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Abstract

Given a finite set A ⊂ R, we define A + A = {a + a′ | a, a′ ∈ A} and A − A =

{a− a′ | a, a′ ∈ A}. A set A is said to be an MSTD (More Sums than Differences)

set if |A+A| > |A−A|. We define A.A = {aa′ | a, a′ ∈ A} and A/A = {a/a′ | a, a′ ∈
A, a′ ̸= 0}. Analogous to MSTD sets, H V Chu defines a set A ⊂ R∖ {0} to be an

MPTQ (More Products than Quotients) set if |A.A| > |A/A|. It is known by the

exponentiation of MSTD sets that there exist MPTQ sets of cardinality 8. In an

attempt to determine the smallest cardinality of an MPTQ set, Chu proved that an

MPTQ set of real numbers must have at least 5 elements. In this work, we prove

that a set of real numbers with cardinality 5 is not an MPTQ set. So we conclude

an MPTQ set of real numbers must contain at least 6 elements. We have identified

certain cases of sets with cardinality 6 that are not MPTQ sets. Further, we give

an infinite family of MPTQ sets that are not the exponential of an MSTD set.

1. Introduction

Definition 1. Given a finite set A ⊂ R, we define

A+A = {a+ a′ | a, a′ ∈ A}; A−A = {a− a′ | a, a′ ∈ A};

A.A = {aa′ | a, a′ ∈ A}; A/A = {a/a′ | a, a′ ∈ A, a′ ̸= 0}.

A set A is said to be an MSTD (More Sums than Differences) set [16] if |A+A| >
|A − A| and an MDTS (More Differences than Sums) set if |A + A| < |A − A|.
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Similarly, a set A ⊂ R∖{0} is said to be an MPTQ (More Products than Quotients)

set if |A.A| > |A/A| and an MQTP (More Quotients than Products) set if |A.A| <
|A/A|. In either case, we say A is balanced if the cardinalities are equal.

In recent years, the notion of MSTD sets has received good attention from re-

searchers working in the field of additive number theory. For a history and overview

of MSTD sets, we suggest [7, 11, 14, 17, 18], and for explicit constructions of MSTD

sets, we refer the reader to [4, 6, 2, 8, 12, 13, 19]. After Nathanson’s review of the

concept [16], we can find various generalizations, extensions to finite groups, and

other settings; see [1, 9, 10, 20] for more details. It was proved by Martin and

O’Bryant [12] that as n → ∞, the percentage of MSTD subsets in {1, 2, . . . , n} is

bounded below by a positive constant, which Zhao [21] gave to several digits.

As multiplication is commutative and division is not, just like addition and sub-

traction, we expect that the number of quotients is at least the number of products

for a given set. However, MPTQ sets do exist.

Example 1. For the set A = {4, 9, 16, 18, 24, 36, 162, 216, 243, 432, 972}, |A.A| =
52 > 51 = |A/A|. So A is an MPTQ set.

We can also find examples of MPTQ sets consisting of both positive and negative

integers.

Example 2. The set A = {−1944,−864,−648,−162,−96, 12, 27, 36, 108, 144, 243}
is an MPTQ set.

For preliminaries, basic constructions, and probability measures for MPTQ sub-

sets, one may refer to [5]. Though the number of MSTD subsets of {1, 2, . . . , n}
grows quickly as n grows, Theorem 1.3 of [5] shows that as n → ∞ the proportion

of MPTQ subsets of {1, 2, . . . , n} approaches 0, unlike MSTD sets. This shows that

MPTQ sets are rare compared to MSTD sets.

The notion of MPTQ sets is closely linked to that of MSTD sets through the

logarithmic transformation and exponentiation of sets. Though there is extensive

research happening in the area of MSTD sets and their generalizations, MPTQ sets

have not received as much attention as MSTD sets. However, exploring the concept

of MPTQ sets can enhance our understanding of MSTD sets and may uncover new

connections in the area of additive number theory.

In [15] Nathanson asked, What is the smallest cardinality of an MSTD set? To

answer this, Hegarty proved the following using Mathematica programming.

Theorem 1 ([8]). There are no MSTD subsets of the integers of size 7. Up to

linear transformations the only set of size 8 is {0, 2, 3, 4, 7, 11, 12, 14}.

However, a computer-free proof of the result has not been produced because of

the complexity involved. To answer Nathanson’s question, H. V. Chu [3] presented
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a proof that an MSTD set must have a minimum of 7 elements without computers’

help.

Question 1.5 of [5] concerns the smallest cardinality of an MPTQ set of real num-

bers and Chu remarks that answering this question is quite challenging because it

requires more memory and computational power for computers to do multiplication

and division than addition and subtraction. However, he proved the following.

Theorem 2 ([5]). Let A be an MPTQ set of real numbers. The following claims

are true.

1. If A contains only positive numbers, then |A| ≥ 8.

2. If A contains negative numbers, then |A| ≥ 5.

A property of a set is affine-invariant if it remains unchanged under a dilation

followed by a translation. The property of being an MSTD set is affine-invariant

[16]. So for problems related to the cardinality of MSTD sets of real numbers, it

is enough to consider the case of positive reals. In particular, when we work with

integers it suffices to take our domain to be the interval of integers [1, n]. Restricting

ourselves to [1, n] would work even up to rational numbers as any finite set of

rationals is affinely equivalent to a set of positive integers. But for questions related

to the smallest cardinality of MPTQ sets we have to take into consideration negative

numbers as well because the property of being an MPTQ set is not preserved under

translation.

For a finite set A ⊆ R∖ {0} and a nonzero real number r,

|(rA).(rA)| = |r2(A.A)| = |A.A| and |(rA)/(rA)| = |A/A|.

So A is an MPTQ set if and only if rA is an MPTQ set.

Thus, the property of being an MPTQ set is preserved under dilation. So any

set with only negative real numbers can be dilated to a set of positive numbers

without change in cardinality. On the other hand, Theorem 2 confirms the minimum

cardinality of an MPTQ set of positive reals to be 8. Therefore, we can conclude

that there is no MPTQ set of cardinality less than 8 consisting of only negative

numbers. So if there exists an MPTQ set of reals with cardinality 5 it must contain

at least one positive and one negative number.

In this paper, we shall prove that a set of real numbers with cardinality 5 cannot

be an MPTQ set.

2. Useful Results

We write x −→ A to mean the adjoining of the number x to the set A that yields the

set A ∪ {x}. The products and quotients generated due to x −→ A will be referred

to as ‘new’ elements.
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We shall first prove the following lemma.

Lemma 1. Let A be a finite set of real numbers which is not an MPTQ set. Let

A′ = A ∪ {x} where x is real such that x −→ A gives at most n new products and

at least m new quotients. If n ≤ m, then A′ is not an MPTQ set.

Proof. We have,

|A′.A′| ≤ |A.A|+ n and |A′/A′| ≥ |A/A|+m.

Now,

|A′/A′| − |A′.A′| ≥ |A/A| − |A.A|+m− n.

As A is not an MPTQ set, we get |A/A|−|A.A| ≥ 0. Therefore, the above inequality

implies that A′ is not an MPTQ set.

Lemma 2. If a, b, c, and d are distinct positive real numbers such that ab = cd,

then neither ad = bc, nor ac = bd, holds. That is, the product of any two of them

can be equal to the product of the remaining two numbers in exactly one way.

Proof. Let a, b, c, and d be distinct positive real numbers with ab = cd. Suppose

ad = bc. Then combining the two equalities we get a = c, and b = d. A similar

argument shows that ac = bd will also lead to a contradiction. We have completed

the proof.

Similarly, we observe the following.

Lemma 3. It is not possible to find three distinct positive real numbers such that

the product of any two of them is always the square of the third number. In fact,

among the three equalities, a2 = bc, b2 = ac, and c2 = ab, at most one of them can

be true at a time.

Proof. Let a, b and c be distinct positive real numbers. Suppose a2 = bc and b2 = ac.

Then we get a3 = b3, which implies a = b. This completes the proof.

2.1. Sets of Cardinality 5 with Only One Negative Number

Lemma 4. A set of cardinality 5 with one negative number is not an MPTQ set.

Proof. Let A = {a1, a2, a3, a4} be a set of positive real numbers and let A′ =

A ∪ {−x}, where x > 0. Note that, the products in A.A and the quotients in A/A

are all positive.

• If x2 ̸∈ A.A, then −x −→ A yields 5 new products,

−a1x,−a2x,−a3x,−a4x, x
2,
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and 8 new quotients,

− x

a1
,−a1

x
,− x

a2
,−a2

x
,− x

a3
,−a3

x
,− x

a4
,−a4

x
.

• If x2 ∈ A.A, then we get 4 new products,

−a1x,−a2x,−a3x,−a4x,

and at least 4 new quotients,

−a1
x
,−a2

x
,−a3

x
,−a4

x
.

Therefore, by Lemma 1 it follows that A′ is not an MPTQ set.

We shall now work with sets having at least two negative numbers. Due to

symmetry, it suffices to consider sets with exactly two negative and three positive

numbers.

2.2. Sets of Cardinality 5 with Two Negative Numbers

Lemma 5. A set of cardinality 5 with two negative numbers is not an MPTQ set.

Proof. Let A = {a1, a2, a3} be a set of positive real numbers, and let A′ denote the

set obtained by adjoining two negative numbers to A. We shall divide the proof

into three cases depending on the magnitude of the negative numbers appended.

Under each of the three cases, we shall list the subcases discussing all possible

simultaneous equalities among products that would reduce the number of newly

generated quotients.

Case 1: A′ = A ∪ {−a1,−a2}. In this case, the numbers −a1,−a2 appended to A

yield at most 5 new products,

−a21,−a22,−a1a2,−a1a3,−a2a3.

The new quotients obtained are

−1,−a1
a2

,−a1
a3

,−a2
a1

,−a2
a3

,−a3
a1

and − a3
a2

,

of which at least 5 are distinct as a21 = a2a3 and a22 = a1a3 cannot be true simulta-

neously by Lemma 3.

Therefore, by Lemma 1 it follows that A′ is not an MPTQ set.

Case 2: A′ = A ∪ {−a1,−x}, where x > 0 and x /∈ A. In this case, −a1,−x −→ A

give at most 8 new products namely,

−a21,−a1a2,−a1a3,−a1x,−a2x,−a3x, x
2, a1x.
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We shall list all newly produced ‘negative’ quotients.

Due to −a1 −→ A, we get the quotients

−1,−a1
a2

,−a2
a1

,−a1
a3

,−a3
a1

,

and due to −x −→ A, we get the quotients

− x

a1
,−a1

x
,− x

a2
,−a2

x
,− x

a3
,−a3

x
.

If all quotients listed above are distinct, then we get 11 new quotients in A′/A′. So

A′ will have more quotients than products. Otherwise, we can identify the following

6 subcases based on the possible equalities among the above-listed quotients with

the help of Lemma 2 and Lemma 3.

Subcase 2.1: x/a1 = a2/x, a1/a2 = a3/a1, x/a3 = a3/a1. Accordingly, we have

the following equalities:

x2 = a1a2, a21 = a2a3, a23 = a1x, and a1a3 = a2x.

In this case, we get 5 new products,

−a21,−a1a2,−a1a3,−a1x,−a3x,

and 5 new quotients,

−1,−a1
a2

,−a2
a1

,− x

a1
,−a1

x
.

Subcase 2.2: x/a1 = a3/x, a1/a2 = a3/a1, x/a2 = a2/a1. These result in the

equalities:

x2 = a1a3, a21 = a2a3, a22 = a1x, and a1a2 = a3x, respectively.

In this case, we get 5 new products,

−a21,−a1a2,−a1a3,−a1x,−a2x,

and 5 new quotients,

−1,−a1
a2

,−a2
a1

,− x

a1
,−a1

x
.

Subcase 2.3: x/a1 = a2/x, x/a1 = a1/a3, x/a3 = a1/a2. The resulting equalities

are

x2 = a1a2, a21 = a3x, and a1a3 = a2x, respectively.

In this case, we get 4 new products,

−a21,−a1a2,−a1a3,−a1x,
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and 5 new quotients,

−1,−a1
a2

,−a2
a1

,−a3
a1

,−a1
a3

.

Subcase 2.4: x/a1 = a3/x, x/a1 = a1/a2, x/a2 = a1/a3. The resulting equalities

are

x2 = a1a3, a21 = a2x, and a1a2 = a3x.

In this case, we get 4 new products,

−a21,−a1a2,−a1a3,−a1x,

and 5 new quotients,

−1,−a1
a2

,−a2
a1

,−a3
a1

,−a1
a3

.

Subcase 2.5: x/a2 = a3/x, x/a1 = a1/a2, x/a3 = a3/a1. The resulting equalities

with products are

x2 = a2a3, a21 = a2x, a23 = a1x, and a1a2 = a3x, respectively.

In this case, we get 4 new products,

−a21,−a1a2,−a1a3,−a1x,

and 5 new quotients,

−1,−a1
a2

,−a2
a1

,−a3
a1

,−a1
a3

.

Subcase 2.6: x/a3 = a2/x, x/a1 = a1/a3, x/a2 = a2/a1. The resulting equalities

are:

x2 = a2a3, a21 = a3x, a22 = a1x, and a1a3 = a2x, respectively.

In this case, we get 4 new products,

−a21,−a1a2,−a1a3,−a1x,

and 5 new quotients,

−1,−a1
a2

,−a2
a1

,−a3
a1

,−a1
a3

.

Thus, in any case, the number of new products obtained will not exceed the

number of new quotients. Therefore, by Lemma 1 it follows that A′ is not an

MPTQ set.

Remark 1. If we interchange the roles of a2 and a3 in Subcase 2.1 we get the

Subcase 2.2. Similarly, we can get Subcase 2.4 from Subcase 2.3 and Subcase 2.6

from Subcase 2.5.



INTEGERS: 24 (2024) 8

Case 3: A′ = A ∪ {−x,−y}, where x, y > 0 and x, y /∈ A. With −x,−y −→ A we

get at most 9 new products,

−a1x, −a2x, −a3x, −a1y, −a2y, −a3y, x2, y2, xy,

and at most 14 new quotients,

−a1
x
, − x

a1
, −a2

x
, − x

a2
, −a3

x
, − x

a3
,

−a1
y
, − y

a1
, −a2

y
, − y

a2
, −a3

y
, − y

a3
,
x

y
,
y

x
.

If all the quotients listed above are distinct, then A′ cannot be an MPTQ set.

Now we shall discuss various cases that arise due to the possible equalities among

the above listed quotients.

Subcase 3.1: x/a1 = a2/x, a1/x = y/a1, x/a2 = y/a1, y/a2 = a3/y. These will

result in the following equalities:

x2 = a1a2, a21 = xy, a1x = a2y, and y2 = a2a3, respectively.

In this case, we get 5 new products,

−a1x,−a2x,−a3x,−a1y,−a3y,

and 6 new quotients,

−a1
x
,− x

a1
,−a3

x
,− x

a3
,−a2

y
,− y

a2
.

Subcase 3.2: x/a1 = a2/x, a1/x = y/a1, x/a2 = y/a1, x/a1 = y/a3, y/a1 =

a3/y. These will result in the following equalities: x2 = a1a2, a21 = xy, a1x =

a2y, a3x = a1y, and y2 = a1a3, respectively. In this case, we get 4 new products,

−a1x,−a2x,−a3x,−a3y,

and 4 new quotients,

−a1
x
,− x

a1
,−a3

x
,− x

a3
.

Subcase 3.3: x/a1 = a2/x, a1/x = y/a1, x/a2 = y/a1, x/a3 = y/a2. These will

result in the following equalities:

x2 = a1a2, a21 = xy, a1x = a2y, and a2x = a3y, respectively.

In this case, we get 5 new products,

−a1x,−a2x,−a3x,−a1y, y
2,
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and 6 new quotients,

−a1
x
,− x

a1
,−a3

x
,− x

a3
,−a3

y
,− y

a3
.

Subcase 3.4: x/a1 = a2/x, a2/x = y/a2, x/a2 = y/a3, x/a3 = y/a2, y/a2 =

a3/y. These will result in the equations, x2 = a1a2, a22 = xy, a2y = a3x, a2x =

a3y, and y2 = a2a3, respectively. In this case, we get 4 new products,

−a1x,−a2x,−a3x,−a3y,

and 4 new quotients,

−a1
x
,− x

a1
,−a3

x
,− x

a3
.

Subcase 3.5: x/a1 = a2/x, a3/x = y/a3, x/a3 = y/a2, y/a2 = a3/y. These will

result in the following equalities:

x2 = a1a2, a23 = xy, a3y = a2x, and y2 = a2a3, respectively.

In this case, we get 5 new products,

−a1x,−a2x,−a3x,−a1y,−a2y,

and 6 new quotients,

−a1
x
,− x

a1
,−a3

x
,− x

a3
, −a1

y
, − y

a1
.

Subcase 3.6: x/a1 = a2/x, a3/x = y/a3, x/a3 = y/a1, y/a1 = a3/y. These will

result in the following equalities:

x2 = a1a2, a23 = xy, a3y = a1x, and y2 = a1a3, respectively.

In this case, we get 5 new products,

−a1x,−a2x,−a3x,−a1y,−a2y,

and 6 new quotients,

−a1
x
,− x

a1
,−a3

x
,− x

a3
, −a2

y
, − y

a2
.

Subcase 3.7: x/a1 = a2/x, a2/x = y/a3, x/a1 = y/a3, y/a1 = a3/y, x/a2 =

y/a1. These will result in the following equalities: x2 = a1a2, a2a3 = xy, a3x =

a1y, y2 = a1a3, and a1x = a2y, respectively. In this case, we get 4 new products,

−a1x,−a2x,−a3x,−a3y,
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and 4 new quotients,

−a1
x
,− x

a1
,−a3

x
,− x

a3
.

Subcase 3.8: x/a1 = a2/x, a1/x = y/a3, x/a2 = y/a3, y/a2 = a3/y, x/a1 =

y/a2. These will result in the following equalities: x2 = a1a2, a1a3 = xy, a3x =

a2y, y2 = a2a3, and a1y = a2x, respectively. In this case, we get 4 new products,

−a1x,−a2x,−a3x,−a3y,

and 4 new quotients,

−a1
x
,− x

a1
,−a3

x
,− x

a3
.

Thus, in all the cases the number of new products due to −x and −y is at most the

number of new quotients. Hence A′ cannot be an MPTQ set.

Remark 2. The cases when x2 = a1a3 or x2 = a2a3 are not discussed in Case 3

as the roles of a1, a2, a3 are interchangeable. Similarly, the cases with y2 = aiaj ,

where i ̸= j, 1 ≤ i, j ≤ 3 can be discussed just by replacing x with y in each of the

above subcases.

2.3. Main Theorem

Theorem 3. There is no MPTQ set of real numbers with cardinality 5.

Proof. We have noted earlier, that if there exists an MPTQ set of real numbers with

cardinality 5 then it must contain at least one positive and one negative number.

Further, the detailed analysis carried out in Subsections 2.1 and 2.2, shows that

the number of new products due to the negative numbers adjoined is at most the

number of newly generated quotients. So applying the Lemma 1 we concluded A′

is not an MPTQ set in either case. We have completed the proof.

Remark 3. One can easily construct balanced sets of the form discussed in Sub-

section 5.

Example 3. The set A = {−16,−4, 4, 8, 16} is a balanced set with,

A.A = {−256,−128,−64,−32,−16, 16, 32, 64, 128, 256},

and

A/A = {−4,−2,−1,−0.5,−0.25, 0.25, 0.5, 1, 2, 4}.

Remark 4. The equalities listed under subcases in Subsection 5 provide us with a

method of constructing balanced sets of real numbers with cardinality 5 consisting

of both positive and negative numbers with distinct magnitudes.
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Example 4. Using the Subcase 3.4, we get a balanced set,

A = {−54,−24, 16, 36, 81} with,

A.A = {−4374,−1944,−864,−384, 256, 576, 1296, 2916, 6561},

and,

A/A = {−3.375,−1.5,−0.6667,−0.29623, 0.1975, 0.4444, 1, 2.25, 5.0625}.

We shall now consider certain cases of sets with a cardinality of 6 and show that

they do not form MPTQ sets.

3. Sets of Cardinality 6

As there is no MPTQ set of positive real numbers with cardinality 6 and the property

of being an MPTQ set is preserved under dilation, it follows that there is no MPTQ

set of cardinality 6 consisting of only negative real numbers. The case when A′

contains exactly one negative number can be easily handled as in Subsection 2.1

above. Let A = {a1, a2, a3, a4, a5} be a set of positive real numbers and let A′ =

A ∪ {−x}, where x > 0.

• If x2 ̸∈ A.A, then −x −→ A yields 6 new products and 10 new quotients.

• If x2 ∈ A.A, then we get 5 new products and at least 5 new quotients.

Therefore, by Lemma 1 it follows that A′ is not an MPTQ set.

This will also help us conclude that A′ with four negative numbers cannot be an

MPTQ set. So we need to analyze the cases when A′ contains two or three negative

numbers.

We shall first prove the following.

Proposition 1. A finite set A of positive real numbers is an MPTQ set if and only

if A ∪ (−A) is an MPTQ set.

Proof. Let A = {a1, a2, . . . , an} be a set of positive real numbers. Let B = A∪(−A).

Due to the adjoining of the elements of −A to A, the new products obtained are

−aiaj , where 1 ≤ i, j ≤ n, which is precisely the set −(A.A) and the newly obtained

quotients are −ai/aj , where 1 ≤ i, j ≤ n, which constitutes the set −(A/A).

We know that | − (A.A)| = |A.A|, and | − (A/A)| = |A/A|. Therefore, we get

|B.B| = 2|A.A|, and |B/B| = 2|A/A|.

Hence A is an MPTQ set if and only if B is an MPTQ set.
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We shall now discuss the following two cases for a set A′ of cardinality 6 containing

two or three negative numbers such that A′ ⊆ A ∪ (−A), where A is the set of all

positive numbers in A′.

Case 1: A′ = A ∪ {−a1,−a2}, where A = {a1, a2, a3, a4} is a set of positive real

numbers. Being a set with 4 positive real numbers, A cannot be an MPTQ set.

Due to −a1,−a2 −→ A the newly produced products are

−a21,−a22,−a1a2,−a1a3,−a1a4,−a2a3,−a2a4,

and the newly produced quotients are

−1,−a1
a2

,−a1
a3

,−a1
a4

,−a2
a1

,−a3
a1

,−a4
a1

− a2
a3

,−a3
a2

,−a2
a4

, and − a4
a2

.

If all quotients listed here are distinct, then A′ cannot be an MPTQ set.

We shall identify the following six subcases depending on the possible equalities

among the quotients.

Subcase 1.1: a1/a2 = a3/a1, and a1/a2 = a4/a3. In this case, we get 5 new

products,

−a21,−a22,−a1a2,−a1a3,−a1a4,

and 7 new quotients,

−1,−a1
a2

,−a1
a3

,−a1
a4

,−a4
a1

,−a2
a4

, and − a4
a2

.

Subcase 1.2: a1/a2 = a3/a1, and a1/a2 = a2/a4. Here we get 5 new products,

−a21,−a1a2,−a1a3,−a1a4,−a2a4,

and 7 new quotients,

−1,−a1
a2

,−a1
a3

,−a1
a4

,−a4
a1

,−a2
a3

, and − a3
a2

.

Subcase 1.3: a1/a2 = a4/a3, and a1/a2 = a2/a4. In this case, we get 5 new

products,

−a21,−a1a2,−a1a3,−a1a4,−a2a3,

and 7 new quotients,

−1,−a1
a2

,−a1
a3

,−a1
a4

,−a4
a1

,−a2
a1

, and − a3
a1

.

Subcase 1.4: a1/a2 = a4/a1, and a1/a2 = a3/a4.
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Subcase 1.5: a1/a2 = a4/a1, and a1/a2 = a2/a3.

Subcase 1.6: a1/a2 = a3/a4, and a1/a2 = a2/a3.

The Subcases 1.4, 1.5, and 1.6, can be obtained just by interchanging the roles

of a3 and a4 in each of the Subcases 1.1, 1.2, and 1.3, respectively. So each of them

yields exactly 5 new products and 7 new quotients. Therefore, we conclude that A′

is not an MPTQ set in this case.

Case 2: A′ = A ∪ (−A), where A = {a1, a2, a3} is a set of positive real numbers.

By Proposition 1 it follows that A′ is not an MPTQ set. In the above two cases, we

have shown that a set A′ of cardinality 6, obtained by appending negative numbers

to a set A of positive real numbers such that A′ ⊆ A ∪ (−A), cannot be an MPTQ

set. So, if there exists an MPTQ set A′ of reals with cardinality 6, then it must

contain at least 2 negative numbers and A′ ⊈ A ∪ (−A), where A denotes the set

of positive numbers in A′.

4. An Infinite Family of MPTQ Sets

The idea used in Proposition 1 has helped us formulate the following result.

Theorem 4. A set A of integers is an MPTQ set if and only if A∪pA is an MPTQ

set for any prime p which is coprime to the numbers in A.

Proof. Let A = {a1, a2, . . . , an} be a set of integers. Consider a prime number p

with (p, ai) = 1 for each i, 1 ≤ i ≤ n. Let B = A ∪ pA.

Due to the adjoining of the elements of pA to A, the newly obtained products

are as follows:

• paiaj , 1 ≤ i, j ≤ n, which form the set pA.A

• p2aiaj , 1 ≤ i, j ≤ n, which constitute the set pA.pA.

Similarly, the newly obtained quotients are:

• pai/aj , 1 ≤ i, j ≤ n, which constitute the set pA/A

• ai/paj , 1 ≤ i, j ≤ n, which yield the set A/pA.

We know that |pA.A| = |pA.pA| = |A.A|, and |pA/A| = |A/pA| = |A/A|.
Therefore, we get

|B.B| = 3|A.A|, and |B/B| = 3|A/A|.

Hence A is an MPTQ set if and only if B is an MPTQ set.
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Remark 5. If A is an MPTQ set of integers, then so is pA. So using Theorem 4 we

can say that there exist MPTQ sets whose union is also an MPTQ set. We know

that for any positive real number r ̸= 1, the r-log transformation of an MPTQ set

results in an MSTD set. So taking the log transformation of A and pA we can

conclude that there exist MSTD sets whose union is also an MSTD set.

Theorem 4 also allows us to generate infinitely many MPTQ sets starting with

one. If A is an MPTQ set of integers with cardinality n, then we can generate an

infinite family {Ak}∞k=1 of MPTQ sets, each of cardinality kn, using prime numbers

that are coprime to the elements in A, as demonstrated in the following algorithm.

1. Choose an MPTQ set A of integers with cardinality n.

2. Let A1 = A.

3. Let p1 be the first prime (with respect to the natural ordering of numbers)

that is coprime to every element in A.

4. Let A2 = A ∪ p1A. Then A2 is an MPTQ set of cardinality 2n.

5. If pk denotes the kth prime number which is coprime to every number in A,

then Ak = A ∪ p1A . . . ∪ pk−1A is an MPTQ set of cardinality kn.

Thus, from an MPTQ set A of cardinality n, we have generated an infinite family

{Ak}∞k=1 of MPTQ sets, where each Ak is a union of k MPTQ sets and |Ak| = kn.

5. Conclusion

Using the method of case analysis we have proved that there is no MPTQ set of real

numbers with cardinality 5. Therefore, an MPTQ set of real numbers must have at

least 6 elements. We know that the minimum cardinality of an MSTD set of real

numbers is 8. Then the natural question one can ask is: does there exist an MPTQ

set of real numbers with 6 or 7 elements?

Using a method similar to the one used for a set of cardinality 5, we have shown

that a set A′ of cardinality 6 with one or four negative numbers is not an MPTQ

set. Also, a set A′ of cardinality 6 consisting of two or three negative numbers with

A′ ⊆ A ∪ (−A), where A is the set of positive numbers in A′, cannot be an MPTQ

set. But handling the cases when A′ contains two or three negative numbers such

that A′ ⊈ A ∪ (−A) requires careful consideration due to the tedious nature of the

subcases involved. So using the above technique in such cases does not look feasible.

One may have to adopt a new approach to deal with such sets of cardinality 6.

In the literature, the only technique used to generate MPTQ sets is the concept

of exponentiation of MSTD sets. But in this work, we were able to present a method
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of generating an infinite family of MPTQ sets without using the exponentiation of

MSTD sets.
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