
#A99 INTEGERS 24 (2024)

ALMOST PRIMES OF ALMOST PRIME INDEX

Paul Kinlaw
University of Maine at Presque Isle, Presque Isle, Maine

paulkinlaw1@gmail.com

Megan Triplett
Dickinson College, Carlisle, Pennsylvania

megantriplett10@gmail.com

William Tripp
Dickinson College, Carlisle, Pennsylvania

fastertripp@gmail.com

Received: 6/10/24, Accepted: 10/24/24, Published: 11/6/24

Abstract

A positive integer is called a k-almost prime if it is a product of k prime numbers,
counted with repetition. In this paper we consider j-almost primes of k-almost
prime index for given integers j, k ≥ 0. We establish asymptotic estimates for the
counting functions, nth occurrences, and reciprocal sums of such integers.

1. Introduction

For a given positive integer n, the omega functions ω(n) and Ω(n) give the number

of prime factors of n, without (respectively with) multiplicity. By convention, 1 is

an empty product so ω(1) = Ω(1) = 0. The number n is called a k-almost prime if

Ω(n) = k.

Given an increasing sequence {aj} of positive integers, the jth term aj is called

the term of index j. In other words, the index of a term in a sequence describes

the order in which it appears.

Bayless et al. [2] established bounds for the counting function and sum of recip-

rocals of primes of prime index, as well as bounds for the nth prime of prime index.

We extend these results to almost primes of almost prime index.

We let Nk denote the set of k-almost primes. Similarly, for integers j, k ≥ 0 we

let Njk denote the set of j-almost primes of k-almost prime index. More generally,

for m ∈ N and integers k1, . . . , km ≥ 0, we define Nk1...km inductively by letting
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Nk1...km
denote the members of Nk1...km−1

whose index is a km-almost prime. Where

necessary, we may separate the subscripts using commas for lack of ambiguity. We

have the chain of subsets

Nk1...km
⊂ Nk1...km−1

⊂ . . . ⊂ Nk1
⊂ N.

For each m, the positive integers are partitioned as follows:

N =
⋃

k1,...,km≥0

Nk1...km

where if ki = 0 if the previous index is one. Define

Nk(x) := |{n ≤ x : Ω(n) = k}|

so that Nk is the counting function of k-almost primes. With this definition in

place, we give an example. We have 3200 ∈ N9,3,1,0. To see this, 3200 = 27 · 52, so
that Ω(3200) = 9. Also, N9(3200) = 12 = 223, so that 3200 is the 9-almost prime

of 3-almost prime index 12, and in particular, 3200 ∈ N9,3. Moreover, N3(12) = 2,

the 1-almost prime of index 1, so that 3200 ∈ N9,3,1. Since the previous index is 1

and Ω(1) = 0, we have 3200 ∈ N9,3,1,0.

We defineNjk to be the counting function of Njk, and similarly, we defineNk1...km

as the counting function of Nk1...km
. We may use commas as necessary and write

Nk1...km
= Nk1,...,km

. With this notation in place, for the example above, we have

Ω(3200) = 9 ⇒ 3200 ∈ N9,

Ω(N9(3200)) = Ω(12) = 3 ⇒ 3200 ∈ N9,3,

Ω(N3(12)) = Ω(2) = 1 ⇒ 3200 ∈ N9,3,1,

Ω(N1(2)) = Ω(1) = 0 ⇒ 3200 ∈ N9,3,1,0.

Noting that Njk = Nk ◦Nj , we can also write Ω(N9,3,1(3200)) = 0.

Landau established the following asymptotic formula for the counting function

Nk(x) defined above. For a fixed positive integer k we have

Nk(x) ∼
x(log2 x)

k−1

(k − 1)! log x
(1)

as x → ∞, where log2 x denotes log log x. See for instance [4, Theorem 10.3] for

a proof by induction on k. Note that N1(x) = π(x), the prime counting function.

Thus when k = 1 we have π(x) = N1(x) ∼ x/ log x, so the Prime Number Theorem

is included as a special case of (1), and in fact it is the base step in the induction

argument. There are quantitative forms of (1). For instance, for fixed k ≥ 1 [9,

Theorem II.6.5] gives

Nk(x) =
x(log2 x)

k−1

(k − 1)! log x

(
1 +O

(
1

log2 x

))
. (2)
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In Section 3 we give analogous estimates for the counting function of Njk and

the nth member of Njk. In Section 4 we give estimates for the reciprocal sum of

Njk.

2. Notation and Preliminary Lemmas

Throughout the paper, x denotes a real number and π(x) denotes the prime counting

function. We use the notation log x for the natural logarithm and logk x for the

iterated natural logarithm. We sometimes use the more compact notation ℓ := log x

and L := log2 x. A k-almost prime is a product of k prime numbers, counted

with multiplicity. The 2-almost primes are also called semiprimes. Recall that Nk

denotes the set of k-almost primes and Nk(x) = |{n ≤ x : Ω(n) = k}| denotes the

corresponding counting function. We let p denote a prime variable, and pn denote

the nth prime number.

We let β denote the Meissel-Mertens constant, defined by

β := lim
x→∞

∑
p≤x

1

p
− log2 x

 .

It is well-known that the numerical value of β is given by β = 0.261497 . . .. We will

use the following asymptotic expansion for the counting function N2 of semiprimes

given by Crişan and Erban (see [3, Theorem 2.5], [1, Theorem 1.5]).

Lemma 1 (Crişan and Erban). For any N ≥ 0, we have

N2(x) =
x

log x

N−1∑
n=0

n!(log2 x+ cn)

logn x
+ON

(
x log2 x

logN+1 x

)
,

for explicit constants cn. In particular, c0 = β and c1 = β−1−γ−
∑

p log p/(p(p−
1)), where γ = 0.5772 . . . is Euler’s constant and where the sum is over all primes.

We will also use the following explicit bounds for the sum of reciprocals of

semiprimes up to x. (See [1, Theorem 1.4].)

Lemma 2 (Bayless et al.). For all x > 1 we have

R2(x) :=
∑
n∈N2

n≤x

1

n
=

1

2
(log2 x+ β)2 +

P (2)− ζ(2)

2
+

α1

log x
+ E(x),

where E(x) is an error term satisfying |E(x)| < (log x)−3/2, α1 = γ+
∑

p log p/(p(p−
1)) = 1.3325822 . . . and P and ζ are the prime zeta and zeta functions, respectively,

so that P (2) =
∑

p p
−2 = 0.4522474 . . . and ζ(2) = π2/6.
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We have the following universal bound (see [7, (4.4)]).

Lemma 3 (Erdős and Sárközy). We have

Nk+1(t) ≪
k4

2k
t log t, (t, k ≥ 1).

Additionally, we have the following bounds of Dusart for the nth prime number

pn (see [5]).

Lemma 4 (Dusart). We have

pn ≥ n (log n+ log2 n− 1) ,

pn ≥ n

(
log n+ log2 n− 1 +

(
log2 n− 2.25

log n

))
,

and

pn ≤ n(log n+ log2 n− 0.9484),

where the lower bounds hold for all n ≥ 2 and the upper bound holds for all n ≥
39017.

We establish the following estimates involving the logarithm of π(x).

Lemma 5. We have

log π(x) = log x− log2 x+
1

log x
+

3

2 log2 x
+O

(
1

log3 x

)
,

log2 π(x) = log2 x− log2 x

log x
− (log2 x)

2

2 log2 x
+

1

log2 x
+O

(
(log2 x)

3

log3 x

)
,

and

1

log π(x)
=

1

log x

(
1 +

log2 x

log x
+

(log2 x)
2 − 1

log2 x
+

(log2 x)
3

log3 x
+O

(
log2 x

log3 x

))
.

Proof. For ease of notation we let ℓ = log x and L = log2 x. We use the well-known

expansion for π(x),

π(x) =
x

ℓ

(
1 +

1

ℓ
+

2

ℓ2
+O

(
1

ℓ3

))
.

Taking logarithms and using the expansion log(1 + z) = z − z2/2 + O(z3) for

z = 1/ℓ+ 2/ℓ2 +O(1/ℓ3), we obtain the first assertion.

For the second assertion, we use the first assertion to write

log π(x) = ℓ

(
1− L

ℓ
+

1

ℓ2
+

3

2ℓ3
+O

(
1

ℓ4

))
.
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Therefore,

log2 π(x) = L+ log

(
1− L

ℓ
+

1

ℓ2
+

3

2ℓ3
+O

(
1

ℓ4

))
.

We use the expansion log(1+ z) = z− z2/2+O(z3) again, with z = −L/ℓ+1/ℓ2 +

O(1/ℓ3), to conclude the second assertion. Finally, for the third assertion, we use

the first assertion to write

1

log π(x)
=

1

ℓ
· 1

1−
(
L
ℓ − 1

ℓ2 +O
(

1
ℓ3

)) .
We use the geometric series expansion 1/(1 − z) = 1 + z + z2 + z3 + O(z4) with

z = L/ℓ− 1/ℓ2 +O
(
1/ℓ3

)
, obtaining the third assertion.

We next give a similar estimate for 1/ logN2(x).

Lemma 6. We have

1

logN2(x)
=

1

log x

(
1 +

log2 x

log x
− log3 x

log x
− β

log x log2 x
+O

(
1

(log x)(log2 x)
2

))
.

Proof. Recalling the convention ℓ = log x and L = log2 x, we have by Lemma 1 that

N2(x) =
xL

ℓ

(
1 +

β

L
+

1

ℓ
+

c1
ℓL

+O

(
1

ℓ2

))
.

Therefore, letting A = log3 x, we have

logN2(x) = ℓ− L+A+ log(1 + z),

letting z = β/L+1/ℓ+c1/ℓL+O(1/ℓ2). Using the expansion log(1+z) = z+O(z2),

we have

logN2(x) = ℓ

(
1− L

ℓ
+

A

ℓ
+

β

ℓL
+O

(
1

ℓL2

))
.

Therefore, letting w = L/ℓ − A/ℓ − β/Lℓ + O(1/ℓL2) and using the expansion

1/(1− w) = 1 + w +O(w2), we have

1

logN2(x)
=

1

ℓ(1− w)
=

1

ℓ

(
1 +

L

ℓ
− A

ℓ
− β

ℓL
+O

(
1

ℓL2

))
.

3. Counting Functions

We now give asymptotic estimates for the counting function of j-almost primes of

k-almost prime index, where j and k are fixed positive integers. We begin with the

cases j = 1, k = 2 and j = 2, k = 1.
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Theorem 1. We have

N1,2(x) =
x

log2 x

(
log2 x+ β +

(log2 x+ β)(log2 x+ 1) + c1
log x

)
+O

(
x(log2 x)

3

log4 x

)
,

where β is the Meissel-Mertens constant and c1 is given by Lemma 1.

Proof. We have N1,2(x) = N2(π(x)). Applying Lemma 1 with N = 2, we therefore

have

N1,2(x) =
π(x)(log2 π(x) + β)

log π(x)
+

π(x)(log2 π(x) + c1)

log2 π(x)

+O

(
x log2 x

log4 x

)
= S1 + S2 +O

(
x log2 x

log4 x

)
,

(3)

say. Here the estimate for the error term follows from the relations π(x) ∼ x/ log x

(the Prime Number Theorem), log π(x) ∼ log x, and log2 π(x) ∼ log2 x; see for

instance Lemma 5. For the main terms, we again apply the estimates in Lemma 5.

Let a = 1/ log x and b = log2 x for ease of notation. We therefore have

S1 = x(a+ a2 +O(a3))(a)(1 + ab+ a2b2 +O(a2))

· (β + b− ab− 1

2
a2b2 +O(a2)).

Expanding this expression algebraically and noting that we may drop any terms of

the form a4bmx (m ≤ 3) or ajbmx (j ≥ 5), we obtain

S1 = a2x(b+ ab2 + β + aβ + abβ) +O(a4b3x).

We also have

S2 = x(a+ a2 +O(a3))(a2)(1 + ab+O(a2b2))2

· (c1 + b− ab+O(a2b2)).

Expanding algebraically, we have

S2 = a3x(b+ c1) +O(a4b3x).

Summing S1 and S2, we complete the proof of Theorem 1.

We obtain a similar estimate for N2,1(x).

Theorem 2. We have

N2,1(x) =
x

log2 x

(
log2 x+ β +

(log2 x)(log2 x− log3 x)

log x

)
+O

(
x log2 x

log3 x

)
.
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Before proving Theorem 2, we note that by comparing Theorems 1 and 2, we

immediately see that not only do we have N1,2(x) > N2,1(x) for all sufficiently large

x, but we also have the following asymptotic estimate for the difference.

Corollary 1. We have N1,2(x) > N2,1(x) for all sufficiently large x. In fact,

N1,2(x)−N2,1(x) =
x log2 x log3 x

log3 x

(
1 +O

(
1

log3 x

))
.

Proof of Theorem 2. Noting that N2,1(x) = π(N2(x)), we have by the Prime Num-

ber Theorem that

N2,1(x) =
N2(x)

logN2(x)
+O

(
N2(x)

log2 N2(x)

)
.

We first address the error term. With ℓ and L as above, we have N2(x) ∼ xL/ℓ by

Lemma 1, and therefore logN2(x) ∼ ℓ (as in Lemma 6), so that N2(x)/ log
2 N2(x) ∼

xL/ℓ · 1/ℓ2 = xL/ℓ3.

For the main term, we have by Lemmas 1 and 6 that

N2(x)

logN2(x)
=

x

ℓ

(
L+ β +

L+ c1
ℓ

+O

(
L

ℓ2

))
· 1
ℓ

(
1 +

L

ℓ
− A

ℓ
− β

ℓL
+O

(
1

ℓL2

))
=

x

ℓ2
(L+ β)

(
1 +

L−A

ℓ

)
+O

(
xL

ℓ3

)
=

x

ℓ2

(
L+ β +

L2 − LA

ℓ

)
+O

(
xL

ℓ3

)
,

where A = log3 x as above.

We now give an estimate for Njk for arbitrary fixed j, k ≥ 1.

Theorem 3. For fixed integers j ≥ 1 and k ≥ 1 we have

Njk(x) =
x

log2 x

(log2 x)
j+k−2

(j − 1)!(k − 1)!

(
1 +O

(
1

log2 x

))
and the same estimate holds for Nkj.

Proof. We prove the result for Njk, and note that the same estimate holds for Nkj

by symmetry. Let j ≥ 1 and k ≥ 1 be fixed. By (2),

Nj(x) =
x(log2 x)

j−1

(j − 1)! log x

(
1 +O

(
1

log2 x

))
.
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This implies

log(Nj(x)) = log x− log2 x+ (j − 1) log3 x− log((j − 1)!) +O

(
1

log2 x

)
= (log x)

(
1− log2 x+O(log3 x)

log x

)
= (log x)

(
1 +O

(
log2 x

log x

))
and

log2(Nj(x)) = log2 x+ log

(
1− log2 x+O(log3 x)

log x

)
.

Now, for positive small z, we have log(1− z) = −z +O(z2). Hence,

log2(Nj(x)) = log2 x+O

(
log2 x

log x

)
.

Thus,

Njk(x) =
Nj(x)

logNj(x)

(log2 Nj(x))
k−1

(k − 1)!

(
1 +O

(
1

log2 Nj(x)

))

=

x(log2 x)j−1

(k−1)!(j−1)! log x (1 +O( 1
log2 x ))

(log x)(1− log2 x+O(log3 x)
log x )

[
log2 x

(
1 +O(

1

log x
)
)]k−1

=
x

log2 x

(log2 x)
j+k−2

(j − 1)!(k − 1)!

(1 +O( 1
log2 x ))(1 +O( k−1

log x ))

1 +O( log2 x
log x )

=
x

log2 x

(log2 x)
j+k−2

(j − 1)!(k − 1)!

(
1 +O

(
1

log2 x

))
.

Let pk,n denote the nth k-almost prime. For fixed k, it follows from Estimate

(2) for the counting function Nk that we have

pk,n = n log n · (k − 1)!

(log2 n)
k−1

(
1 +O

(
1

log2 n

))
. (4)

Similarly, let pj,k,n denote the nth member of Njk. As a consequence of Theorem

3, we have the following asymptotic estimate.

Corollary 2. For fixed j, k ≥ 1, we have

pj,k,n = n log2 n · (j − 1)!(k − 1)!

(log2 n)
j+k−2

(
1 +O

(
1

log2 n

))
.
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We prove Corollary 2 and note that the proof of (4) is nearly identical.

Proof. By Theorem 3, we have

Njk(x) =
x

log2 x

(log2 x)
j+k−2

(j − 1)!(k − 1)!

(
1 +O

(
1

log2 x

))
=

x

log2 Njk(x)

(log2 Njk(x))
j+k−2

(j − 1)!(k − 1)!

(
1 +O

(
1

log2 Njk(x)

))
.

Here, the last estimate follows from the first by noting that as in the proof of

Theorem 3, we have logNjk(x) = (log x)(1 + O(log2 x/ log x)) and log2 Njk(x) =

(log2 x)(1+O(1/ log x)). Now we substitute x = pj,k,n, noting that Njk(pj,k,n) = n,

to obtain

n =
pj,k,n(log2 n)

j+k−2

log2 n(j − 1)!(k − 1)!

(
1 +O

(
1

log2 n

))
.

Solving for pj,k,n, we obtain the corollary.

We now give the following generalization of Theorem 3.

Theorem 4. For fixed n ≥ 1 and positive integers k1, k2 . . . , kn−1, kn,

Nk1k2...kn−1kn
(x) =

x

logn x

(log2 x)
k1+k2+...+kn−1kn−n

(k1 − 1)!(k2 − 1)! · · · (kn − 1)!

(
1 +O

(
1

log2 x

))
.

Note that we may also write this estimate in the form

Nk1k2...kn−1kn(x) =
x

logn x

(
1 +O

(
1

log2 x

)) n∏
i=1

(log2 x)
ki−1

(ki − 1)!
.

Proof of Theorem 4. We proceed by induction on n. By symmetry, it suffices to

prove the claim for Nknkn−1...k2k1 . Let

Nknkn−1...k2k1(x) =
x

logn x

(log2 x)
kn+kn−1+...+k2+k1−n

(k1 − 1)!(k2 − 1)! · · · (kn − 1)!

(
1 +O

(
1

log2 x

))
for n ≥ 1 be the inductive hypothesis.

For the base case, let n = 1. Then the result is exactly estimate (2). For

the induction step, suppose the inductive hypothesis is true for n = m. Then,
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Nkm+1km...k2k1
(x) is given by

Nkmkm−1...k2k1(Nkm+1(x))

=
Nkm+1(x)

logm Nkm+1(x)

(log2 Nkm+1(x))
k1+k2+...+km−m

(k1 − 1)!(k2 − 1)! · · · (km − 1)!

(
1 +O

(
1

log2 Nkm+1(x)

))

=

x(log2 x)km+1−1

(km+1−1)! log x

(
1 +O

(
1

log2 x

))
logm x

(
1 +O

(
logm

2 x
logm x

))
(
log2 x+O

(
log2 x
log x

))k1+k2+...+km−m

(k1 − 1)!(k2 − 1)! · · · (km − 1)!

·

(
1 +O

(
1

log2 x+O( log2 x
log x )

))
(using results from Theorem 3)

=
x

logm+1 x

(log2 x)
k1+k2+...+km+km+1−(m+1)

(k1 − 1)!(k2 − 1)! · · · (kn − 1)!(km+1 − 1)!

(
1 +O

(
1

log2 x

))
.

Corollary 3. For fixed positive integers k1, . . . , km, we have

pk1,k2,...,km,n =
n(log n)m(k1 − 1)! · · · (km − 1)!

(log2 n)
k1+k2+...km−m

(
1 +O

(
1

log2 n

))
.

Note that this estimate can also be written as

pk1,k2,...,km,n = n(log n)m
(
1 +O

(
1

log2 n

)) m∏
i=1

(ki − 1)!

(log2 n)
ki−1

.

4. Reciprocal Sums

For fixed k ≥ 0, we have ∑
n∈Nk

n≤x

1

n
∼ (log2 x)

k

k!
.

This follows by applying partial summation to the asymptotic formula (1) forNk(x).

It implies that for each k ∈ N, the k-almost primes have a divergent reciprocal sum.

On the other hand, the following result shows that almost primes of almost prime

index have a convergent reciprocal sum.

Theorem 5. For each pair of positive integers j, k ∈ N, the sum of reciprocals of

j-almost primes of k-almost prime index is convergent. The same is true for the

sum of reciprocals of members of Nk1...km
for any m ≥ 2.
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Proof. We prove the first assertion, noting that the second assertion follows imme-

diately. By Theorem 3, we have

Njk(x) = (Nk ◦Nj)(x) ≪
x

log2 x

(log2 x)
j+k−2

(j − 1)!(k − 1)!
.

Also, (log2 x)
j+k−2 ≤

√
log x for all x ≥ x0(j, k), where x0(j, k) denotes a suf-

ficiently large constant depending on j and k. We therefore have (Nk ◦ Nj)(x) ≤
x/(log x)3/2 for all x ≥ x0(j, k). It follows by partial summation that the reciprocal

sum is bounded.

Bayless et al. [2] proved that the reciprocal sum of primes of prime index is

between 1.04299 and 1.04365. That is,

1.04299 <
∑

n∈N1,1

1

n
< 1.04365.

This determines the sum to two decimal places as 1.04 . . .. We show in the following

theorem that the reciprocal sum of primes of semiprime index is also close to 1.

Theorem 6. We have

0.9910 <
∑

n∈N1,2

1

n
< 0.9915.

In particular, the sum is determined to three decimal places as 0.991 . . ..

Proof of Theorem 6. We have ∑
m∈N1,2

1

m
=
∑
n∈N2

1

pn
,

where pn denotes the nth prime. Let x0 = 1011. We split n into three ranges. For

n ≤ 1.5 · 107, we compute the sum directly using Pari/GP, obtaining∑
n∈N2

n≤1.5·107

1

pn
= 0.762202 . . . .

In the range 1.5 · 107 < n ≤ x0, we use Dusart’s bounds (see Lemma 4): letting

c = 0.9484, we have

n

(
log n+ log2 n− 1 +

(
log2 n− 2.25

log n

))
≤ pn ≤ n(log n+ log2 n− c),
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where the lower bound holds for all n ≥ 2 and the upper bound holds for all

n ≥ 39017. We sum the upper and lower bounds directly over 1.5 · 107 < n ≤ x0,

n ∈ N2 using Pari/GP. Combining this with the range n ≤ 1.5 · 107, we obtain

0.823109 <
∑
n∈N2

n≤x0

1

pn
< 0.823152.

Finally, we use Dusart’s bounds again to write∑
n∈N2

n>x0

1

n(log n+ log2 n− c)
≤
∑
n∈N2

n>x0

1

pn
≤
∑
n∈N2

n>x0

1

n(log n+ log2 n− 1)
.

Let

f(t) =
1

log t+ log2 t− 1
and g(t) =

1

log t+ log2 t− c
.

Recall that R2(t) denotes the sum of reciprocals of semiprimes up to t. For the

upper bound, we have by partial summation that∑
n∈N2

n>x0

1

pn
≤ −R2(x0)f(x0)−

∫ ∞

x0

R2(t)f
′(t) dt

= −R2(x0)f(x0) +

∫ ∞

x0

R2(t)(1 + 1/ log t) dt

t(log t+ log2 t− 1)2
,

and an analogous lower bound holds. By direct computation in Pari/GP, we have

R2(x0) = 5.560528 . . ., so that −R2(x0)f(x0) < −0.201758. We now turn to the

integral. By Lemma 2, we have

R2(x) <
1

2
(log2 x+ β)2 +

P (2)− ζ(2)

2
+

α1

log x
+

1

log3/2 x
, (x > 1).

Using this bound for R2(t) in the integral and substituting u = log t, we find by

numerical integration that the value of the integral is less than 0.37003. Therefore,

an upper bound for the reciprocal sum is

0.823152− 0.201758 + 0.37003 < 0.9915.

By an analogous argument, we have∑
n∈N2

n>x0

1

pn
≥ −R2(x0)g(x0)−

∫ ∞

x0

R2(t)g
′(t) dt

= −R2(x0)g(x0) +

∫ ∞

x0

R2(t)(1 + 1/ log t) dt

t(log t+ log2 t− c)2

> −0.201382 + 0.36928.
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Therefore, a lower bound for the reciprocal sum is

0.823109− 0.201382 + 0.36928 > 0.9910.

This completes the proof of Theorem 6.

We now prove that as k → ∞, the reciprocal sum of primes of k-almost prime

index tends to 1. We give an asymptotic estimate for the error term, showing that

it decays exponentially.

Theorem 7. We have ∑
n∈N1k

1

n
= 1 +O

(
1

ek/2

)
.

Proof. We have ∑
m∈N1k

1

m
=
∑
n∈Nk

1

pn

where pn denotes the nth prime. We use the estimate

pn = n(log n+O(log2 n)) = n log n

(
1 +O

(
log2 n

log n

))
,

so that ∑
n∈Nk

1

pn
=
∑
n∈Nk

1

n log n

(
1 +O

(
log2 n

log n

))

=
∑
n∈Nk

1

n log n
+O

(∑
n∈Nk

log2 n

n log2 n

)
.

Gorodetsky et al. [6, Theorem 1.2] showed that
∑

n∈Nk
1/(n log n) = 1+O(k2/2k).

We now address the second sum, following the method [7, Theorem 4.1] of Lichtman.

Letting f(t) = (log2 t)/(t log
2 t), we have∑

n∈Nk+1

log2 n

n log2 n
= −

∫ ∞

2k+1

Nk+1(t)f
′(t)dt

by partial summation. Also,

−f ′(t) =
log2 t(log t+ 2)− 1

t2 log3 t
≪ log2 t

t2 log2 t
,

so that

−
∫ ∞

2k+1

Nk+1(t)f
′(t)dt ≪

∫ ∞

2k+1

Nk+1(t) log2 t

t2 log2 t
dt.



INTEGERS: 24 (2024) 14

Splitting the integral at ee
k/r

, where r := 1.99, we first address the range 2k+1 ≤
t ≤ ee

k/r

. By Lemma 3, we have∫ ee
k/r

2k+1

Nk+1(t) log2 t

t2 log2 t
dt ≪ k4

2k

∫ ee
k/r

2k+1

log2 t

t log t
dt =

k4

2k

∫ k/r

log2(2
k+1)

y dy,

which is bounded above by
k4

2k
(k/r)2

2
≪ k6

2k
.

For the range t ≥ ee
k/r

, we have∫ ∞

ee
k/r

Nk+1(t) log2 t

t2 log2 t
dt ≪ k/r

ek/r

∫ ∞

ee
k/r

Nk+1(t)

t2 log t
dt ≪ k/r

ek/r
≪ 1

ek/2
, (5)

because the second integral in (5) is bounded by [7]. Combining all estimates, we

complete the proof of Theorem 7.

In contrast to Theorem 7, we show in the following theorem that for fixed j ≥ 2,

the reciprocal sum of Njk tends to infinity as k → ∞.

Theorem 8. For fixed j ≥ 1 we have∑
n∈Njk

1

n
≫ kj−1.

In particular, for fixed j ≥ 2, as k → ∞ we have∑
n∈Njk

1

n
→ ∞.

Proof. The estimate holds for j = 1 by Theorem 7, so we assume j ≥ 2. By estimate

(4) we have∑
m∈Njk

1

m
=
∑
n∈Nk

1

pj,n
=

1

(j − 1)!

∑
n∈Nk

(log2 n)
j−1

n log n

(
1 +O

(
1

log2 n

))

≫
∑
n∈Nk

(log2 n)
j−1

n log n
.

Letting f(t) = (log2 t)
j−1/(t log t), we have by partial summation that∑

n∈Nk+1

(log2 n)
j−1

n log n
= −

∫ ∞

2k+1

Nk+1(t)f
′(t)dt.

We have

−f ′(t) =
(log2 t)

j−2((log2 t)(1 + log t)− (j − 1))

t2 log2 t
≫ (log2 t)

j−1

t2 log t
.
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Letting r = 1.99 we thus have

−
∫ ∞

2k+1

Nk+1(t)f
′(t)dt ≫

∫ ∞

ee
k/r

Nk+1(t)(log2 t)
j−1

t2 log t
dt

≫
(
k

r

)j−1 ∫ ∞

ee
k/r

Nk+1(t)

t2 log t
dt.

We complete the proof by noting that this integral is bounded above zero by [7,

Theorem 4.1].

On the other hand, we have the following estimate.

Theorem 9. For fixed m ≥ 2 and k1, . . . , km ≥ 1, we have∑
n∈Nk1...km,k

1

n
≪ 1

(ek/2)m−1
.

In particular, as k → ∞ we have ∑
n∈Nk1...km,k

1

n
→ 0.

Proof. Letting j = k1 + . . .+ km −m, we have by Corollary 3 that∑
n∈Nk1...km,k

1

n
=
∑
n∈Nk

1

pk1...km,n
≪
∑
n∈Nk

(log2 n)
j

n logm n
.

Let f(t) = (log2 t)
j/(t logm t). By partial summation,

∑
n∈Nk+1

(log2 n)
j

n logm n
= −

∫ ∞

2k+1

Nk+1(t)f
′(t)dt.

Now

−f ′(t) =
(log2 t)

j−1(−j + (log2 t)(log t+m))

t2 logm+1 t
≪ (log2 t)

j

t2 logm t
.

As in the proof of Theorem 7, we split the integral at ee
k/r

, where r = 1.99. In the

range 2k+1 ≤ t ≤ ee
k/r

we have by Lemma 3 that

Nk+1(t) ≪
k4

2k
t log t, (t, k ≥ 1).
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We thus have

−
∫ ee

k/r

2k+1

Nk+1(t)f
′(t)dt ≪ k4

2k

∫ ee
k/r

2k+1

(log2 t)
j

t logm−1 t
dt

≪ k4

2k
1

logm−2(2k+1)

∫ ee
k/r

2k+1

(log2 t)
j

t log t
dt

≪ k4

2kkm−2

∫ k/r

log2 2k+1

yjdy

≪ kj+7−m

2k
.

Next, we have∫ ∞

ee
k/r

Nk+1(t)(log2 t)
j

t2 logm t
dt ≪ (k/r)j

(ek/r)m−1

∫ ∞

ee
k/r

Nk+1(t)

t2 log t
dt ≪ 1

(ek/2)m−1
.

Here we used the fact that for k ≥ rj/(m− 1), (log2 t)
j/ logm−1 t is decreasing for

t ≥ ee
k/r

.
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