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Abstract

We verify several statements or claims made about Sylver Coinage game scenarios in

which 4 has been chosen. In particular, we verify unproven statements by Conway

and others, and provide an algorithm for achieving and maintaining a winning

strategy in some of these games.

1. Introduction

In the game of Sylver Coinage, two players alternate choosing natural numbers.

Each choice removes from play all natural numbers that can be expressed as linear

combinations, over the nonnegative integers, of previous choices. The player who is

forced to choose 1 loses.

The game is named in honor of J. J. Sylvester (1814-1897) and is the topic of
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Chapter 18 of Winning Ways for your Mathematical Plays by Berlekamp, Conway

and Guy [1]. Early results on Sylver Coinage appear in both [6] and [4]. Much of

the published research on Sylver Coinage has focused on games in which 4 has been

played (see [1], [2], and [4]); there are several reasons for this assumption, which will

be addressed in detail shortly. Some recent publications have established connec-

tions between Sylver Coinage and numerical semigroups (see [2] and [3]) to prove

results associated with achieving and maintaining winning and losing positions, in

addition to developing strategies for playing the game from specific positions.

Much of the available literature on Sylver Coinage focuses on determining if a

given game position is an N -position (a winning position for the next player) or a

P-position (a winning position for the previous player). For instance, if 2 and 3 are

the first two moves in a game of Sylver Coinage, the only move left for the next

player is the losing choice of 1. Hence, the position {2, 3} is a P-position. Similarly,

the position {2} is an N -position if one assumes the player given that position plays

optimally. In fact, unless otherwise stated we will assume that both players will

play optimally at each stage of any game of Sylver Coinage.

In [1], [4], and [6], considerable attention is devoted to Sylver Coinage game

positions in which 4 has been played. In particular, each author includes state-

ments that, while reasonable, are not explicitly proven. Rigorous justifications of

said claims do not yet appear in the literature, and attempting to verifying these

statements led to the results presented in this document.

The rest of this paper is structured as follows. In Section 2 we will present back-

ground information on Sylver Coinage, and discuss important connections between

Sylver Coinage and various properties of numerical semigroups. In Sections 3, 4, 5,

and 6 we will state and prove several of the aforementioned unproven claims from

various sources. In particular, we will will provide a recursive algorithm for main-

taining a winning position in Sylver Coinage games in which 4 has been played. In

Section 7 we present some interesting open problems.

2. Background Information

Definition 1. Sylver Coinage is a two-player game played on the set N of natural

numbers. The rules of Sylver Coinage are:

1. Players alternate choosing available natural numbers.

2. If a1, a2, ..., ak denote the first k choices in the game, the available natural

numbers on the next turn are the elements of the set

N \ {n1a1 + n2a2 + ...+ nkak|ni ∈ N ∪ {0}}.

3. The player who chooses the natural number 1 loses the game.
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Example 1. As an example of a game of Sylver Coinage, suppose Player 1 begins

by choosing 5. Player 2 can then respond with any natural number that is not a

multiple of 5, say 6. Next, Player 1 can choose any natural number that is not of

the form 5x+ 6y for some x, y ∈ N ∪ {0}. The entire game might look like this:

Available Plays Player 1 Player 2
N 5

N\5N 6
{1, 2, 3, 4, 7, 8, 9, 13, 14, 19} 7

{1, 2, 3, 4, 8, 9} 4
{1, 2, 3} 3
{1, 2} 2
{1} 1

Player 1 is forced to play 1 and loses.

The following facts about Sylver Coinage are well known in the literature; the

curious reader can consult [2] for details.

1. If a1, a2, ..., ak denote the natural numbers that have been chosen in a game

of Sylver Coinage and if gcd{a1, a2, ..., ak} = 1, then the set of available plays

is finite.

2. Every game of Sylver Coinage involves a finite number of plays.

3. If both players play intelligently - i.e., if both players use optimal strategy -

then the first player to choose 1, 2, or 3 loses.

Definition 2. The following terms and notational conventions pertain to Sylver

Coinage; see [2] and [5] for more information.

1. A position in a game of Sylver Coinage is a set M = {a1, a2, ..., ak} of natural

numbers that have been chosen by the players.

2. The set of legal plays of a position M = {a1, a2, ..., ak}, denoted L(M), is

defined as L(M) = N \ {n1a1 + n2a2 + ...+ nkak|ni ∈ N ∪ {0}}.

3. Given a position M = {a1, a2, ..., ak}, we say that ai is superfluous if L(M) =

L(M \ {ai}).

4. We say that a position M = {a1, a2, ..., ak} is in canonical form if none of

the ai are superfluous. Unless otherwise stated, we will assume that position

M = {a1, a2, ..., ak} is in canonical form with a1 < a2 < ... < ak.

5. We say that a position M is a finite position if L(M) is a finite set - that is, if

|L(M)| < ∞. In this case, we let F (M) denote the largest element of L(M).
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6. Given a position M , we say that x ∈ L(M) is an end if the choice of x does

not eliminate any other elements of L(M). We say that M is an ender if

F (M) is the only end.

7. A position is called an N -position if the next player to play can win from that

position. We often refer to N -positions as winning positions.

8. A position is called an P-position if the previous player can win from that

position. We often refer to P-positions as losing positions.

Note that given a position M , the set N \ L(M) is closed under addition. A

fundamental result in Sylver Coinage is due to R. L. Hutchings. See [1] for more

information.

Theorem 1. In a game of Sylver Coinage, if Player 1 chooses any prime p > 3

for an opening move, then M = {p} is a P-position.

At first glance, Hutchings’ Theorem appears to imply that Sylver Coinage can

be trivialized if a game begins with a choice of any prime 5 or greater. However,

the proof of Hutchings’ Theorem is nonconstructive, and consequently provides no

insight into general strategies either player should employ in these scenarios.

It is well known that any response to the position M = {p} results in an ender,

which is due to the following results.

Proposition 1. If M is an ender with F (M) > 1, then every element of L(M)

less than F (M) eliminates F (M).

Proof. Suppose there exist elements of L(M) that do not eliminate F (M); let x ∈
L(M) be the maximal such element. Since M is an ender, the choice of x must

eliminate another element y ∈ L(M) with y > x. It then follows that y is either

an integer multiple of x or y can be written as an integer multiple of x combined

with integer multiples of previous choices. In both cases, by Definition 2.3 we may

write y = kx + rk for some k ∈ N and some rk /∈ L(M). Since y > x, the choice

of y would eliminate F (M), and so it must be the case that F (M) = ly + rl,

again for some l ∈ N and some rl /∈ L(M). Combining these expressions yields

F (M) = l(kx + rk) + rl = (lk)x + lrk + rl. Since rk, rl /∈ L(M), it follows that

lrl + rk /∈ L(M) as well. This in turn implies that the choice of x eliminates F (M),

a contradiction, ergo no such x exists. Thus, if M is an ender, every element of

L(M) eliminates F (M).

Proposition 2. If M is an ender with F (M) > 1, then M is an N -position.

Proof. Assume a Sylver Coinage position M is an ender. By Proposition 2.5, every

element of L(M) eliminates F (M). Now consider the following scenario: suppose

a player on an ender M chooses F (M). If their opponent has a winning response
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m ∈ L(M) \ {F (M)}, then the original player should instead choose m rather

than F (M) and reach the same winning position. This implies that M is an N -

position.

The argument outlined in the proof of Proposition 2.6, which allows a player

to determine a winning move by considering potential moves that could give their

opponent a P-position, is called strategy stealing. See [1] for more examples of situ-

ations in which strategy stealing has been used to analyze Sylver Coinage positions.

We next present appropriate background information on numerical semigroups,

as there are important connections between some types of numerical semigroups

and certain Sylver Coinage positions. Consult [5] for more information.

Definition 3. A numerical semigroup is a subset S of N∪{0} satisfying these three

conditions:

1. 0 ∈ S;

2. S is closed under addition;

3. |N \ S| is finite.

The smallest positive element of S is called the multiplicity of S, denoted m(S).

The largest element of N \ S is called the Frobenius number of S and is denoted

F (S). The value of |N \ S| is called the genus of S and is denoted g(S).

Example 2. Let S = {0, 4, 5, 8, 9, 10} ∪ {N : n ≥ 12}. Then S is a numerical

semigroup, with Frobenius number F (S) = 11, genus g(S) = 6, and m(S) = 4.

From [5] we know that given any numerical semigroup S, there exists a unique

finite subset {a1, a2, ..., ak} of elements in S that is minimal (with respect to con-

tainment) and such that for any s ∈ S there exist n1, n2, ..., nk ∈ N such that

s = n1a1 + n2a2 + ...+ nkak. In this case, we call {a1, a2, ..., ak} a minimal system

of generators for S, denoted msg(S), and will often write S = ⟨a1, a2, ..., ak⟩. The

number of elements in the minimal generating set for a numerical semigroup S is

called the embedding dimension of S, denoted e(S). For the numerical semigroup

in the last example, S = ⟨4, 5⟩ and e(S) = 2. Finally, it is well known (see [5] for

details) that if S = ⟨a1, a2⟩, then F (S) = a1 · a2 − a1 − a2.

From the definition of F (S), we know that if x ∈ S, then F (S)− x /∈ S. It then

follows that g(S) ≥ F (S)+1
2 if F (S) is odd, and g(S) ≥ F (S)+2

2 if F (S) is even.

Definition 4. We say that a numerical semigroup is symmetric if F (S) is odd and

if g(S) = F (S)+1
2 . We say that a numerical semigroup is pseudo-symmetric if F (S)

is even and if g(S) = F (S)+2
2 .

Example 3. The following examples pertain to Definition 2.9.
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1. Let S = ⟨5, 6, 9⟩ = {0, 5, 6, 9, 10, 11, 12} ∪ {N : n ≥ 14}. Note that F (S) = 13

and g(S) = 7, and hence S is symmetric.

2. Let S = ⟨4, 7, 9⟩ = {0, 4, 7, 8, 9} ∪ {N : n ≥ 11}. Note that F (S) = 10 and

g(S) = 6, and hence S is pseudo-symmetric.

3. Let S = ⟨5, 6, 7⟩ = {0, 5, 6, 7} ∪ {N : n ≥ 10}. Note that F (S) = 9 and

g(S) = 6, and hence S is neither symmetric nor pseudo-symmetric.

There are several ways to show that a given numerical semigroup is symmetric

or pseudo-symmetric. They include the following, which are well known in the

literature; see [3] and [5] for details.

Proposition 3. If S is a numerical semigroup, then

1. If e(S) = 2, then S is symmetric.

2. If m(S) = 4, e(S) = 3, then S is pseudo-symmetric if and only if S = ⟨4, k, k+
2⟩ with k odd, k > 3.

Example 4. Let S = {0, 4, 8, 9, 11, 12, 13} ∪ {N : n ≥ 15}. Then S is a numerical

semigroup, and in fact S = ⟨4, 9, 11⟩. Note that F (S) = 14, g(S) = 8 and m(S) =

4. We conclude by both definition and via Proposition 2.11.2 that S is pseudo-

symmetric.

There is a close connection between the elements of a given numerical semigroup

and, when it is finite, the set of legal moves in a game of Sylver Coinage. This

connection is discussed in detail in [3]. Here are the pertinent results from [3],

presented without proof.

Proposition 4. Let M = {a1, a2, ..., ak} be a finite position in a game of Sylver

Coinage written in canonical form. Define S(M) = (N ∪ {0}) \ L(M). Then:

1. S(M) is a numerical semigroup with msg(S) = {a1, a2, ..., ak}.

2. If S(M) is symmetric or pseudo-symmetric, then M is an N -position.

3. F (M) = F (S).

To paraphrase: given any finite position M in a game of Sylver Coinage written

in canonical form, the complement of L(M) in N∪{0} corresponds to the numerical

semigroup S(M). Moreover, if S(M) is either a symmetric or pseudo-symmetric

numerical semigroup, then the position M is an N -position. The curious reader

should consult [3] for more information. In the remainder of this paper we will

periodically make use of this connection between numerical semigroups and Sylver

Coinage positions.
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3. Verifying Sicherman’s Claim on Unique Responses to {4, x}

In [6], Sicherman refers to “...the unique winning move” when 4 and an odd x

are the first two choices in a game of Sylver Coinage. This implies that when

M = {4, x}, only one response allows Player 1 to maintain their winning position.

Given a position M , the existence of at least one element of L(M) that is a “...

winning move” leads to the following useful term.

Definition 5. The set of optimal responses to a position M = {a1, a2, ..., ak},
denoted O(M), is defined as O(M) = {α ∈ L(M) : M ∪ {α} is a P-position}.

Equivalently, Sicherman is claiming that |O(M)| = 1. But it is not obvious why

this is the case. In order to verify Sicherman’s claim, first note that by Proposition

2.11 and Proposition 2.13, any position of the form M = {4, x} with x ≥ 5 and x

odd is known to be an N -position.

Proposition 5. Given the N -position M = {4, x} with x ≥ 5, x odd, and any even

b ∈ L(M), Mb = {4, x, b} is also an N -position.

Proof. Let M = {4, x}, x odd, and assume some even b ∈ L(M) is chosen. Since

L(M) contains no multiples of 4, it must be the case that b ≡ 2(mod 4). Since every

linear combination of 4 and b over N∪{0} is even, no elements of L(M) congruent to

x modulo 4 are eliminated by choosing b. The minimal element of L(M) congruent

to x− 2 modulo 4 that is eliminated is x+ b.

Because F (M) = 4 · x− 4− x = 3x− 4 is also congruent to x− 2 modulo 4, the

number of elements of L(M) congruent to x − 2 modulo 4 that are eliminated by

choosing b is
3x− 4− (x+ b− 4)

4
=

2x− b

4
.

Similarly, the number of elements of L(M) congruent to 2 modulo 4 that are elim-

inated by choosing b is
2x− 4− (b− 4)

4
=

2x− b

4
.

As a result, choosing b eliminates 2x−b
2 elements of L(M).

It then follows that F (Mb) remains odd and the equation

g(Mb) =
F (Mb) + 1

2

holds. Thus, S(Mb) is symmetric, and hence Mb is an N -position.

Proposition 6. Given the N -position M = {4, x} with x odd and x ≥ 5, there

is a unique q ∈ L(M) such that {4, x, q} is a P-position, and q must satisfy q ≡
x− 2 (mod 4).
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Proof. Let M = {4, x} with x odd. Since M is an N -position, there exists some

q ∈ L(M) such that {4, x, q} is a P-position. Note that if q ≡ x (mod 4), then q < x,

and so {4, x, q} = {4, q} is an N -position. Also note that if q ≡ 2 (mod 4), then the

resulting position {4, x, q} is an N -position by Proposition 3.1. Thus, the q ∈ L(M)

that results in a P-position {4, x, q} must satisfy q ≡ x − 2 (mod 4). Suppose two

such choices exist, say q1, q2, with q1 < q2 and q1 ≡ q2 ≡ x − 2 (mod 4). But then

{4, x, q1} = {4, x, q1, q2} is a P-position, and so {4, x, q2} cannot be a P-position.

The result follows.

Example 5. Consider the N -position M = {4, 7}. It is easy to verify that the even

elements of L(M) are 2, 6 or 10. By Proposition 3.2, each of these choices results

in an N -position. For instance, {4, 7, 10} is an N -position.

Example 6. Consider the N -position M = {4, 13}. The only elements in L(M)

congruent to 13 modulo 4 are 5 and 9, and one can show that each yields an N -

position. Thus, any q ∈ L(M) such that {4, 13, q} is a P-position must satisfy

q ≡ x − 2 (mod 4), as stated in Proposition 3.3. The possible values of q are

q = 7, 11, 15, 19, 23, 27, 31, 35, and only one of these values of q, namely q = 7,

yields a P-position.

Given the N -position M = {4, x} with x odd, the unique value of q described in

Proposition 3.3 for which {4, x, q} is a P-position can be found for small values of

x via brute force. However, in Section 6 we will present an efficient algorithm for

determining the unique q corresponding to any value of x.

We can actually say more about this situation. Namely, every odd natural num-

ber q > 3 is the winning response to exactly one N -position of the form M = {4, x}
with x ∈ N, which is a special case of the Single Win Theorem in [6].

Proposition 7. Given any odd integer q > 3, there exists a unique odd xq ∈ N
with the property that {4, xq} is an N -position and {4, xq, q} is a P-position.

Proof. Let q > 3 be odd. Then Mq = {4, q} is an N -position. By Proposition 4.2,

there exists a unique xq ∈ L(Mq) such that {4, q, xq} is a P-position, where none of

4, q, xq are superfluous. Then Mxq
= {4, xq} is an N -position, and q is the unique

element of L(Mxq
) resulting in {4, xq, q} being a P-position.

Corollary 1. Given any odd integer q > 3, there exists a unique odd xq ∈ N such

that {4, q} and {4, xq} are both N -positions and {4, q, xq} is a P-position.

We note that if q < xq in Proposition 4.3, then (q, xq) is precisely a 4-pair as

discussed in [4]. We will investigate 4-pairs in more detail in Section 6.
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4. Verifying the Conway Table

In [1], Conway et al. state that each entry in Table 1 is the smallest b = 4k + 2

which has not appeared earlier in its row or column and, consequently, when ac is

odd, M = {4, a, b, c} “is a P-position” in a game of Sylver Coinage. But the reason

these minimal available values of b result in P-positions is not justified.

c = 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67
a
5 6
9 10 6 14
13 6 10
17 10 6 14 18 22 26 30
21 18 14 6 10 26 22 34 30 38
25 22 10 6 14 18 26 30 34 38 42 46
29 26 18 14 6 10 22 34 30 42 38 50 46
33 22 26 10 6 14 18
37 26 22 18 14 6 10 42 38 30 34 54
41 30 34 38 42 10 6 14 18 22 26 58
45 34 30 42 38 18 14 6 10 26 22 62
49 38 42 30 34 46 22 10 6 14 18 26
53 42 38 34 30 50 26 18 14 6 10 22
57 38 22 26 10 6 14 18
61 46 50 54 42 26 22 18 14 6 10
65 50 46 58 54 62 34 30 10 6
69 46 50 18 14

Table 1: Values of b for which {4, a, b, c} is claimed to be a P-position in [1].

Example 7. Consider the position {4, 37, 31} in a game of Sylver Coinage. Note

that in the Table 1, 37 is the 9th entry in the a column along the left side of the

table, and 31 is the 7th entry in the b row along the top of the table. The table entry

in the 9th row and the 7th column is 18, the minimal even number congruent to 2

modulo 4 that does not appear previously in the 9th row and the 7th column of the

table. Conway et al. claim that {4, 37, 31} is an N -position and that {4, 37, 31, 18}
is a P-position.

We will now describe how this table was constructed. We begin with a result

that appears in [2] as Propositions 10 and 11 and their corollaries.

Proposition 8. Let M = {4, x, y} be a position in a game of Sylver Coinage with

xy odd. Then:

1. If x ≡ 1 (mod 4) and y = x+ 2, then {4, x, y, 6} is a P-position.
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2. If x ≡ 7 (mod 8) and y = x+ 2, then {4, x, y, 10} is a P-position.

3. If x ≡ 5 (mod 8) and y = x+ 6, then {4, x, y, 10} is a P-position.

4. If x ≡ 1 (mod 8) and y = x+ 6, then {4, x, y, 14} is a P-position.

5. If x ≡ 5 (mod 8) and y = x− 2, then {4, x, y, 14} is a P-position.

Example 8. Consider the position M = {4, 17, 19}, the first image in Table 2.

Note that M satisfies the conditions of Proposition 4.1(i), and so {4, 17, 19, 6}, the
second image in Table 2, is a P-position. One can justify why this is a P-position

by noting that each potential choice has a corresponding response that preserves

this P-position. For instance, if 13 is chosen, then 15 is the winning response (and

vice versa). Similarly, if 9 is chosen, 11 is the winning response (and vice versa),

and if 5 is chosen, 7 is the winning response (and vice versa).

Table 2: The N -position {4, 17, 19} and the P-position {4, 17, 19, 6}.

The results from Proposition 4.1 verify some of the even entries in the Table 1

Conway table [1]. The fact that all entries in Table 1 correspond to P-positions can

now be proven.

Theorem 2. Let Mi,j = {4, ai, cj}, where ai and cj denote the leading ith-row and

jth-column table entries, respectively, in Table 3. If the ith-row, jth-column entry

in the table is the minimal available bi,j ∈ L({Mi,j}) of the form 4k+2 that has not

yet appeared in either the ith-row or the jth-column of the table, then {4, ai, bi,j , cj}
is a P-position.

Proof. Consider the position {4, ai, cj}. Suppose, say, Player 1 chooses some b ≡
2 (mod 4) with b > bi,j . Then Player 2 can choose bi,j , resulting in the position

{4, ai, bi,j , cj}. Any subsequent choice from Player 1 results in a position of the form

{4, a′, b′, c′} with a′ ≤ ai, b
′ ≤ bi,j , c

′ ≤ cj , and at least one of these inequalities must

be strict. Such a position is a known N -position from the table. Thus, if b > bi,j , it



INTEGERS: 24 (2024) 11

follows that {4, ai, b, cj} is an N -position, and hence {4, ai, bi,j , cj} is a P-position,

as desired.

One useful consequence of Theorem 4.3 is that it allows us to identify certain

positions of the form {4, a, c} with ac odd that are P-positions. Said differently, we

can fill in some of the blank areas of the Conway table.

Corollary 2. Given Mi,j and bi,j as above, if bi,j + 4 = 2ai, then {4, ai, cj + 4} =

{4, ai, cj+1} is a P-position, and if bi,j +4 = 2cj, then {4, ai +4, cj} = {4, ai+1, cj}
is a P-position. Also, every position {4, q, xq} from Proposition 3.3 can be described

as either {4, ai, cj+4} or {4, ai+4, cj}, which satisfy bi,j+4 = 2ai or bi,j+4 = 2cj,

respectively.

Example 9. In Table 1, note that if 4 and 15 have been played, the minimal

available even response to 29 is 26. Note that bi,j + 4 = 2cj , and Corollary 4.5

claims that {4, 33, 15} is a P-position, which is indeed the case.

A more complete version of the Conway table appears in Table 3. The red

integers correspond to results in Proposition 4.2. The blue integers are known odd

responses; and the black integers follow from Theorem 4.4. If no response appears,

the implication is that {4, a, c} is a P-position.

Example 10. The position {4, 15, 25} has 22 as a response in Table 3, so {4, 15, 25}
is anN -position and {4, 15, 22, 25} is a P-position. Similarly, the positions {4, 15, 49}
and {4, 15, 33, 49} are N - and P-positions, respectively. The position {4, 21, 51} has

no response given in Table 3, so it must be a P-position.

It is worth noting that in some positions of the form M = {4, a, c} as described

above, |O(M)| > 1. For instance, if M = {4, 41, 43}, then both 17 and 6 are optimal

responses.

Example 11. Consider the position {4, 19, 21} = {4, a5, c4}, and assume that all

previous even winning responses from Table 3 are known - i.e., all entries bi,j , with

i ≤ 5 and j ≤ 4 and at least one inequality being strict, are known. In the column

above b5,4 we see the entries 6 and 10, and in the row to the left of b5,4 we see 18.

The minimal available even integer is 14, and hence b5,4 = 14. That is, {4, 19, 21, 14}
is a P-position.

5. An Algorithm for Finding Winning Moves to {4, x} Positions

In [4], given a positionM = {a1, a2, ..., ak} in Sylver Coinage, Guy’s second question

asks this: “Is there an effective technique for producing good replies when such

exist?” In general, this remains an open question.
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c = 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67
a
5 6 11 11 11 11 11 11 11 11 11 11 11 11 11 11
9 10 6 14 19 19 19 19 19 19 19 19 19 19 19 19
13 5 6 10 7 7 7 7 7 7 7 7 7 7 7 7
17 13 5 10 6 14 18 22 26 30 43 43 43 43 43 43
21 13 5 18 14 6 10 26 22 34 30 38 51 51 51 51
25 13 5 22 9 10 6 14 18 26 17 30 34 38 42 46
29 13 5 26 9 18 14 6 10 22 17 34 30 42 38 50 46
33 13 5 9 22 26 10 6 14 18 15 15 15 15 15 15
37 13 5 33 9 26 22 18 14 6 10 42 38 30 34 54 25
41 13 5 33 9 30 34 38 42 10 6 14 18 22 26 58 25
45 13 5 33 9 34 30 42 38 18 14 6 10 26 22 62 25
49 13 5 33 9 38 42 30 34 46 22 10 6 14 18 26 25
53 13 5 33 9 42 38 34 30 50 26 18 14 6 10 22 25
57 13 5 33 9 23 23 23 38 17 22 26 10 6 14 18
61 13 5 33 9 57 46 50 54 42 17 26 22 18 14 6 10
65 13 5 33 9 57 50 46 58 54 17 62 21 34 30 10 6
69 13 5 33 9 57 27 46 27 17 50 21 27 27 18 14

Table 3: Even (red or black) and minimal odd (blue) values of b for which {4, a, b, c}
is a P-position.

The results in Sections 3 and 4 imply that Table 3 can be inductively completed

to determine values of b such that given distinct a, c ∈ N with ac odd, the position

{4, a, b, c} is a P-position. This in turn provides a recursive solution to a special

case of the second of Guy’s 20 questions in [4]. Specifically, given any N -position

{4, x}, x odd, we can determine the unique xq such that {4, x, xq} is a P-position.

Theorem 3. If x ≥ 5 is an odd integer, then O({4, x}) can be computed.

Proof. For any x ∈ N, let Mx = {4, x}, and recall that O(Mx) is known if x =

5, 7, 9, 11, 13, 15, 17, or 19. Proceeding inductively, given any j ∈ N, j > 3,

assume that O(M5), O(M7), ... , O(M2j−1) are known, as are all Table 3 entries if

y < x and y ≡ x(mod 4). The unique element of O(M2j+1) must be an element of

P2j+1 = {q ∈ N : q ≡ 2j − 1(mod 4), 7 ≤ q < 3(2j + 1)}.
Let eq denote the minimal available even integer corresponding to the position

{4, x, q} in Table 3, and let xq be as defined in Proposition 3.3. We will consider

each value of q in increasing order as follows:

1. If xq is known and min{2q, 2xq} ≤ eq, then xq is a winning response to

the position {4, x, q} (since there is no winning even response) and hence

q /∈ O(M2j+1).
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2. If xq is known and min{2q, 2xq} > eq, then as discussed in Section 4, eq is a

winning response to the position {4, x, q}, and hence q /∈ O(M2j+1).

3. If xq is not known, then eq is a winning response to the position {4, x, q} (since

xq is too large to be a winning response), and again q /∈ O(M2j+1).

This process terminates after each of the 2(2j+1)−6
4 = j−1 even integers in L(M2j+1)

is identified as a specific value of eq so that {4, x, q, eq} is a P-position. The next

odd value of q ∈ P2j+1 is then the unique element of O(M2j+1), completing the

proof.

Example 12. To compute O(M29), first note that since 29 ≡ 1(mod 4), the unique

q ∈ O(M29) must be an element of {q ∈ N : q ≡ 3(mod 4), 7 ≤ q < 87}. We will

analyze each such q in increasing order based on both xq and known entries in Table

3 as discussed in Theorem 5.1:

1. If xq is known and if min{2q, 2xq} ≤ eq, then xq is a winning response to

{4, 29, q}. For instance, if q = 7, then x7 = 13, e7 = 14, and min{2 ·7, 2 ·13} ≤
14 . Thus, {4, 29, 7, 13} is a P-position and therefore 7 /∈ O(M29).

2. If xq is known and if min{2q, 2xq} > eq, then eq is a winning response to

{4, x, q}. For instance, if q = 15, then x15 = 33 and e15 = 26, and min{2 ·
15, 2 · 33} ≤ 26 is not satisfied. Thus, {4, 29, 15, 26} is a P-position, and

therefore 15 /∈ O(M29).

3. If xq is not known, then eq is a winning response to {4, 29, q}. For instance, if
q = 39, then x39 is not known, and since e39 = 22, we know that {4, 29, 39, 22}
is a P-position, and therefore 39 /∈ O(M29).

As seen in Theorem 5.1, this process terminates after each of the 2·29−6
4 = 13 even

integers in L(M29) is identified as a specific eq so that {4, 29, q, eq} is a P-position.

The next value of q, namely q = 75, must be the unique element of O(M29).

We readily admit that the recursive algorithm from Theorem 5.1 is not ideal for

determining unique winning responses to positions of the form {4, x} with x odd.

It is, however, far more efficient than using sheer brute force.

Note that even if both players in a game of Sylver Coinage have access to this

algorithm, it only benefits Player 1, as it allows them to maintain a winning position.

But if Player 1 is unaware of the algorithm or is not allowed to use it, then the

advantage provided to Player 1 from Hutching’s Theorem is nullified if both Player

1 makes a non-optimal choice given the position {4, x}, x odd and if Player 2 uses

the algorithm.
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6. Verifying the Conway Inequality

In [4], Guy describes the following scenario: let a, b ∈ N with ab odd, and assume

without loss of generality that a < b. If O({4, a}) = {b} and O({4, b}) = {a} both

hold, Guy declares “Conway can prove that 2 < b
a < 3....” But no verification of

this statement exists in the literature.

We can restate this claim in the context of Corollary 3.4: for every odd integer

q > 3, there exists a unique odd xq ∈ N such that {4, q} and {4, xq} are both

N -positions, {4, q, xq} is a P-position, and if without loss of generality q < xq, then

it must be the case that 2q < xq < 3q.

The first few pairs (q, xq) that satisfy the conditions of Corollary 3.4 are (5, 11),

(7, 13) and (9, 19). We note that 4-pair (7, 13) does not satisfy the bounds claimed

by Conway. But all other 4-pairs do satisfy these bounds.

Theorem 4. Let (q, xq) be any 4-pair with q > 7 and q < xq. Then 2q < xq < 3q.

Proof. We proceed using induction. One can show via brute force that for every odd

integer in the set {5, 9, 11, ..., 41}, the corresponding 4-pair (q, xq) satisfies 2q < xq <

3q. Now assume the result holds for each odd integer in the the set {5, 9, 11, ..., 2j−
1} and consider the ordered pair (2j+1, x2j+1). Recall from Section 5 that x2j+1 =

O({4, 2j+1}) can be computed. If x2j+1 < 2j+1, then by the inductive hypothesis

the result holds. If 2j+1 < x2j+1, then via the recursive argument in Theorem 5.1,

it must be the case that 2(2j + 1) < x2j+1. Since F ({2j + 1, x2j+1}) < 3(2j + 1),

it then follows that

2(2j + 1) < x2j+1 < 3(2j + 1),

verifying Conway’s inequality.

Theorem 5. The algorithm presented in Theorem 5.1 can be extended to give a

general strategy on positions M where L(M) is finite and four has been chosen, as

well as a method for determining if such positions are N -positions or P-positions.

Proof. Simply note that any finite board M = {4, x, ..., y} can be expressed as

{4, a, b, c} where a, b, c are the minimal natural numbers such that a, b, c /∈ L(M),

a ≡ 1(mod 4), b ≡ 2(mod 4), and c ≡ 3(mod 4). Now implement the algorithm

from Theorem 5.1 and use Table 3 as needed. The result follows.

In the following example, we will assume Player 1 can use both the Theorem 5.1

algorithm and the extended Conway table from Table 3.

Example 13. Suppose Player 1 is given the position M = {4, 17}. Using the

algorithm from Theorem 5.1, Player 1 can compute O(M) = 43, resulting in the P-

position {4, 17, 43}. Any response to this position by Player 2 yields an N -position.
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• If Player 2 responds with an even choice, say 22, the resulting position is

{4, 17, 43, 22} = {4, 17, 22}. This is an N -position, since Player 1 can then

use Table 3 to select 31, which results in the P-position {4, 17, 22, 31}.

• If Player 2 responds with an odd choice, say, 19, the resulting position is

{4, 17, 43, 19} = {4, 17, 19}. This is also an N -position, since Player 1 can

again use Table 3 to select 6, which results in the P-position {4, 6, 17, 19}.

In both cases, any subsequent move by Player 2 yields an N -position. Player 1

can again use Table 3 to make a choice from the remaining set of legal moves that

results in a P-position.

To summarize: the repeated use of the algorithm from Theorem 5.1, together

with the corresponding extended Conway table in Table 3 (assuming the table has

been completed to a needed and appropriate size) results in Sylver Coinage being

solved from any position of the form {4, x}, x ≥ 5 and x odd. More generally, Sylver

Coinage is solved from any position of the form {4, a, b, c} as described above.

7. Future Work

Recall that in [4], Guy mentions the inequality that we verified in Section 6 in the

context of 4-pairs, expressed as

2 <
xq

q < 3.

Guy further claims that Conway can improve these upper and lower bounds on

the ratio
xq

q if the values of q are restricted to the separate congruence classes

q ≡ 1 (mod 4) and q ≡ 3 (mod 4), as well as under the assumption that the

corresponding values of xq are monotonic in each of these two congruence classes as

q increases. We hope to sharpen these bounds, as well as verify the monotonicity

assumption.

In [4], the 14th question Guy asks about Sylver Coinage is this: does limq→∞
xq

q

exist? The value of
xq

q for most values of q is approximately 2.56. We hope to shed

light on the asymptotic behavior of the value of this ratio.

Recall that, by Proposition 3.3, given any odd x > 3, if M = {4, x}, then

|O(M)| = 1.

Brute force searches have yielded the following:

• If M = {5, p}, then |O(M)| ≥ 2 if p = 23.

• If M = {6, p}, then |O(M)| ≥ 2 if p = 13.

• If M = {7, p}, then |O(M)| ≥ 2 if p = 11, 37.
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• If M = {8, p}, then |O(M)| ≥ 2 if p = 23.

• If M = {9, p}, then |O(M)| ≥ 2 if p = 7, 17, 19, 23, 29, 37.

• If M = {10, p}, then |O(M)| ≥ 2 if p = 11, 23, 29, 31.

• If M = {11, p}, then |O(M)| ≥ 2 if p = 13, 17, 37.

• If M = {12, p}, then |O(M)| ≥ 2 if p = 17, 23, 31.

• If M = {13, p}, then |O(M)| ≥ 2 if p = 17.

If Player 1 opens with a prime p > 3, it appears reasonable to suspect that

every predetermined response y > 4 from Player 2 results in at least one position

M = {p, y} with |O(M)| ≥ 2. We conjecture that this is the case.

Another interesting question associated with Sylver Coinage game positions is

based on an observation in [6]. Namely, there are only 7 known Sylver Coinage

positions M{x, y} with (x, y) = 1 for which the unique winning move is F ({x, y}),
the maximal element of L({x, y}). They are:

{2, 5}, {4, 5}, {5, 6}, {5, 9}, {8, 15}, {13, 14}, {13, 21}.

Are there others? And do they all involve Fibonacci numbers? Our initial searches

have not provided other such examples.
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[5] J.C. Rosales and P.A. Garćıa-Sánchez, Numerical Semigroups, Springer, Berlin, 2009.

[6] G. Sicherman, Theory and practice of sylver coinage, Integers 2 (2002), #G2.


