 — 1), so by
(2.3) and (5.3) we have

m — logy(m + 1) < 5+ logy(n/5 + 3).

Since the dominant zero ay of fa(x) is aqy = 1.9275619754 - - -, the bound (2.2)
gives (1.92)?" % < 72 = m! + 1 < m™, so we have n < 0.6mlog, m + 2 as in (4.3).
Thus ,any solutions require

m <5 +logy(m + 1) + log,(0.12mlogy m + 3.4). (5.4)

Since the right side of (5.4) is concave down as a function of real m > 1, a routine
computation shows that m < 11. Thus we are reduced to the known solutions
(m,u) € {(4,5),(5,11),(7,71)}, but none of 5, 11, or 71 are Tetranacci numbers.
Thus there are no solutions to m! + 1 = 72 with m,n > 0. O

Acknowledgement. All numerical computation was done using the PARI-GP
calculator created by C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier.
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