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Abstract

The aim of this paper is to generalize the concept of Zumkeller numbers and intro-

duce two new types, namely, s-Zumkeller numbers and unitary s-Zumkeller num-

bers. Different characteristics exhibited by these numbers are investigated and il-

lustrative examples are provided to support the findings. Additionally, connections

are derived between the harmonic mean of the squares of the divisors of a positive

integer n and s-Zumkeller numbers.

1. Introduction

In recent years, numerous researchers [1, 10, 12, 13] have been focused on expanding

the concept of perfect numbers. A positive integer n is called a perfect number if

the sum of all proper positive divisors of n is equal to itself. If σ(n) denotes the

sum of all positive divisors of n, then n is perfect if and only if σ(n)− n = n, that

is, σ(n) = 2n.

In 2003, generalizing the concept of perfect number, R. H. Zumkeller introduced

a new type of positive integer what are now known as Zumkeller number [5]. A

positive integer n is called a Zumkeller number if the set of all positive divisors of n

can be partitioned into two disjoint subsets of equal sum. Similarly, n is called a half

Zumkeller number if the set of all proper positive divisors of n can be partitioned

into two disjoint subsets of equal sum.

In 2013, Peng and Bhaskara Rao [9] investigated various properties of Zumkeller

numbers and half Zumkeller numbers. Mahanta, Saikia and Yaqubi [7] examined

Zumkeller numbers and the harmonic mean of divisors, establishing certain rela-

tions between the two. In [4], Cai, Chen and Zhang explored perfect numbers
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and Fibonacci primes, investigating several of their properties. Additionally, many

researchers have been working on Zumkeller numbers and their variations, such as

layered Zumkeller numbers, unitary Zumkeller numbers, and m-Zumkeller numbers.

Motivated by their work, we attempt to study two new types of numbers, namely,

s-Zumkeller numbers and unitary s-Zumkeller numbers. A positive integer n is

called an s-Zumkeller number if the set of proper positive divisors of n can be

partitioned into two disjoint subsets, such that the sum of the squares of the elements

of each subset are equal. A divisor d of a positive integer n is said to be a unitary

divisor of n if
(
d, n

d

)
= 1. A positive integer n is called a unitary s-Zumkeller number

if the set of proper unitary positive divisors of n can be partitioned into two disjoint

subsets, such that the sum of the squares of the elements of each subset are equal.

It is interesting to note that 6 is a perfect number and also a Zumkeller number, but

it is neither an s-Zumkeller number nor a unitary s-Zumkeller number. In Section

2 and Section 3 of this paper, we shall study various properties of s-Zumkeller

numbers and unitary s-Zumkeller numbers, respectively.

2. s-Zumkeller Numbers

In this section, we first define some preliminary arithmetic functions and present

a few results that are needed for the sequel. We then define s-Zumkeller numbers

with suitable examples and obtain some properties of these type of numbers.

The function τ(n) denotes the number of positive divisors of n and the func-

tion σ2(n) denotes the sum of the squares of the positive divisors of n. The

function H(n), the harmonic mean of the positive divisors of n, is defined by
1

H(n) = 1
τ(n)

∑
d|n

1
d . Then H(n) = τ(n)∑

d|n
1
d

and this implies H(n) = nτ(n)
σ(n) . Simi-

larly, the function H2(n), the harmonic mean of the squares of the positive divisors

of n, is defined by 1
H2(n)

= 1
τ(n)

∑
d|n

1
d2 . Then H2(n) =

n2τ(n)
σ2(n)

.

We present the following facts about the functions σ(n) and σ2(n).

Lemma 1 ([9]). If the prime factorization of n is pk1
1 pk2

2 ...pkm
m , then

(i)

σ(n) =

m∏
i=1

p
(ki+1)
i − 1

pi − 1
and

σ(n)

n
=

m∏
i=1

p
(ki+1)
i − 1

pki
i (pi − 1)

<

m∏
i=1

pi
pi − 1

;

(ii)

σ2(n) =

m∏
i=1

p
2(ki+1)
i − 1

p2i − 1
and

σ2(n)

n2
=

m∏
i=1

p
2(ki+1)
i − 1

p2ki
i (p2i − 1)

<

m∏
i=1

p2i
p2i − 1

.

We now define s-Zumkeller numbers as follows.
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Definition 1. A positive integer n is called an s-Zumkeller number if the set D of

proper positive divisors of n can be partitioned as {A,B}, such that

∑
d∈A

d2 =
∑
d∈B

d2 =
σ2(n)− n2

2
.

Example 1. The integers 60, 120, 180, 252, 300, 336, 360, 420, 480, 504, 600, 660,

672, 756, 792, 840, 936 are some s-Zumkeller numbers.

2.1. Main Results

Proposition 1. If n is an even s-Zumkeller number, then

(i) σ2(n) is even;

(ii) the prime factorization of n must include at least one odd prime with an odd

exponent;

(iii) σ2(n) ≥ 3
2n

2.

Proof. (i) Let σ2(n) be an odd integer. Then σ2(n) − n2 is also odd. Thus, it

is impossible to partition the proper positive divisors of n into two equal squared

summed subsets. Therefore, σ2(n) is even.

(ii) Since σ2(n) is even, the number of odd positive divisors of n must be even.

Let the prime factorization of n be 2kpk1
1 pk2

2 ...pkm
m . Obviously, the number of odd

positive divisors of n is (k1 + 1)(k2 + 1)...(km + 1) and this number must be even.

Therefore, at least one of the ki’s must be odd. Hence, the prime factorization of n

must include at least one odd prime with an odd exponent.

(iii) Let n be an even s-Zumkeller number. Then, by definition, the proper

positive divisors of n can be partitioned into two disjoint subsets of equal sum

of the squares of the divisors. Hence, each subset must contain those divisors,

whose sum of the squares is equal to σ2(n)−n2

2 . Since n is even, the greatest proper

positive divisor is n
2 . Also, n

2 must be contained in one of these two subsets. Thus,
σ2(n)−n2

2 ≥ (n2 )
2 which implies σ2(n) ≥ 3n2

2 .

The following result exhibits a necessary and sufficient condition for an even

integer to be an s-Zumkeller number.

Proposition 2. An even positive integer n is an s-Zumkeller number if and only

if 2σ2(n)−3n2

4 is a sum (possibly an empty sum) of the squares of distinct proper

positive divisors of n, excluding n
2 .

Proof. We assume that n is an s-Zumkeller number with Zumkeller partition {A,B}.
Without loss of generality, we may assume that n

2 ∈ A. Then, the sum of the squares
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of the remaining elements of A will be

σ2(n)− n2

2
−

(n
2

)2

=
2σ2(n)− 3n2

4
.

Thus, 2σ2(n)−3n2

4 is a sum of the squares of distinct proper positive divisors of n,

excluding n
2 .

Conversely, suppose 2σ2(n)−3n2

4 is a sum of the squares of distinct proper positive

divisors of n, excluding n
2 . If we augment this set with n

2 , we have a set of positive

divisors of n whose sum of the squares is equal to

2σ2(n)− 3n2

4
+

(n
2

)2

=
σ2(n)− n2

2
.

Therefore, the sum of the squares of the proper positive divisors of n of the com-

plementary set of the above mentioned augmented set will be equal to σ2(n)−n2

2 .

Hence, n is an s-Zumkeller number.

Proposition 3. If n is an even s-Zumkeller number, then τ(n) ≥ 12.

Proof. Let n be an even s-Zumkeller number. So, by Proposition 1 (iii), we have

σ2(n) ≥ 3
2n

2. This implies ∑
di|n

1

d2i
≥ 3

2
. (1)

Suppose, τ(n) < 12. Let τ(n) = k. (To get
∑

di|n
1
d2
i
≥ 3

2 , we have to consider

the smallest possible value of n.)

If k = 2, then the smallest possible value of n is 2 and d1 = 1, d2 = 2. Then∑
di|n

1
d2
i
= 1.25 < 3

2 , which contradicts (1).

If k = 3, then the smallest possible value of n is 4 and d1 = 1, d2 = 2, d3 = 4.

Then
∑

di|n
1
d2
i
= 21

16 < 3
2 , which contradicts (1).

If k = 4, then the smallest possible value of n is 6 and d1 = 1, d2 = 2, d3 =

3, d4 = 6. Then
∑

di|n
1
d2
i
= 25

18 < 3
2 , which contradicts (1).

Similarly, for all k < 12,
∑

di|n
1
d2
i
< 3

2 , which contradicts (1). But, if k = 12,

then the smallest possible value of n is 60 and d1 = 1, d2 = 2, d3 = 3, d4 = 4, d5 =

5, d6 = 6, d7 = 10, d8 = 12, d9 = 15, d10 = 20, d11 = 30, d12 = 60. This implies∑
di|n

1
d2
i
= 91

60 > 3
2 .

Hence τ(n) ≥ 12.

Proposition 4. If n is an even s-Zumkeller number, then 3 divides n.
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Proof. Suppose 3 does not divide n. This implies that multiples of 3 cannot be

divisors of n. Let N be the set of natural numbers. Then,∑
d|n

1

d2
<

∑
m∈N

1

m2
−

∑
m∈N

1

(3m)2
=

∑
m∈N

1

m2
− 1

9

∑
m∈N

1

m2

=
8

9

∑
m∈N

1

m2

=
8

9
× π2

6
(by Basel problem [2])

= 1.4621636149762...

<
3

2
,

which contradicts (1). Thus, 3 divides n.

As a consequence of the above result, we get the following corollary.

Corollary 1. If n is an even s-Zumkeller number, then 6 divides n.

Remark 1. If n is an odd s-Zumkeller number and 3 divides n, then σ2(n)−n2

2 ≥
(n3 )

2 and this implies
∑

d|n
2∤n

1
d2 ≥ 11

9 = 1.2. Now,
∑

d|n
2∤n

1
d2 <

∑
m∈N

1
m2−

∑
m∈N

1
(2m)2 .

This implies
∑

d|n
2∤n

1
d2 < 3

4

∑
m∈N

1
m2 = π2

8 (by Basel problem [2]). So, there may

exist a positive integer n, such that 1.2 ≤
∑

d|n
2∤n

1
d2 < π2

8 . This is a necessary but

not sufficient condition for n to be an s-Zumkeller number. This implies that odd

s-Zumkeller numbers may exist.

Proposition 5. If n is an s-Zumkeller number and the prime factorization of n is

pk1
1 pk2

2 ...pkm
m , where p1 < p2 < ... < pm, then

2

p21
+ 1 <

m∏
i=1

p2i
p2i − 1

.

Proof. Let n be an s-Zumkeller number. Then

σ2(n)− n2

2
≥

(
n

p1

)2

.

This implies

2

p21
+ 1 ≤ σ2(n)

n2
. (2)
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Again, by Lemma 1, we have

σ2(n)

n2
<

m∏
i=1

p2i
p2i − 1

. (3)

Hence, by (2) and (3),

2

p21
+ 1 <

m∏
i=1

p2i
p2i − 1

.

Proposition 6. (i) If n is an even s-Zumkeller number, then n must contain at

least 3 distinct prime divisors.

(ii) If n is an odd s-Zumkeller number and 3 divides n, then n must contain at least

8 distinct prime divisors.

Proof. (i) Let n be an even s-Zumkeller number. Then, by Proposition 5,

3

2
<

m∏
i=1

p2i
p2i − 1

. (4)

If m ≤ 2, then

m∏
i=1

p2i
p2i − 1

≤ 22

22 − 1
× 32

32 − 1
=

4

3
× 9

8
=

3

2
,

which contradicts (4). Therefore, m ≥ 3. Hence, n must contain at least 3 distinct

prime divisors.

(ii) Let n be an odd s-Zumkeller number and let 3 divide n. Then, by Proposition

5,

11

9
<

m∏
i=1

p2i
p2i − 1

. (5)

If m ≤ 7, then

m∏
i=1

p2i
p2i − 1

≤ 32

32 − 1
× 52

52 − 1
× 72

72 − 1
× 112

112 − 1
× 132

132 − 1
× 172

172 − 1
× 192

192 − 1

=
9

8
× 25

24
× 49

48
× 121

120
× 169

168
× 289

288
× 361

360
<

11

9
,

which contradicts (5). Therefore, m ≥ 8. Hence, n must contain at least 8 distinct

prime divisors.

Proposition 7. If n is an odd s-Zumkeller number, then n is a perfect square.
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Proof. Let n be an odd s-Zumkeller number. Then, σ2(n)−n2 must be even. Since

n is odd, σ2(n) must be odd. If the prime factorization of n is
∏m

i=1 p
ki
i , then

σ2(n) =
∏m

i=1(
∑ki

j=0 p
2j
i ). Since σ2(n) is odd, all k′is must be even. Hence, n is a

perfect square.

Proposition 8. If n is an odd s-Zumkeller number divisible by 3, then

n ≥ 12442607161209225.

Proof. Let n be an odd s-Zumkeller number divisible by 3. Then, by Proposition

6 (ii), n must contain at least 8 distinct prime divisors. So, n ≥ 3 × 5 × 7 × 11 ×
13× 17× 19× 23. Again, by Proposition 7, n must be a perfect square. Therefore,

n ≥ (3× 5× 7× 11× 13× 17× 19× 23)2 = 12442607161209225.

Proposition 9. If n is an even s-Zumkeller number, then H2(n) ≤ 2τ(n)
3 .

Proof. Let n be an even s-Zumkeller number. By Proposition 1(iii), we have σ2(n) ≥
3
2n

2. Again, H2(n) =
n2τ(n)
σ2(n)

. Therefore, H2(n) =
n2τ(n)
σ2(n)

≤ 2n2τ(n)
3n2 = 2τ(n)

3 .

Proposition 10. For any positive integer α, let n = 2α(2α+1−1) be an s-Zumkeller

number. Then H2(n) <
22α+3

3 .

Proof. By Proposition 9, we have H2(n) ≤ 2τ(n)
3 = 2(α+1)τ(2α+1−1)

3 . For all k ∈ N,
we have 2k ≥ k + 1. Therefore, 2α+1 ≥ α+1+1 and this implies 2α+1 − 1 ≥ α+1.

Also, for each positive integer n, τ(n) ≤ n. Therefore, τ(2α+1 − 1) ≤ 2α+1 − 1.

Hence, H2(n) ≤ 2(2α+1−1)2

3 < 2(2α+1)2

3 = 22α+3

3 .

3. Unitary s-Zumkeller Numbers

In this section, we first present some preliminary arithmetic functions and results

that are necessary for our work. We then define unitary s-Zumkeller numbers and

provide suitable examples. Additionally, we discuss some properties of these num-

bers.

The function σ∗
2(n) denotes the sum of the squares of the unitary divisors of a

positive integer n and the function τ∗(n) denotes the number of unitary divisors of

n.

Lemma 2 ([3]). For any positive integer n =
∑m

i=1 p
ki
i , we have τ∗(n) = 2m.

Lemma 3 ([11]). (i) If the prime factorization of n is pk1
1 pk2

2 ...pkm
m , then

σ∗
2(n) = (1 + p2k1

1 )(1 + p2k2
2 )...(1 + p2km

m ) =

m∏
i=1

(1 + p2ki
i ).
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(ii) If n = n1n2...nm , where n1 < n2 < ... < nm are pairwise relatively prime,

then

σ∗
2(n) =

m∏
i=1

(1 + n2
i ).

Remark 2. Let n = pk1
1 pk2

2 ...pkm
m , where pi’s are distinct primes. Then n =

q1q2...qm. (where qi = pki
i , for i = 1, 2, · · · ,m.). This implies n = n1n2...nm (where

ni = qj , for some i = 1, 2, 3, ...,m and j = 1, 2, 3, ...,m ), such that n1 < n2 < ... <

nm. Then, n
n1

is the greatest proper unitary divisor of n.

We now define unitary s-Zumkeller numbers as follows.

Definition 2. A positive integer n is called a unitary s-Zumkeller number if the set

D of proper positive unitary divisors of n can be partitioned as {A,B}, such that

∑
d∈A

d2 =
∑
d∈B

d2 =
σ∗
2(n)− n2

2
.

Example 2. The integers 60, 140, 420, 660, 1224, 1820 are unitary s-Zumkeller

numbers.

3.1. Main Results

Proposition 11. If n is a unitary s-Zumkeller number and n = n1n2...nm, where

ni’s are pairwise relatively prime, such that n1 < n2 < ... < nm, then σ∗
2(n) ≥

n2( 2
n2
1
+ 1) and hence,

(i)
2

n2
1

+ 1 ≤
∑
d|n

(d,nd )=1

1

d2
;

(ii)

2

n2
1

+ 1 ≤
m∏
i=1

(1 + n2
i )

n2
i

.

Proof. (i) Let n = n1n2...nm be a unitary s-Zumkeller number, where (ni, nj) = 1,

for all i ̸= j and n1 < n2 < ... < nm. Since n
n1

is the greatest proper unitary divisor

of n, by the definition of unitary s-Zumkeller numbers, we have

σ∗
2(n)− n2

2
≥

(
n

n1

)2

, and this implies
∑
d|n

(d,nd )=1

1

d2
≥ 2

n2
1

+ 1.
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(ii) From (i), it follows that

σ∗
2(n) ≥ n2

(
2

n2
1

+ 1

)
.

Also, by Lemma 3(ii),

σ∗
2(n) =

m∏
i=1

(1 + n2
i ).

Therefore,
m∏
i=1

(1 + n2
i )

n2
i

≥ 2

n2
1

+ 1.

Proposition 12. Let n be a unitary s-Zumkeller number. If the least nontrivial

unitary divisor of n is 2 or 3 or 4, then τ∗(n) is greater than 26 or 22 or 22,

respectively.

Proof. Let n = n1n2...nm be a unitary s-Zumkeller number, where n1 < n2 < ... <

nm are pairwise relatively prime. By Proposition 11(ii),

2

n2
1

+ 1 ≤
m∏
i=1

(1 + n2
i )

n2
i

.

We may consider three cases.

Case1. If n1 = 2, then

3

2
≤

m∏
i=1

(1 + n2
i )

n2
i

. (6)

However, for m ≤ 6, we have

m∏
i=1

(1 + n2
i )

n2
i

≤ 22 + 1

22
× 32 + 1

32
× 52 + 1

52
× 72 + 1

72
× 112 + 1

112
× 132 + 1

132

=
5

4
× 10

9
× 26

25
× 50

49
× 122

121
× 170

169
<

3

2
,

which contradicts (6). Therefore, m > 6 and hence, by Lemma 2, we have τ∗(n) >

26. Thus, if 2 is the smallest nontrivial unitary divisor of n, then τ∗(n) > 26.

Case2. If n1 = 3, then

11

9
≤

m∏
i=1

(1 + n2
i )

n2
i

. (7)
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However, for m ≤ 2, we have

m∏
i=1

(1 + n2
i )

n2
i

≤ 32 + 1

32
× 42 + 1

42
=

10

9
× 17

16
<

11

9
,

which contradicts (7). Therefore, m > 2 and hence, by Lemma 2, we have τ∗(n) >

22. Thus, if 3 is the smallest nontrivial unitary divisor of n, then τ∗(n) > 22.

Case3. If n1 = 4, then

18

16
≤

m∏
i=1

(1 + n2
i )

n2
i

. (8)

However, for m ≤ 2, we have

m∏
i=1

(1 + n2
i )

n2
i

≤ 42 + 1

42
× 52 + 1

52
=

17

16
× 26

25
<

18

16
,

which contradicts (8). Therefore, m > 2 and hence, by Lemma 2, we have τ∗(n) >

22. Thus, if 4 is the smallest nontrivial unitary divisor of n, then τ∗(n) > 22.

Proposition 13. There does not exist any odd unitary s-Zumkeller number.

Proof. Let n be an odd positive integer. Then, by Lemma 2, we have that τ∗(n)

is even. Since n is odd, all the unitary divisors of n are odd. Therefore, σ∗
2(n)

being the sum of the squares of an even number of odd positive integers, is even.

Suppose n is a unitary s-Zumkeller number. Then σ∗
2(n) − n2 is even. Since n is

odd, σ∗
2(n) is odd, which is a contradiction. Hence, there does not exist any odd

unitary s-Zumkeller number.

4. Conclusion

In this paper, we have generalized Zumkeller numbers to include s-Zumkeller num-

bers and unitary s-Zumkeller numbers, and have established several properties of

these numbers. We have demonstrated that if an odd s-Zumkeller number is di-

visible by 3, it must be greater than 12,442,607,161,209,225. Additionally, we have

shown the non-existence of odd unitary s-Zumkeller numbers. Future work could ex-

plore the introduction and investigation of graph labeling concepts using the newly

defined s-Zumkeller numbers and unitary s-Zumkeller numbers.
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