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Abstract

For an additive group Γ the sequence S = (g1, . . . , gt) of elements of Γ is a zero-sum
sequence if g1 + · · · + gt = 0Γ. The cross number of S is defined to be the sum∑k

i=1 1/|gi|, where |gi| denotes the order of gi in Γ. Call S good if it contains a zero-
sum subsequence with cross number at most 1. In 1993, Geroldinger proved that
if Γ is abelian then every length |Γ| sequence of its elements is good, generalizing a
1989 result of Lemke and Kleitman that had proved an earlier conjecture of Erdős
and Lemke. In 1989 Chung re-proved the Lemke and Kleitman result by applying a
theorem of graph pebbling, and in 2005, Elledge and Hurlbert used graph pebbling
to re-prove and generalize Geroldinger’s result. Here we use probabilistic theorems
from graph pebbling to derive a threshold version of Geroldinger’s theorem for
abelian groups of a certain form. Specifically, we prove that if p1, . . . , pd are (not

necessarily distinct) primes and Γk has the form
∏d

i=1 Zpk
i
then there is a function

τ = τ(k) (which we specify in Theorem 4) with the following property: if t− τ→∞
as k→∞ then the probability that S is good in Γk tends to 1.

1. Introduction

For an additive group Γ the sequence S = (g1, . . . , gt) of elements of Γ is a zero-sum

sequence if g1 + · · ·+ gt = 0Γ. The study of zero sums has a long and rich history

(see [5]). The following theorem is considered to be one of the jewels and starting

points.
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Theorem 1 (Erdős-Ginzburg-Ziv [11]). For any positive integer n, every sequence

of 2n− 1 of elements from Zn contains a zero-sum subsequence of length exactly n.

Variations on this theme have arisen over time, including the replacement of the

length condition in the conclusion by other properties of interest, such as having

small cross number, which is important in the area of Krull monoid factorization

(see [5]). For a sequence S = (g1, . . . , gt) of elements of a finite group Γ, define the

cross number of S to be the sum
∑k

i=1 1/|gi|, where |gi| denotes the order of gi in

Γ. We call S good if it contains a zero-sum subsequence with cross number at most

one.

In 1987 Erdős and Lemke [16] conjectured that every sequence (a1, . . . , an) of n

elements of Zn contains a zero-sum subsequence whose sum is at most lcm(n, a1, . . . ,

an). This conjecture was proven by the following theorem.

Theorem 2 (Lemke-Kleitman [16], Chung [6]). For any positive integer n, every

sequence of n elements of Zn is good.

The proof by Lemke and Kleitman used what might be considered as traditional

techniques. However, Chung’s proof used an ingenious idea of Lagaria and Saks [6]

that converted the problem to one of pebbling in graphs, which we will discuss in

Section 2, below. Geroldinger then generalized Theorem 2 to finite abelian groups,

along the lines of Lemke and Kleitman’s proof, while Elledge and Hurlbert were

able to use the pebbling model to attain the same result.

Theorem 3 (Geroldinger [13], Elledge-Hurlbert [10]). For any finite abelian group

Γ, every sequence of |Γ| elements of Γ is good.

Lemke and Kleitman conjectured in [16] that the conclusion of Theorem 3 holds

for nonabelian Γ also, although no work seems to have been done on this.

1.1. Our Results

In this paper we move from guaranteeing the result with absolute certainty to

achieving the result with high probability, using the pebbling theorems of Section 3

to yield sharp thresholds for the existence of zero sums with small cross number. In

this section, we give a short non-technical introduction to the ideas present, so that

we can state our results. We will then revisit these topics in detail in later sections,

giving formal definitions to the undefined, and explaining the subtleties that arise.

We describe a randomized version of our sequences, explain how to use pebbling

to study zero-sum sequences to pebbling in Section 2.3, and transfer these more tra-

ditional tools to the randomized world via the random pebbling model and theorems

in Section 3.

Consider a finite abelian group Γ, and pick a sequence from Γ at random – that

is, we select a sequence (a1, . . . , at) with equal probability among all sequences of
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the same length; we denote this probability space by S(Γ, t). How large must t

be to make it more-likely-than-not that our randomly selected sequence contains

a zero-sum subsequence? How large should t to make it likely that our randomly

sequence is good?

With this goal in mind, we select our sequence of length t uniformly from Γ

and consider the event EΓ(t) containing all such good sequences. Formally, we will

examine the function

P1/2(Γ) := min

{
t : Pr[EΓ(t)] ≥

1

2

}
.

We will use Bachmann-Landau notation to describe the asymptotics of functions.

In this paper we prove the following theorem.

Theorem 4. Let Γ ∼=
∏d

i=1 Zpk
i
be a finite abelian group, where p1, . . . , pd are (not

necessarily distinct) primes and k ≥ 1. Then

P1/2(Γ) ≤ kd exp

[(
(d+ 1)!

∏
i lg pi

2
lg k

) 1
d+1

−
(

d

d+ 1

)
lg lg k +O(1)

]
.

Given functions f and g, we will write that f ≪ g, or equivalently f ∈ o(g),

whenever limn→∞
f(n)
g(n) = 0. A function t(n) is a threshold for event En if in the

sequence of probability spaces D(Gn, f(n)) the probability of event En tends to

1 whenever f(n) ≫ t(n), and the probability of event En tends to 0 whenever

f ≪ t(n). We further call t(n) a sharp threshold if whenever f(n) ≥ (1 + ε)t(n)

the probability of En tends to 1, and whenever f(n) ≤ (1 − ε)t(n) the probability

of En tends to 0. Often, for G = (Gi)i∈N, one writes τ(G) for the set of threshold

functions for the relevant sequence of events En. We will refer to any threshold

function that has not been shown to be sharp as a weak threshold (this is sometimes

called a coarse threshold in the literature).

These thresholds have the origins in the physical phase transitions that we see in

nature, where the physical properties of a state of matter transform dramatically

when crossing some critical temperature threshold. There is a long history and tra-

dition of determining thresholds for random events in both pebbling (for solvability

and other events) and random graphs (for connectivity, Hamiltonicity, the existence

of a giant component, and many other events). By determining the asymptotics of

P1/2(Γ), we are equivalently identifying the order of magnitude of the functions in

τ(Γ).

We note that in the case that our groups are a sequence cyclic groups of increasing

powers of a fixed prime p, Theorem 4 is improved via the stronger threshold result

for pebbling paths due to Bushaw and Kettle (Theorem 8); we record this simplest

case of Theorem 4 below.
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Corollary 1. Let Γ ∼=
∏d

i=1 Zpi
be a finite abelian group, where p1, . . . , pd are (not

necessarily distinct) primes. Then

P1/2(Γ) = Ω
(
ke

√
lg p lg k−(lg lg k)/2+o(1)

)
.

2. Lagarias-Saks Pebbling

We use the term “Lagarias-Saks” pebbling to distinguish it from other forms of

graph pebbling (e.g. black pebbling, black-and-white pebbling, etc.) that are used

to model and solve other problems in computer science, optimization, and compu-

tational geometry.

2.1. Graph Theory Definitions

Here we are given a graph G with vertices V (G), edges E(G), and a cost function

w : E(G)→Z+ (the positive integers). If no edge costs are specified, we default to

constant cost 2 everywhere. We denote the path Pn = v1v2 · · · vn to have n vertices

vi (i ≤ n) and n−1 edges vivi+1 (i < n). In general, we reserve the letter n = n(G)

to denote the number of vertices of a graph G.

The Cartesian product G2H of two graphs G and H has vertex set V (G2H) =

V (G)× V (H) and edge set

E(G2H) ={(u, v1)(u, v2) | u ∈ V (G), v1v2 ∈ E(H)}
∪ {(u1, v)(u2, v) | u1u2 ∈ E(G), v ∈ V (H)}.

For example, P22P2 is isomorphic to the 4-cycle C4. We may also recursively

define the sequence of d-cubes Q = (Q1, Q2, . . . , Qd, . . .) by Q1 = P2 and Qd =

Q12Qd−1 = 2d
i=1P2. More general d-dimensional grids are defined similarly as a

product of d paths: 2d
i=1Pni

, and for any graph G we can define Gd = 2d
i=1G. The

sequence of graphs of interest to us in Section 3 is Pd = (P d
1 , P

d
2 , . . . , P

d
k , . . .).

2.2. Pebbling Basics

We are also given a configuration of pebbles, modeled by a function C : V (G)→N
(the non-negative integers), by which C(v) indicates the number of pebbles on vertex

v. The size of C is defined to be |C| =
∑

v C(v); i.e., the total number of pebbles

on G. Additionally, the edges of G are weighted by a cost function w : E(G)→N+.

Finally, we are given a target vertex r to which we are challenged to place a pebble,

starting from C, via a sequence of pebbling steps, which we now describe.

Suppose that e = uv ∈ E(G) and C(u) ≥ w(e). Then the pebbling step u 7→ v

removes w(e) pebbles from u and adds one pebble to v. Thus, after such a step,
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the resulting configuration C ′ has C ′(u) = C(u) − w(e), C ′(v) = C(v) + 1, and

C ′(x) = C(x) otherwise. We say that C is r-solvable if it is possible to win this

challenge, and r-unsolvable otherwise. For example, suppose r = v1 in Pn, set

w(vivi+1) = wi for each 1 ≤ i < n, and let t =
∏n−1

i=1 wi. It is straightforward

to show by induction that (a) the configuration with t − 1 pebbles on vn and 0

elsewhere is r-unsolvable, while (b) any configuration of size t is r-solvable.

Thus we are led to define the rooted pebbling number π(G, r) of a weighted graph

G to be the minimum number of pebbles t such that every size t configuration

is r-solvable. From the above we have π(Pn, v1) =
∏n−1

i=1 wi. Next we define the

pebbling number of G as π(G) = maxr π(G, r). Any configuration of this size is

therefore r-solvable for every possible target r. Again, it is fairly evident that

π(Pn) = π(Pn, v1).

2.3. How Pebbling Finds Zero-Sums

Since one can read the proof of Theorem 2 in [6, 10], we only sketch the main idea

and connection through an example.

Suppose that we are given 45 integers, including 32, −11, 31, 51, 42, −24, 48, 75

and −15. We envision the lattice L of divisors of 45 (having relation a ≺ b when

a|b), but think of L as a graph G. In particular, G has vertices va for each divisor

a of 45, with edges between va and vb if (1) a|b and (2) c ∈ {a, b} whenever a|c
and c|b. Notice that G is isomorphic to the 2× 1 grid P32P2 because 45 = 32 · 51.
The edges of G are then weighted so that the edge e = vavb, where a|b, has cost

w(e) = b/a.

Numbers like 32, −11, and 31 will be placed as labeled pebbles at vertex v1
because they are relatively prime to 45; i.e., their greatest common divisor with 45

equals 1. More generally, each number m is placed as a labeled pebble at vertex

vk, where k = gcd(m, 45). What this placement guarantees is that each pebble by

itself satisfies local versions of both properties of interest. That is, with respect to

vertex v15, for example, the pebble labeled 30 is 0 (mod 15) and 1/|30| ≤ 1/|15|.
Given any three pebbles at v1, such as 32, −11, and 31, Theorem 3 guarantees

that we can find a subset of them, namely 32 and −11, that is a zero-sum modulo

3. Thus we remove them all from v1, create a new pebble labeled {32,−11}, and
place the new pebble at v3. This represents a pebbling step from v1 to v3 because

w(v1v3) = 3. Also, this new pebble satisfies the local properties at v3 because

gcd(32− 11, 45) = 3 and 1/|32|+1/| − 11| ≤ 3(1/|1|) = 1/|3|. From the summation

(not the orders) perspective, the pebble {32,−11} acts like a pebble with label 21

— we think of 21 as the nickname of {32,−11}.
Now, since the pebbles 51, 42, −24, and 48 are also at v3, we can use Theorem 3 on

these four pebbles and the newly arrived “21” to find a subset, such as {51, 48, 21},
that sums to zero modulo 5 (which results in zero modulo 15 because they are

each zero modulo 3 already). Thus we remove them all from v3, create a new
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pebble nestedly labeled {51, 48, {32,−11}}, and place the new pebble at v15. This

represents a pebbling step from v3 to v15 because w(v3v15) = 5. Also, this new

pebble satisfies the local properties at v15 because gcd(51 + 48 + 21, 45) = 15 and

1/|51|+1/|48|+1/|21| ≤ 5(1/|3|)1/|15|. The new pebble has nickname 51+48+21 =

120.

Finally, since the pebbles 75 and −15 are also at v15, we can use Theorem 3 on

these two pebbles and the newly arrived “120” to find a subset, such as 75, −15,

and 120, that sums to zero modulo 3 (which results in zero modulo 45 because they

are each zero modulo 15 already). Thus we remove them all from v15, create a new

pebble nestedly labeled {75,−15, {51, 48, {32,−11}}}, and place the new pebble at

v45. This represents a pebbling step from v15 to v45 because w(v15v45) = 3. Also,

this new pebble satisfies the local properties at v45 because gcd(75−15+120, 45) =

45 and 1/|51|+ 1/|48|+ 1/|120| ≤ 3(1/|45|) = 1/|15|.
The realization that the local properties at v45 are equivalent to the sought-after

original properties yields the solution {75,−15, 51, 48, 32,−11}.
The above gives a sense of how Lagarias-Saks pebbling models the sequential

construction of a zero-sum sequence with small cross number. Chung then used

retracts to reduce the pebbling problem on divisor lattices (i.e., products of paths)

to a similar pebbling problem on cubes (i.e., products of edges), subsequently finding

the appropriate pebbling number of cubes. The consequence of these results is what

proves Theorem 2 and, essentially, Theorem 3. There are extra wrinkles to the

general abelian group case, involving a specialized representation of them and using

Ferrer’s diagrams of partitions and their duals. Furthermore, the technique actually

results in the following generalization. For an additive group Γ with subgroup H,

the sequence g1, . . . , gt of elements of Γ is an H-sum sequence if g1 + · · ·+ gt ∈ H.

Theorem 5 (Elledge-Hurlbert [10]). For any finite abelian group Γ and subgroup

H of Γ, every sequence of |Γ|/|H| of its elements contains an H-sum subsequence

with cross number at most 1/|H|.

It should be noted that, while Chung’s method takes advantage of writing a

cyclic group as Γ =
∏d

i=1 Zp
ki
i

, where p1, . . . , pd are distinct primes, Theorem 5

allows for any number of these primes to be identical. In this more general case the

graph G(Γ) corresponding to the lattice L = L(Γ) is not always the divisor lattice

of
∏d

i=1 p
ki
i ; instead it is always the product of paths: G(Γ) = 2d

i=1Pki+1.

3. Threshold Pebbling

In this section, we formalize the probabilistic perspective promised in the introduc-

tion. Rather than placing our pebbles on the vertices of a graph carefully, we close

our eyes and choose a configuration at random. We ask ourselves a simple ques-
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tion: “Is it likely that our random configuration is solvable?” How many pebbles

must we place randomly before we can sleep soundly, confident that our resulting

configuration will (probably) be solvable?

Of course, this is the same sort of randomness as in the zero-sum sequence frame-

work discussed in the introduction. We fix some finite abelian group Γ, and select

a random sequence from the group. How large must this random sequence be, in

order to make a zero-sum subsequence likely? However, our results will follow from

threshold pebbling results, so we focus on this framework. In both this paragraph

and the preceding, one may be worried by the use of the imprecise word ‘likely’.

We now give a formal framework, and will give a precise mathematical meaning to

‘probably’.

3.1. Threshold Definitions

We fix a number of pebbles (or sequence length) t, and assume that our host graph

G (or group Γ) has order n. We select an initial configuration of t pebbles (sequence

elements) uniformly at random among all size t configurations; there are
(
n+t−1

t

)
such configurations. We denote this probability space by DG,t (DΓ,t). It is worth

noting that this is not the same distribution that one gets by placing each of t

pebbles onto the graph at random – in this latter scheme, large piles of pebbles are

much more likely. Throughout, we remain interested in the configuration model.

We further note that this is in line with the random model for sequences discussed

earlier, where we selected a length t sequence uniformly among all length t sequences

in Γ.

With our probability space in place, we can now begin to make precise our leading

question “How many pebbles are necessary to make it likely that our random initial

configuration is solvable?” In particular, we define the quantity P1/2(G)1. Again,

this is precisely in line with to our earlier P1/2(·) definitions in the introduction.

P1/2(G) := min {t : Pr [D ∈ DG,t is solvable] ≥ 1/2} .

While determining P1/2(G) for any particular graph is an interesting problem,

it is also a very hard one. Here, we focus here on sequences of graphs. That is,

given some infinite sequence of graphs G = (Gi)i∈N, what can we say about the

asymptotics of P1/2(Gn) as a function of n? We again use the the language of

thresholds to describe our results.

As an example, let Kn denote the complete graph on n vertices: every pair of

vertices is adjacent. When our sequence of graphs is the sequence of complete

graphs K = (Kn)n∈N with uniform edge weights w(e) = 2, then we find ourselves in

1It may seem like our choice of 1/2 is arbitrary; however, as we will be focused on cases where
our probabilities are either very near 0 or very near 1, this choice will make no difference to the
remainder of the work. Any choice of p ∈ (0, 1) would yield identical theorems.
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a situation similar to Feller’s Birthday problem (page 33 of [12]) – our configuration

is solvable if either we have a pebble on every vertex or if there are two pebbles

on any one vertex (since one pebble’s sacrifice will allow the survivor to travel to

any vertex at all). The unsolvable t-configurations are thus the ones with t pebbles

distributed injectively to the n vertices; there are
(
n
t

)
such t-configurations, and so

the probability that a random configuration is solvable is 1 −
(
n
t

)/(
n+t−1

t

)
. It is

straightforward to show that this probability tends to 1 when t(n) = c(n)
√
n with

c(n) → ∞, and that it approaches 0 if c(n) → 0; this shows that
√
n is a threshold

for K, though it does not show that this threshold is sharp. (The only difference

between pebbling and birthdays is that in Feller’s problem the people are labeled,

whereas here the pebbles are unlabeled.)

3.2. Threshold Results

In [2], the authors prove the existence of weak thresholds for monotone families

of multisets. Because the family of unsolvable configurations is monotone (closed

under removing pebbles), they obtain the following theorem.

Theorem 6 (Bekmetjev-Brightwell-Czygrinow-Hurlbert [2]). Every infinite sequence

of graphs has a weak pebbling threshold function.

As a concrete example, the sequence of papers [7, 2, 20] produced ever-sharpening

estimates on the (w = 2) pebbling threshold for the sequence of paths, leading to

the following result.

Theorem 7 (Czygrinow-Hurlbert [8]). Let P = (P1, . . . , Pn, . . .). Then for every

c > 1 we have τ(P) ⊆ Ω
(
n2

√
lgn/c

)
∩O

(
n2c

√
lgn

)
.

Note that, since the constant c in the exponent is a multiplicative factor, Theorem

7 does not yield a weak threshold (although Theorem 7 guarantees the existence of

such a threshold). Such a threshold was established in a sharp form in [4].

Theorem 8 (Bushaw-Kettle [4]). With P as above, we have

τ(P) ⊆ Θ
(
ne

√
lgw lgn−(lg lgn)/2+o(1)

)
.

One can view an n-dimensional grid as a product of paths, and so the above

results for paths can be seen as the first step toward establishing thresholds for

grids of fixed dimension. A weak threshold was established in [4], in the somewhat

more general setting where pebbling moves in different grid directions can have

different costs (we note that the O(1) term in the exponent here as opposed to the

o(1) term in the previous theorem is the subtle difference causing one to be weak

and one to be sharp.
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Theorem 9 (Bushaw-Kettle [4]). Let P d
k = 2d

i=1Pk, n = kd, and consider the

random pebbling model with cost wi in coordinate i. For fixed dimension d, define

the sequence Pd = (P d
1 , . . . , P

d
k , . . .). Then,

τ(Pd) = n exp

[(
(d+ 1)!

∏
i lgwi

2
lg k

) 1
d+1

−
(

d

d+ 1

)
lg lg k +O(1)

]
.

At another extreme, if instead one takes a product of ‘P2’s with increasing di-

mension we find the sequence of d-cubes, Q. Several groups studied thresholds for

pebbling d-cubes, culminating in the following theorem.

Theorem 10 (Czygrinow-Wagner [9], Alon [1]). Let Q = (Q1, . . . , Qd, . . .) and

n = 2d. Then for every ϵ > 0 we have τ(Q) ⊆ Ω(n1−ϵ) ∩O
(
n/(lg lgn)1−ϵ

)
.

In this case, Theorem 10 translates into the following bounds on the threshold

for Zd
2.

Theorem 11. Let Zd be the statement that the sequence g1, . . . , gt in Zd
2 is good,

and let Z = (Z1, . . . , Zd, . . .) and n = 2d. Then for every ϵ > 0 we have

τ(Z) ⊆ O
(
n/(lg lg n)1−ϵ

)
.

We end this section with a concrete example of Theorem 4; we believe that this

gives an instructive look at the result in the case of a relatively small group of simple

form.

Corollary 2. Let Zk be the statement that the sequence g1, . . . , gt in Z35k is good,

and let Z = (Z1, . . . , Zk, . . .). Then

τ(Z) ≤ n exp

[
(3 lg 5 lg 7 lg k)

1/3 −
(
2

3

)
lg lg k +O(1)

]
.

4. Proof of Main Theorem

In this section, we use the tools introduced in Sections 2 and 3 in order to prove

Theorem 4. With this in mind, let Γ ∼=
∏d

i=1 Zpk
i

be a finite abelian group,

where p1, . . . , pd are (not necessarily distinct) primes and k ≥ 1. Further, let

g = (g1, . . . , gt) be an arbitrary length t sequence in Γ and define

F (Γ) = n exp

[(
(d+ 1)!

∏
i lg pi

2
lg k

) 1
d+1

−
(

d

d+ 1

)
lg lg k +O(1)

]
.

As described in Section 2.3, the sequence g corresponds to the placement C of

t pebbles in the lattice graph G(Γ). By Theorem 9 the threshold τ(Pd) for the

solvability of C equals F (Γ). Hence we know that if t ≫ F (Γ) then C is solvable

with probability tending to 1, and by the discussion of Section 2.3 we have that g

is good with probability tending to 1. 2
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5. Final Comments

The reason that Theorem 4 is not necessarily an equality is because the converse

statement that the pebbling placement C corresponding to a good sequence is not

always solvable. For example, if g = (1, 4) in Z5 then g is good. However a pebbling

move in G(Z5) requires 5 pebbles, which is impossible, and so C is not solvable. It

still may turn out, however, that the probability that C is solvable, given that g is

good, tends to 1, which would yield equality in Theorem 4. Even this, though, seems

daunting because, for a general placement C of pebbles on an arbitrary graph G

with vertex v, answering the question “does C solve v?” is an NP-complete problem

(see [15, 17]). Some respite may be found in the possibility that the question on

d-dimensional grids is in P.

Problem 1. How can one find lower bounds on P1/2(Γ) for any given abelian group

Γ?

We finish with some remarks and questions regarding other well-known zero-sum

problems and conjectures in addition to generalizing Theorem 4.

Question 1. Let Γ ∼=
∏d

i=1 Zp
ki
i

be a finite abelian group, where p1, . . . , pd are (not

necessarily distinct) primes and each ki ≥ 1. What is P1/2(Γ)?

Answering Question 1 will likely require generalizing Theorem 9. Additionally,

Theorem 9 would also need to be generalized to be able to answer the next ques-

tion. In this case we have each ki = 1, which corresponds to strengthening and

generalizing Theorem 10.

Question 2. Let (p1, p2, . . .) be an infinite sequence of (not necessarily distinct)

primes, Γd =
∏d

i=1 Zpi , and G = (Γ1,Γ2, . . .). What is τ(G)?

For a group Γ define the Davenport constant D(Γ) to be the smallest t such that

every sequence of t elements of Γ contains a zero-sum subsequence. For a finite

abelian group Γ we write Γ ∼= ⊕k
i=1Zni , with ni|ni+1 for each 1 ≤ i < k, and

define the Davenport function dav(Γ) =
(∑k

i=1 ni

)
− k + 1. In the 1960s, Paul

Erdős conjectured that every finite abelian group satisfies D(Γ) = dav(Γ). While

Olson proved that Erdős’s conjecture was true if rank(Γ) ≤ 2 [18] or if p is prime

and Γ is a p-group ⊕k
i=1Zpai [19], in 1969 van Emde Boas gave the counterexample

Γ = Z4
2 ⊕ Z6 (for which dav(Γ) = 11 > 10 = D(Γ)) and proved subsequently that

it is false for ranks four and higher; e.g. Z3
3 ⊕ Z6. This left the conjecture open for

rank 3 groups (now known as Olson’s conjecture). We ask the following questions.

Question 3. Is it possible to model Olson’s conjecture by pebbling (possibly with

revised pebbling moves) on some structure?
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Note that there is no cross number condition, and so pebbling on the product

of paths is overkill, as evidenced by pebbling numbers that are larger than the

Davenport function.

Question 4. Do (sharp or weak) thresholds exist for zero-sums in this context? If

so, what are these thresholds?

Let us return to the default pebbling cost w = 2. For fixed k we define Pk =

(P 1
k , P

2
k , . . . , P

d
k , . . .). Theorem 10 shows that τ(P2) ⊆ o(2d), and it was con-

jectured in [14] that τ(Pk) ⊆ o(kd). At the other extreme, Theorem 9 shows

that for fixed d we have τ(Pd) ⊆ ω(kd). For d a function of k we define Pd
k =

(P
d(1)
1 , P

d(2)
2 , . . . , P

d(k)
k , . . .). The following question was asked in [14].

Question 5 ([14]). For which function d = d(k) is it true that τ(Pd
k ) ⊆ Θ(kd)?

Define the sequence Kd = (Kd
1 ,K

d
2 , . . . ,K

d
k , . . .). It was shown in [3] that τ(K2) ⊆

Θ(kd/2).

Question 6. Is there some d such that τ(Kd) ⊆ ω(kd/2)?
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