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Abstract

We define two 2-player impartial games on a simple graph called the Make-A-Cycle
(MAC) game and the Avoid-A-Cycle (AAC) game. Given a simple graph Γ and starting
vertex v, two players alternate forming a path in Γ without backtracking. The first
player to return to a previously visited vertex wins the MAC game or, respectively,
loses the AAC game. We give a complete description of winning strategies for the AAC
game. For the game MAC, we show winning strategies for several families of graphs
including complete and complete bipartite graphs, wheel graphs, stacked prism
graphs, and some generalized Petersen graphs. Moreover, we provide a complete
description of winning strategies on a join of two simple graphs.
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1. Introduction

In [7], the two player combinatorial games REL (Relator Achievement) and RAV

(Relator Avoidance) were defined by authors Gates and Kelvey. These games take

a finite group G and generating set S, and have two players alternate building a

word in the group G out of letters from S. When playing REL, the first player to

form a relator wins. When playing RAV, the first player to form a relator loses.

Both games can be visualized via the Cayley graph Γ(G,S), where the game words

correspond to forming a path in the graph. Hence, winning the game REL amounts

to making a cycle in the Cayley graph, whereas winning the game RAV is equivalent

to avoiding a cycle.

In [7], it was noted that one could drop the requirements of starting with a finite

group G and instead examine the above games in a purely graph-theoretic way. In

this paper, we aim to do just that. Given a simple graph and a starting vertex,

we ask if there are winning strategies on particular families of graphs. We begin in

Section 2 by extending the definition of REL and RAV to general graphs. We call these

new games MAC for Make-A-Cycle and AAC for Avoid-A-Cycle to distinguish them

from the relator games REL and RAV. We examine a few special examples in Section 2

and then proceed to discuss winning strategies for various graph families: complete

and complete k-partite graphs (Section 3), wheel graphs (Section 4), stacked prism

graphs (Section 5), and generalized Petersen graphs (Section 6).

While searching for literature on combinatorial games on graphs related to MAC

and AAC, we discovered, through [4] and [5], the game of Generalized Geography,

which has important bearing on the game of AAC. This combinatorial game is played

on a directed graph and consists of two players moving a token on the graph between

adjacent vertices. On each player’s turn, after moving the token from one vertex

to another, the starting vertex of the move is deleted from the graph. This game

is based off a classic children’s game where players alternate naming cities from

around the world, with the next city name beginning with the letter that ended the

previous city name and where repetition is not allowed.

There is extensive research in the literature on “geography” games and many

studies that examine variants of the game. One such variant is Undirected Geog-

raphy which is played on undirected graphs [5]. This variant is equal to the game

AAC and hence results from [5] allow us to easily describe winning strategies for the

AAC game for many graphs (see Section 2). In particular, we describe in Section 6

winning strategies for the AAC game on graph joins and certain subgraphs of graph

joins. Our results for the generalized Petersen graphs in Section 6 are then an

application of these results.

Also in Section 6, we give a complete description of winning strategies for MAC

on the graph join of two simple graphs before closing with a discussion in Section 7

of some code that was useful in developing intuition for several of our results and,
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finally, some open questions in Section 8.

2. Defining the Games

A graph Γ is comprised of a vertex set V Γ and an edge set EΓ, where EΓ is a subset

of V Γ × V Γ. For vertices v, w ∈ V Γ, if (v, w) ∈ EΓ, then we say (v, w) is an edge

in the graph Γ. For a vertex v, we denote by E(v) the set of edges containing v.

A path p in Γ is represented by its natural sequence of vertices, which we write as

p = v0v1 . . . vn, such that (vi, vi+1) ∈ EΓ for i = 0, 1, . . . , n − 1. A cycle in Γ is a

path p = v0v1 . . . vn, such that v0 = vn and vi is unique for i = 1, 2, . . . , n− 1.

Let Γ be a simple graph, that is, a graph with no loops and no multiple edges,

and let v be a vertex of Γ. We define the games Make-A-Cycle and Avoid-A-Cycle,

denoted by MAC(Γ, v) and AAC(Γ, v), as follows.

Definition 2.1. Let v0 = v. Player 1 begins by choosing an edge e1 ∈ E(v0) with

e1 = (v0, v1), which we will commonly phrase as Player 1 “moves to the vertex v1.”

Let p1 = v0v1 denote the game path after turn 1. Then Player 2 chooses an edge

e2 ∈ E(v1) such that e2 ̸= e1 and with e2 = (v1, v2). This forms the game path

p2 = v0v1v2. In general, on turn n, the current player begins with the game path

pn−1 = v0v1 . . . vn−1, where ei = (vi−1, vi).

The current player then chooses en = (vn−1, vn) ∈ E(vn−1) where en ̸= en−1,

forming the path pn = v0v1 . . . vn−1vn. If a player forms pn such that vn = vk
for some k with 0 ≤ k ≤ n − 1, then that player wins the Make-A-Cycle game

MAC(Γ, v). The Avoid-A-Cycle game, denoted by AAC(Γ, v), is the misère version of

Make-A-Cycle; that is, a player loses if they form pn such that vn = vk for some k.

For both games, if at any point there are no legal moves, then the current player

loses.

Looking at the definition of REL and RAV in [7], it is immediately clear that the

games MAC and AAC are generalizations of these. That is, if a graph Γ is the Cayley

graph for some finite group G and generating set S, then MAC(Γ, v) and AAC(Γ, v)

are exactly the games REL(G,S) and RAV(G,S), respectively. That is, these games

will have identical game trees, and hence will be isomorphic games [1, p.66].

Theorem 2.2. If Γ = Γ(G,S) for a finite group G and generating set S, then we

have for any vertex v,

MAC(Γ, v) ∼= REL(G,S),

AAC(Γ, v) ∼= RAV(G,S).

Note that Cayley graphs are vertex-transitive, meaning the automorphism group

of the graph acts transitively on the set of vertices. Because of this, it does not
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matter at which vertex the games of REL and RAV start. However, for general graphs,

there could be different outcomes for MAC or AAC depending on the chosen starting

vertex. In the case that a graph Γ is vertex-transitive, we will write MAC(Γ) and

AAC(Γ) instead of MAC(Γ, v) and AAC(Γ, v), respectively, since the starting vertex

is irrelevant. If, instead, a graph is not vertex transitive, then we can use the

symmetries of the graph to narrow down starting positions so as to not have to

examine a different game for every vertex in a graph.

We denote the automorphism group of a graph Γ by Aut(Γ). If v is a vertex of

Γ, then the orbit O(v) is defined as O(v) = {α(v) | α ∈ Aut(Γ)}.

Theorem 2.3. Let Γ be a simple graph and let v ∈ V Γ. Let O(v) denote the orbit

of v under the action of Aut(Γ). Then if w ∈ O(v), then MAC(Γ, v) ∼= MAC(Γ, w) and

AAC(Γ, v) ∼= AAC(Γ, w).

If Γ is a vertex-transitive graph, the orbit of any vertex is the entire graph Γ.

Thus, we have the following corollary.

Corollary 2.4. If Γ is a vertex-transitive graph, then MAC(Γ, v) ∼= MAC(Γ, w) and

AAC(Γ, v) ∼= AAC(Γ, w) for all v, w ∈ V Γ.

Example 2.5. As a simple example of the non-vertex transitive case, consider the

class of star graphs Sk. These are the complete bipartite graphs K1,k (k > 2) and

consist of a central vertex connected to k vertices, forming a star-like shape (see

Figure 1).

Figure 1: Example of star graph S5.

There are two kinds of orbits for the automorphism group of a star graph. The

central vertex has trivial orbit whereas the outer vertices all lie in the same orbit

via a rotational symmetry. Hence, one only needs to consider the games MAC and

AAC with two different starting positions: the central vertex or an outer vertex.

If u denotes the central vertex in Sk, we have that Player 1 wins both MAC(Sk, u)

and AAC(Sk, u), since Player 2 will have no legal move to make on their turn. If v

is any outer vertex of Sk, then Player 2 wins MAC(Sk, v) and AAC(Sk, v) since Player

1 will have no legal move on their second turn.

Example 2.6. Consider the family of prism graphs Dn (see Figure 2). These graphs

are the Cayley graphs for the dihedral groups. These graphs are vertex-transitive;

hence it suffices to consider just one starting vertex. In [7], it is shown that Player
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Figure 2: Prism graphs D5, D6, and D8.

1 has a winning strategy for MAC(Dn) if and only if n is odd or n ≡ 2 (mod 6). For

AAC(Dn), Player 1 has a winning strategy if and only if n is even.

In Section 5, we show winning strategies for a family of graphs called stacked

prism graphs which generalizes prism graphs.

2.1. Avoid-A-Cycle and Matchings

As mentioned in Section 1, the game of AAC is equal to the Undirected Geography

Game, referred to as Undirected Vertex Geography in [5]. The first theorem in

[5] provides a classification for when a player has a winning strategy. However,

to understand it, we first require a few preliminary definitions from graph theory.

We also include some graph theory definitions that we use later in the paper when

discussing specific graphs and the AAC game.

Given a simple graph Γ, a matching M is a set of edges in Γ such that no two

edges in M share a vertex. If v is contained in an edge of a matching M , then we say

that M saturates v. A matching M is said to be maximum if it is a matching with

maximum cardinality among all possible matchings in Γ. A perfect matching is a

maximum matching M such that every vertex of Γ is saturated while a near-perfect

matching is a matching of Γ such that exactly one vertex is not saturated. Note

that a perfect matching is necessarily a maximum matching. Moreover, a finite

graph with a perfect matching necessarily contains an even number of vertices.

The following definitions will be useful in Section 3. Given a matching M in

Γ, an alternating path is a path such that every second edge is contained in M

[8]. An augmenting path is an alternating path that begins and ends at vertices

not contained in the matching. The following theorem of Berge [2] connects the

property of a matching being maximum with its augmenting paths.

Theorem 2.7 (Berge’s Theorem). Given a graph Γ and matching M , the matching

M is maximum if and only if there is no augmenting path with respect to M .

We can now state a result from [5] that characterizes winning strategies for the

AAC game.
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Theorem 2.8 (Theorem 1.1, [5]). Let Γ be a simple graph and v a vertex in Γ.

Then Player 1 has a winning strategy for AAC(Γ, v) if and only if every maximum

matching in Γ saturates v.

Proof. We first suppose that every maximum matching in Γ saturates v, and let M

be one such matching. Then Player 1’s strategy is to only choose edges contained

in M . Since M saturates v, Player 1 can clearly do this on their first turn. Assume

that on some turn, Player 1 is unable to choose an edge in M . That is, on the

previous turn, Player 2 moved to the current vertex w, which is not saturated by

M . Let p denote the current game path from starting vertex v to w and note that

p is of even length. We can form a matching M ′ by

M ′ = (p−M) ∪ (M − p).

That is, M ′ is formed by taking the edges traversed so far by Player 2 and joining

them with the edges still left in M that Player 1 has not yet used. Since the path

p was of even length, the cardinality of M ′ is the same as the cardinality of M .

Hence, M ′ is a maximum matching, but M ′ does not saturate v, which contradicts

our hypothesis. Hence, Player 1 is always able to choose an edge in M for their

turn and, because the graph Γ is finite, Player 2 will necessarily be forced to make

a cycle.

For the forward direction, assume that there exists a maximum matching M that

does not saturate v. Then Player 2 will proceed to only choose the edges in M . This

is a winning strategy by the same argument as above - should Player 2 be unable

to choose an edge in M , then we can construct a new matching M ′ by means of

symmetric difference. But this time, the path to the current vertex will be of odd

length (as it is currently Player 2’s turn), and hence |M ′| > |M |, contradicting the

maximum cardinality of M .

After one starts playing AAC on various graphs, one will notice that the game

is generally one of vertex exhaustion. Hence, winning strategies naturally turn

into one player or the other creating a maximum matching in the graph. Indeed,

the authors found winning strategies for several graphs and graph families before

learning of the result in [5], but all of the discovered winning strategies were seen

to be formations of maximum matchings that contained the starting vertex. We

encourage the reader to play a few games of AAC for the graphs in each section

before thinking about matchings. After a while, one will see how natural maximum

matchings are to the AAC game.

Recall that a Cayley graph Γ(G,S) is both connected and vertex-transitive. The

following result concerning connected vertex-transitive graphs is well-known (see [8]

Theorem 3.5.1).

Theorem 2.9. Let Γ be a connected, vertex-transitive graph. If Γ has an even

number of vertices, then Γ has a perfect matching. If Γ has an odd number of
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vertices, then for every vertex v, there exists a near-perfect matching with v not

saturated.

As stated in Theorem 2.2, the RAV game is isomorphic to the game AAC. There-

fore, the following corollary for RAV follows immediately from Theorem 2.8 and

Theorem 2.9.

Corollary 2.10. For the game RAV(G,S), Player 1 has a winning strategy if the

number of vertices of Γ(G,S) is even and Player 2 has a winning strategy if the

number of vertices is odd.

Theorem 2.8 makes it clear that AAC is a graph-theoretic game. However, we

have yet to determine a connection between a graph-theoretic result and a general

winning strategy for the Make-A-Cycle game.

3. Complete Graphs and Complete k-partite Graphs

Let Kn denote the complete graph on n vertices. We note that Kn is vertex-

transitive and thus omit the choice of vertex and write MAC(Kn) and AAC(Kn) for

the Make-A-Cycle and Avoid-A-Cycle games, respectively.

Theorem 3.1.

1. Player 1 has a winning strategy for MAC(Kn) if n ≥ 2 while Player 2 has a

winning strategy if n = 1.

2. Player 1 has a winning strategy for AAC(Kn) if n is even while Player 2 has

a winning strategy for AAC(Kn) if n is odd.

Proof. First, consider the game MAC(Kn). We consider the cases where n = 1, n = 2,

and n ≥ 3 separately. Suppose that n = 1. Since there is only one vertex, Player 1

is unable to make a move at the start of the game, resulting in a Player 2 win. If

n = 2, then Player 1 moves to the other vertex from the starting vertex, and Player

2 is unable to move since backtracking is disallowed. Thus, Player 1 wins. Now

suppose n ≥ 3 and the game begins at the vertex v. Player 1 will move to some

vertex w ̸= v. Since backtracking is not allowed, Player 2 cannot move to v and

also is unable to complete a cycle, so they must move to some vertex u /∈ {v, w}.
Player 1 can then win by returning to the vertex v on their second turn.

Now consider the game AAC(Kn). Note thatKn is connected and vertex-transitive,

thus satisfying the hypotheses of Theorem 2.9. Thus, if n is even, then there exists

a maximum matching in Kn which saturates every vertex. Therefore, by Theo-

rem 2.8, Player 1 has a winning strategy for AAC(Kn) when n is even. On the other

hand, if n is odd and the game has starting vertex v, then by Theorem 2.9 there
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exists a maximum matching in Kn which saturates every vertex except for v. Thus,

by Theorem 2.8 Player 2 has a winning for AAC(Kn) when n is odd.

We note that Theorem 3.1 follows quickly from Theorem 2.6 in [7] and Theo-

rem 2.2 since the same argument for REL on complete Cayley graphs applies here.

However, we note that the cases where n = 1 or n = 2 are not covered in that

theorem but are covered above in detail.

Let Γ = K(n1, n2, . . . , nk) denote a complete k-partite graph (k ≥ 2) with disjoint

vertex sets of sizes n1, n2, . . . , nk where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk. We first prove

results for MAC(Γ, v), with v the starting vertex.

Theorem 3.2. Let v be a vertex in Γ.

1. If v lies in a part of size 2 or greater, then Player 2 has a winning strategy

for MAC(Γ, v).

2. If v lies in a part of size 1, then Player 1 has a winning strategy for MAC(Γ, v).

Proof. Consider statement (1) where v lies in a part of size 2 or greater. Suppose

Player 1 moves from v to the vertex u on their first turn, where u necessarily lies

in a part disjoint from v because Γ is k-partite. Then Player 2 will choose to move

to a vertex v′, where v′ is a vertex in the same part as v. Since there are no edges

between vertices in the same part, Player 1 cannot move to v, and, by the rules of

the game, also cannot backtrack. From here, they lose if there is no legal move;

otherwise, they must choose some new vertex w that is not in the same part as v.

Then Player 2 wins on the subsequent turn by returning to v.

Now consider statement (2) where v lies in a part of size 1. Suppose Player 1

moves from v to a vertex u for their first turn. Note that Player 2 cannot choose a

vertex in the same part as v on their turn. If k = 2, this means that they have no

legal move, so Player 1 wins. If k > 2, then Player 2 is able to move to some vertex

w /∈ {u, v}. However, Player 1 wins on the following turn by returning to v.

Now we analyze the game AAC for complete k-partite graphs. Due to Theorem 2.8,

we seek to determine the maximum matchings for such graphs. For a complete k-

partite graph Γ, this is a combinatorial problem that depends on the sizes of the

parts of Γ.

Theorem 3.3. Let Γ = K(n1, n2, . . . , nk) be a complete k-partite graph with 1 ≤
n1 ≤ n2 ≤ . . . ≤ nk and let n =

∑k
i=1 ni be the total number of vertices in Γ. There

are two cases:

1. Suppose nk ≤ n
2 . Then Player 1 has a winning strategy for AAC(Γ, v), for any

vertex v if and only if n is even.
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2. Suppose nk > n
2 . Then Player 1 has a winning strategy for AAC(Γ, v) if and

only if v ∈ Vi for some i ̸= k.

Proof. Let V1, V2, . . ., Vk denote the vertex sets of each part of Γ. Then we label

the vertices of V1 by the integers {0, 1, . . . , n1 − 1}, in increasing order. We label

the vertices of V2 by {n1, n1 + 1, . . . , n1 + n2 − 1}. In general, the vertices of Vi+1,

where i ≥ 1, will be labeled by the integers {si, si + 1, . . . , si + ni+1 − 1}, where
si =

∑i
j=1 nj .

Case 1: nk ≤ n
2 . Let m = ⌊n

2 ⌋. We define a maximum matching M as follows:

M = {(0,m), (1,m+ 1), . . . , (j,m+ j), . . . , (m− 1, 2m− 1)}.

We note that these chosen edges must exist since ni ≤ m for all 1 ≤ i ≤ k and

that the edges are disjoint. We also note that 2m − 1 = n − 1 if n is even and

2m− 1 = n− 2 if n is odd.

If n is even, then M is a perfect matching and hence maximum. Therefore

any maximum matching is perfect, so every vertex is saturated by every maximum

matching. Thus, by Theorem 2.8 Player 1 has a winning strategy for AAC(Γ, v) for

any vertex v if n is even.

Now suppose n is odd. Then the matching M is a near-perfect matching missing

only the vertex labeled n − 1. Hence, by Theorem 2.8, we can say that Player 2

has a winning strategy for AAC(Γ, n − 1). But in order to show that Player 2 has

a winning strategy for AAC(Γ, v) for any vertex v, we must demonstrate a near-

perfect matching that does not saturate v. To do this, we adapt M to create a new

matching Mℓ, which is a near-perfect matching that misses the vertex labeled ℓ.

We form Mℓ by changing the edge (u,w) ∈ M to (u + (ℓ + 1), w + (ℓ + 1)) ∈ Mℓ,

where addition is done modulo n. This results in

Mℓ ={(ℓ+ 1,m+ (ℓ+ 1)), (ℓ+ 1,m+ 1 + (ℓ+ 1)), . . .

. . . , (j + (ℓ+ 1),m+ j + (ℓ+ 1)), . . . , (m− 1 + (ℓ+ 1), 2m− 1 + (ℓ+ 1))}.

This proves that Player 2 has a winning strategy for AAC(Γ, v) for any vertex v if n

is odd.

An example of a matching M with n = 13 and a new matching Mℓ is given in

Figure 3. For this example, we see that n − 1 = 12 is unmatched in M in the left

figure. The right figure of Figure 3 shows Mℓ with ℓ = 4, which leaves 4 unmatched.

Case 2: nk > n
2 . We define a maximum matching N as follows:

N = {(0, sk−1), (1, sk−1 + 1), . . . , (j, sk−1 + j), . . . , (sk−1 − 1, 2sk−1 − 1)}.

Essentially, since more than half of the vertices lie in Vk, we can find disjoint edges

between each vertex not in Vk and a corresponding vertex in Vk. We show the
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Figure 3: An example of the matching M (left) and shifted matching Mℓ, where
ℓ = 4, (right) from the proof of Theorem 3.3.

matching N is maximum by Berge’s Theorem 2.7. We first note that any augment-

ing path must begin and end in Vk. Since all edges in N are of the form (v, w) where

v ∈ Vi, i ̸= k, and w ∈ Vk and any augmenting path is alternating, we observe that

our augmenting path must be of even length. However, augmenting paths must be

of odd length, so there can be no augmenting path corresponding to N . Thus, the

matching N is maximum. Note that by relabeling the vertices within Vk, we can

arrange for any vertex from Vk to be left unsaturated by this maximum matching.

Thus Player 2 has a winning strategy for AAC(Γ, v) if v ∈ Vk.

On the other hand, suppose v /∈ Vk and that L is a maximum matching which

does not saturate v. Then, since there are no edges between vertices in Vk, there

are at most sk−1 − 1 vertices in Vk which are saturated by L. Since sk−1 − 1 < nk,

there must exist some w ∈ Vk such that w is not saturated by L. Thus, we may

add the edge (v, w) to L, which contradicts the assumption that L is maximum.

Thus there is no maximum matching which does not saturate v, so Player 1 has a

winning strategy for AAC(Γ, v) if v /∈ Vk.

4. Wheel Graphs

We define the wheel graph Wn of order n ≥ 4 as containing a cycle of length n− 1

and where each vertex in the cycle is connected to a universal vertex u at the center

of the graph. This formation can be considered as the graph join of a singleton

graph and the n − 1 cycle graph. A general discussion of MAC and AAC for general

graph joins can be found in Section 6.2 below.

We denote the vertices of Wn by vi for i = 0, 1, . . . , n− 2 for those on the cycle

and we denote the central vertex by u. Then the edges of Wn are given by (u, vi)

and (vi, vi+1) for i = 0, 1, . . . , n − 2, where the addition in the subscript is taken

modulo n− 1. See Figure 4 for a general example of a Wheel graph.
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v0 v1

v2

v3

v4

v5

v6

vivi+1
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vn−5

vn−4
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Figure 4: A general wheel graph Wn.

It is clear that there are two orbits for the action of Aut(Wn) on Wn. That is,

O(v0) = {v0, v1, . . . , vn−2} and O(u) = {u}. Hence, without loss of generality, we

need only consider the starting locations u and v0 for our games.

Theorem 4.1. Player 1 has a winning strategy for MAC(Wn, u) for any n ≥ 4.

Proof. We know that every vi for 0 ≤ i ≤ n − 2 is connected by an edge to the

universal vertex u. Thus, when Player 1 starts off by moving from u to any vi,

regardless of the subsequent move by Player 2, Player 1 is always able to make a

cycle by traveling back to u. Therefore, Player 1 always wins on the third move of

the game.

Theorem 4.2. Player 1 has a winning strategy for MAC(Wn, v0) if n is even. If n

is odd, then Player 2 has a winning strategy for MAC(Wn, v0).

Proof. We begin by making the observation that if Player 1 begins by moving to

either v1 or vn−2, then both players will only choose to move along edges on the

cycle part of the wheel graph. Indeed, if, after this first turn, a player moves from

a vertex vj to the central vertex u, then the next player will be able to move back

to v0 and create a cycle, thus winning the game. Now we will discuss the winning

strategy, separated into cases by parity.

Suppose n is even. Then Player 1 will move to v1 and, as discussed above, Player

2 is forced to move along the outer cycle. Since n is even, the outer cycle of the

wheel is of odd length, so Player 1 will be the first to return to v0 and win.

If n is odd and Player 1 opens with a move from v0 to v1 or vn−2, then Player

2 will be the first to return to v0 and win by the same reasoning outlined above.

If Player 1 opens the game by moving from v0 to u, then Player 2 can win on

their second turn of the game. Indeed, since n ≥ 4, Player 2 can move to vi where

i ̸= 0, 1, n − 2. Player 1 cannot backtrack to u and thus moves to either vi−1 or

vi+1. Player 2 then wins on the following turn by moving back to the central vertex

u.
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Now we consider the game AAC(Wn, v), with v any vertex in Wn. As mentioned

at the end of Section 2 with Theorem 2.8, we can determine winning strategies by

examining maximum matchings of Wn that contain v.

Theorem 4.3. For the game AAC(Wn, v), Player 1 has a winning strategy if and

only if n is even.

Proof. When n is odd, we have two kinds of near-perfect matchings of Wn, up to

isomorphism. These are given by the following sets of edges:

1. {(v0, v1), (v2, v3), . . . , (vn−3, vn−2)}, and

2. {(u, v1), (v2, v3), . . . , (vn−3, vn−2)}.

If the game begins at the vertex u, then a matching of the first kind is a near-perfect

matching that misses u. Hence, Player 2 has a winning strategy of only choosing

edges in this matching. If the game begins at v0, then Player 2’s strategy is to use

the second matching (2) above. See Figure 5.

When n is even, there is, up to isomorphism, one perfect matching of Wn, given

by the set of edges

{(u, v0), (v1, v2), (v3, v4), . . . , (vn−3, vn−2)}.

See Figure 6.

Figure 5: The two kinds of maximum matchings, up to isomorphism, in W9. The
edges of the matchings are red.

Figure 6: The single maximum matching, up to isomorphism, in W10. The edges
of the matching are blue.
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5. Stacked Prism Graphs

We denote by SP(n,m) a nesting of an m number of n-gons. Such graphs are known

as stacked prism graphs, and we note that SP(n,m) = Cn□Pm, the product of an

n-cycle graph with a path graph of length m.

Figure 7: Graphs of SP(8, 3) and SP(9, 3).

Note that the graphs SP(n, 2) are the same as the family of prism graphs, that

is, Cayley graphs for dihedral groups. The family of graphs SP(n,m) can be viewed

as a natural extension of the dihedral Cayley graphs.

In this section, we examine the Make-A-Cycle game for the family of stacked

prism graphs of depth three, SP(n, 3), like the ones pictured in Figure 7. For the

game AAC, we will show winning strategies for any general graph SP(n,m).

In order to discuss the cycle games on the SP(n,m) graphs, let us first introduce

some notation for the vertices. We label each vertex by an ordered pair of integers

(i, j) where 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. The integer i denotes where on an

n-gon the vertex lies and the j denotes the level of n-gon, with j = 0 corresponding

to the outermost n-gon and j = m − 1 the innermost n-gon. See Figure 8 for an

example.

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(3, 0)

(3, 1)

(3, 2)

Figure 8: Example of labeling scheme for the stacked prism graph SP(4, 3).
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5.1. Make-A-Cycle for Stacked Prism Graphs SP(n, 3)

In this section we classify the winning strategies for the Make-A-Cycle game on the

graph family SP(n, 3). There are only two orbits of starting vertices to consider.

The vertices of the central n-gon, (0, 1), (1, 1), . . . , (n − 1, 1) comprise one orbit.

The innermost and outermost n-gon vertices form the second orbit. Thus, when

considering games on SP(n, 3), we only need to consider two starting positions.

Without loss of generality, we will consider starting vertices (0, 0) and (0, 1).

Remark 5.1. Notice that the graphs SP(n, 3) are comprised of squares: the vertices

labeled (i, 0), (i + 1, 0), (i + 1, 1), (i, 1) and (i, 1), (i + 1, 1), (i + 1, 2), (i, 2) for i =

0, 1, . . . , n − 1. If two sides of a square have been traversed, say (i, 0) to (i + 1, 0)

and (i+ 1, 0) to (i+ 1, 1), then the next player will not move to (i, 1), that is, will

not traverse the third side of a square, since the previous player will then make a

cycle by traversing the final edge of the square.

Theorem 5.2. Suppose n is odd. Then Player 1 has a winning strategy for

MAC(SP(n, 3), v) for any vertex v.

Proof. By the symmetries of SP(n, 3), we only need to consider two cases of starting

positions. Without loss of generality, we consider the starting vertex v to be one of

(0, 0) or (0, 1).

Case 1: v = (0, 0). Player 1 begins by moving to (1, 0). Note that Player 1 will

necessarily move to vertices (i, j) where i+ j is odd. Player 1’s strategy is to move

from vertices (i, j) to (i + 1, j) unless there is a winning move otherwise. By this

strategy and by Remark 5.1, all moves will result in i non-decreasing, and i will

increase by 1 at a minimum of every two moves. Hence, Player 1 will eventually

arrive at vertex (n, 0) = (0, 0) and win; or Player 2 will arrive at vertex (n, 1) and

Player 1 moves to (n, 0) = (0, 0) to win; or Player 1 arrives first at (n, 2) = (0, 2).

In this last case, Player 2 must choose to move to (n+1, 2) = (1, 2). Now let (i0, 0)

denote the vertex from which Player 2 first moved off the 0-gon; that is, Player 2

moved to (i0, 1). Necessarily, 0 < i0 ≤ n− 1 and i0 is odd. We note that if Player 2

moves from (k, 2) to (k, 1) for 0 ≤ k < i0, then Player 1 subsequently has a winning

move to (k, 0), which has previously been reached by the assumption on i0. Thus,

Player 2 will move from (k, 2) to (k + 1, 2), where k is odd. Given this observation

and Player 1’s strategy, both players will move along the innermost n-gon until

Player 1 reaches the vertex (n + i0 − 1, 2) = (i0 − 1, 2). Player 2 then has two

options: they can move to (n+ i0 − 1, 1) = (i0 − 1, 1) whereby Player 1 will win by

moving to (i0, 1) or Player 2 can move to (n+ i0, 2) = (i0, 2) whereby Player 1 will

again win at (i0, 1).

Case 2: v = (0, 1). In this case, Player 1 will necessarily move to vertices (i, j)

where i + j is even. Player 1 uses the same strategy in this case: their first move

will be to (1, 1) and they will only move from vertices of the form (i, j) to (i+1, j).
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As in the previous case, all moves will result in i non-decreasing and i will increase

by 1 at a minimum of every two moves. Hence, Player 1 will arrive at (n, 1) and

win; or Player 2 arrives first to (n, 0) = (0, 0) or to (n, 2) = (0, 2). In these latter

cases, Player 1 will move to (n, 1) = (0, 1) to win.

Remark 5.3. Theorem 5.2 can be generalized to any SP(n,m) with n odd. One

can draw an SP(n,m) graph as a grid of nm points labeled (i, j), with 0 ≤ i ≤ n−1

and 0 ≤ j ≤ m − 1. The vertices (n − 1, j) are then connected to the vertices

(n, j) = (0, j) using our modulo n notation, forming a cylinder. The general case

then differs from the m = 3 case in the following way: the game path can pass by

the starting vertex, either above or below, multiple times instead of at most once

in the case of Theorem 5.2. However, the parity of moves is the same in the general

case for Player 1 and Player 2. We can denote the game vertices here more generally

by (kn+ i, j), where k denotes how many times the game path has wound around

the graph (that is, passed by the starting vertex). Then Player 1, by their strategy,

still only moves to vertices of the form (a, b) with a+ b odd and Player 2 still only

moves to vertices (a, b) with a + b even. Therefore, the same ideas as in the proof

of Theorem 5.2 will apply to the general case.

For the even cases, Player 2 has a winning strategy if the starting vertex is (0, 0)

or (0, 2). Their winning strategy is one of mirroring.

Theorem 5.4. Player 2 has a winning strategy for MAC(SP(n, 3), v) if n is even

and v ∈ {(0, 0), (0, 2)}.

Proof. Player 2 will implement a mirroring strategy. That is, if Player 1 moves

from (i, j) to (i ± 1, j), then Player 2 moves from (i ± 1, j) to (i ± 2, j). If Player

1 moves from (i, j) to (i, 1), then Player 2 moves from (i, 1) to (i, j + 2 (mod 2))

for j ∈ {0, 2}. It follows that for j ∈ {0, 2}, Player 1 moves only to (i, j) for odd i

while Player 2 moves only to (i, j) for even i, and for j = 1, Player 1 moves only to

(i, j) for even i.

We will show that Player 2’s strategy is a winning strategy by contradiction.

First, assume Player 1 has a winning strategy. By the observation above, Player 1

can only win by moving to vertices of the form (i, 1), with i even, or (i, j) with i

odd and j ∈ {0, 2}.
Suppose Player 1 wins at (i, 1), where i is even. This implies that Player 1

moved to (i, 1) from (i, j) where j ∈ {0, 2}. Since this is a winning move, (i, 1)

was previously visited by Player 1. The first time it was visited, it must have

been from (i, 0) or (i, 2), and then Player 2 would have moved to the other. Thus,

upon reaching (i, 1) a second time, Player 1 must have moved from (i, 0) or (i, 2),

both of which were previously visited. Therefore Player 2 won the previous turn, a

contradiction.
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Now suppose Player 1 wins at (i, j), where i is odd and j ∈ {0, 2}. The first time

(i, j) was visited, it must have been from (i − 1, j) or (i + 1, j), and then Player 2

would have moved to the other. Thus, upon reaching (i, j) a second time, Player 1

must have moved from (i− 1, j) or (i+1, j), both of which were previously visited.

Therefore Player 2 won the previous turn, a contradiction.

Remark 5.5. Note that Theorem 5.4 is generalizable to graphs SP(n,m) where

n is even, m is odd, and v ∈ {(0, 2k) | k = 1, 2, . . . ,m − 1}. The proof is almost

identical to the one above with necessary changes to allow for m > 3. Namely, the

restrictions to j = 1 or j ∈ {0, 2} now become j odd or j even, respectively.

We now consider the case where n is even and the starting vertex is v = (0, 1),

which is slightly more involved than the other cases. We begin with two lemmas.

Lemma 5.6. Consider the game MAC(SP(n, 3), v) with n even and v = (0, 1). If

Player 1’s first move is to (1, 1), then Player 2 has a winning strategy.

Proof. If Player 1 begins by moving from (0, 1) to (1, 1), then Player 2’s strategy is

the same as Player 1’s winning strategy from the proof of Theorem 5.2.

Similar to the dihedral groups, we have a lemma describing forced moves on the

SP(n, 3) family of graphs.

Remark 5.7. In the following lemma and its proof, we denote players by Player A

and Player B instead of Player 1 and Player 2, where {A,B} = {1, 2}. We denote

the players in this manner due to the fact that, in different cases, Player 1 and

Player 2 will each take on the role of Player “B” when applying this lemma. For

several other results in this paper, we also denote players as Player A or Player B

for similar reasons.

Lemma 5.8. For the game MAC(SP(n, 3), v), let B ∈ {1, 2} and suppose Player

B moves from (i − 1, j) to (i, j) where j ∈ {0, 2} and that no vertices (p, q) with

i − 1 < p < n − 1 and 0 ≤ q ≤ 2 have been previously visited. Then Player B can

guarantee moving from (i+ 3, j + 2 (mod 4)) to (i+ 4, j + 2 (mod 4)).

Proof. We have two cases. Suppose Player A moves from (i, j) to (i + 1, j). Then

Player B moves inside to (i+1, 1). Player A cannot move to (i, 1), lest Player B win

back at (i, j). Regardless then of Player A’s move, either to (i+2, 1) or to (i+1, j+2

(mod 4)), Player B can guarantee arriving at (i + 2, j + 2 (mod 4)). So as to not

complete the third side of a square, Player A is forced to move from (i + 2, j + 2

(mod 4)) to (i+3, j+2 (mod 4)). Hence, Player B moves from (i+3, j+2 (mod 4))

to (i+ 4, j + 2 (mod 4)).

The other case where Player A moves from (i, j) to (i, 1) is similar. See Figure 9.
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(i, 0)

Figure 9: Example scheme for guaranteed vertices reached by Player B (in red).

Theorem 5.9. Suppose n is even. For the game MAC(SP(n, 3), v) with v = (0, 1),

we have the following:

1. If n ≡ 0, 4, or 6 (mod 8), then Player 2 has a winning strategy.

2. If n ≡ 2 (mod 8), then Player 1 has a winning strategy.

Proof. By Lemma 5.6, Player 1’s first move is, without loss of generality, to move

from (0, 1) to (0, 2). Without loss of generality, Player 2 will move from (0, 2) to

(1, 2). Player 1’s next move is forced to be from (1, 2) to (2, 2). We consider cases

for each even n modulo 8.

Case 1: n ≡ 0 (mod 8). Player 2 moves from (2, 2) to (3, 2). By Lemma 5.8

with i − 1 = 2, Player 2 can guarantee moving from (6, 0) to (7, 0). By applying

Lemma 5.8 repeatedly, Player 2 can guarantee moving from (n− 2, 0) to (n− 1, 0),

since n− 1 ≡ 7 (mod 8). Regardless of Player 1’s next move, to either (n− 1, 1) or

(0, 0), Player 2 can win by returning to (0, 1).

Case 2: n ≡ 2 (mod 8). We can apply Lemma 5.8 twice to see that Player 1

guarantees moving from (9, 2) to (10, 2). By repeatedly applying Lemma 5.8, we

see that Player 1 guarantees moving from (n− 1, 2) to (0, 2), winning the game.

Case 3: n ≡ 4 (mod 8). Starting with Player 2’s move from (0, 2) to (1, 2), re-

peated applications of Lemma 5.8 guarantees Player 2 moving from (n − 4, 2) to

(n−3, 2) since n−3 ≡ 1 (mod 8). Player 2 can then guarantee moving to (n−2, 1)

on their following turn. Since the game began at (0, 1) = (n, 1), Player 1 is forced

to move to (n − 2, 0). Player 2 then guarantees moving to (n − 1, 0) and will win

by returning to (0, 1) on their next move.

Case 4: n ≡ 6 (mod 8). By one application of Lemma 5.8 with i = 1, Player

2 guarantees moving from (4, 0) to (5, 0). Now repeatedly applying Lemma 5.8,

Player 2 guarantees moving from (n − 2, 0) to (n − 1, 0) since n − 1 ≡ 5 (mod 8).

Just as in Case (1), Player 2 can win by returning to (0, 1).

5.2. Avoid-A-Cycle for Stacked Prism Graphs

For the Avoid-A-Cycle game, we provide winning strategies for any general stacked

prism graph SP(n,m), regardless of the starting vertex. By Theorem 2.8, we know
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that winning strategies amount to examining the maximum matchings in SP(n,m).

We summarize the results in the following theorem.

Theorem 5.10. For the game AAC(SP(n,m)), if n or m is even, then Player 1 has

a winning strategy. If n and m are both odd, then Player 2 has a winning strategy.

Proof. If both m and n are odd, for any vertex v, there exists a maximum matching

not containing v. Let v = (k, ℓ) where 0 ≤ k ≤ n − 1 and 0 ≤ ℓ ≤ m − 1. We

describe a near-perfect matching which misses v below depending on the parity of

ℓ. First, we introduce some notation that will be used. For each 0 ≤ j ≤ m− 1, let

eHi,j denote the “horizontal” edge joining vertices (i, j) and (i+ 1, j), and, for each

0 ≤ i ≤ n− 1, let eVi,j denote the “vertical” edge joining vertices (i, j) and (i, j+1).

Case 1: ℓ is even. We then define the matching M by

M = {eHi,j | i = k + s (mod n), s odd, 1 ≤ s ≤ n− 2 and 0 ≤ j ≤ m− 1}⋃
{eVi,j | i = k and j even for 0 ≤ j ≤ ℓ− 2, and j odd for ℓ+ 1 ≤ j ≤ m− 2}.

ThenM is a near-perfect matching which misses the vertex v = (k, ℓ). See Figure 10.

Case 2: ℓ is odd. Then for the vertical edges, we get in our matching

{eVk−1,j | 0 ≤ j ≤ ℓ− 1, j even} ∪ {eVk−1,j | ℓ+ 2 ≤ j ≤ m− 2, j odd}

and

{eVk,j | 0 ≤ j ≤ ℓ− 3, j even} ∪ {eVk,j | ℓ+ 2 ≤ j ≤ m− 2, j odd}

and

{eVk+1,j | 0 ≤ j ≤ ℓ− 3, j even} ∪ {eVk+1,j | ℓ ≤ j ≤ m− 2, j odd}.

For the horizontals, we get

{eHk,ℓ−1, e
H
k−1,ℓ+1}∪{eHi,j | 0 ≤ j ≤ m−1, i = k+s (mod n), s even, 2 ≤ s ≤ n−3}.

This yields a near-perfect matching which misses the vertex v = (k, ℓ). Thus Player

2 has a winning strategy.

If either m or n are even, then a perfect matching exists. We describe these

below. See also Figure 11 for two examples.

Case 1: n is even. Then define a perfect matching M by,

M = {eHi,j | i even, 0 ≤ i ≤ n− 2 and 0 ≤ j ≤ m− 1}.

Case 2: n is odd and m is even. Then define a perfect matching M by

M = {eHi,j , eV0,k | i odd, 1 ≤ i ≤ n−2 and 0 ≤ j ≤ m−1, k even and 0 ≤ k ≤ n−2}.

Since any maximum matching will contain all vertices of the graph, Player 1 has a

winning strategy when either n or m is even.
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Figure 10: Example of near-perfect matchings on SP(5, 5) (left) and SP(7, 7) (right)
with the unsaturated vertices marked green.

Figure 11: Example of perfect matchings on SP(8, 4) (left) and SP(7, 4) (right).

6. Generalized Petersen Graphs and Graph Joins

Let n and k be integers such that 2 ≤ 2k ≤ n and n ≥ 3. We denote by GP(n, k)

the class of generalized Petersen graphs. These are graphs containing 2n vertices

denoted by ui and vi for i = 0, 1, . . . , n − 1. The edges are given by (ui, ui+1),

(ui, vi), and (vi, vi+k) for i = 0, 1, . . . , n−1, and where the addition in the subscript

is taken modulo n. See Figure 12.

The generalized Petersen graphs can be seen visually as the joining of an outer

n-gon with an inner (n, k) star polygon. Note also that GP(n, k) = GP(n, n − k).

See Figure 13 for three examples.

Generalized Petersen graphs were defined by Watkins in [10] although a special

subclass was first studied by Coxeter ([3]). See also [6]. Although the above authors

excluded the case of 2k = n for the family GP(n, k), we include it here as the

graphs GP(2n, n) have a nice structure that allow for an analysis of our games (see

Section 6.3).

The family of graphs GP(n, 1) are called prism graphs and are isomorphic to the

Cayley graphs for the dihedral groups Dn. Hence, by Theorem 2.2 and the results

in [7], the outcomes for MAC(GP(n, 1)) and AAC(GP(n, 1)) are already known.
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u0

u1

u2

u3u4

u5

u6

v0
v1

v2

v3v4

v5

v6

Figure 12: An example of the generalized Petersen graph GP(7, 2).

Figure 13: Generalized Petersen graphs: GP(4, 1), GP(8, 2), GP(10, 3).

The family GP(n, 2) starts at n = 5 with the famous Petersen graph. The

Petersen graph is vertex-transitive; hence the choice of starting vertex for MAC or

AAC on the Petersen graph is irrelevant. In general, the graphs GP(n, k) are vertex-

transitive if and only if k2 ≡ ±1 (mod n) (see [6]). Therefore, since 4 ≡ ±1 (mod n)

implies either n | 3 or n | 5, GP(n, 2) is vertex-transitive if and only if n = 5. We

will show winning strategies for MAC(GP(n, 2)) and AAC(GP(n, k)) for all k in the

next two sections.

6.1. Make-A-Cycle for Generalized Petersen Graphs GP(n, 2)

The vertices of the GP(n, 2) graphs, for n > 5, lie in one of two orbits under the

action of the automorphism group of the graph. These are indicated by the labeling

of the vertices themselves: the outer vertices u0, u1, . . . , un−1 lie in one orbit, while

the inner vertices v0, v1, . . . , vn−1 lie in the other orbit. Hence, without loss of

generality, there are two starting positions for the MAC game on GP(n, 2) graphs

with n > 5 (for n = 5 all starting positions are equivalent because the graph is

vertex-transitive). We will always consider starting vertices of either u0 or v0 for

the Make-A-Cycle game.

Due to the structure of the inner star polygon in the GP(n, 2) graphs, an in-
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teresting pattern of forced moves can occur for the Make-A-Cycle games. This is

detailed in Lemma 6.1 below. Both players are able to employ this lemma to create

winning strategies on GP(n, 2) graphs, which depends on the value of n modulo

5. Note that in this lemma we denote players by A and B, where {A,B} = {1, 2},
because, in different cases of n modulo 5, Player 1 and Player 2 will each take on

the role of Player “A” (see Remark 5.7).

Lemma 6.1 (Mod Five Lemma). For the game MAC(GP(n, 2)), suppose for some i,

0 ≤ i < n− 3, that no vertices uk or vk have been previously visited for i < k < n.

Let {A,B} = {1, 2}.

1. If Player A moves from ui to vi and Player B moves from vi to vi+2, then

Player A can guarantee the following moves:

uj → vj for j ≡ i (mod 5),

vj → uj for j ≡ i+ 2 (mod 5),

uj → uj+1 for j ≡ i+ 3 (mod 5),

for i ≤ j < n.

2. If Player A moves from vi to ui and Player B moves from ui to ui+1, then

Player A can guarantee the following moves:

vj → uj for j ≡ i (mod 5),

uj → uj+1 for j ≡ i+ 1 (mod 5),

uj → vj for j ≡ i+ 3 (mod 5),

for i ≤ j < n.

Proof. We prove statement (1) as the proof of statement (2) uses a similar argument.

Suppose Player A moves from ui to vi and Player B moves from vi to vi+2. Then

Player A moves from vi+2 to ui+2. If Player B moves from ui+2 to ui+1, then Player

A wins at ui. Therefore, Player B must move from ui+2 to ui+3. Player A then

chooses to move to ui+4. Note that Player B cannot move to vi+4 since Player A

would then win at vi+2. Therefore, Player B moves to ui+5.

Player A then chooses to move from ui+5 to vi+5. From here Player B is forced

to move to vi+7 since a move to vi+3 allows Player A to win at ui+3. Note that the

moves from ui+5 to vi+5 and then vi+5 to vi+7 precisely satisfy the conditions of the

lemma starting at i+5 instead of i. Thus, the above argument may be repeated to

guarantee the specified moves for all j with i ≤ j ≤ n.

Below in Figure 14 is an example of how a player could use the strategy of

Lemma 6.1.
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ui

vi ui+1

ui+2

ui+3

ui+4ui+5

vi+2

vi+5

ui

vi ui+1

ui+2

ui+3

ui+4ui+5

vi+3

vi+5

Figure 14: The moves described in Lemma 6.1 statement (1) (left) and Lemma 6.1
statement (2) (right), where blue denotes player A and red denotes player B.

Theorem 6.2. Player 1 has a winning strategy for MAC(GP(n, 2)) for n ̸≡ 0

(mod 5) starting at either vertex u0 or v0.

Proof. We first consider the starting vertex u0. Player 1 begins by moving from u0

to v0. Without loss of generality, assume Player 2 moves from v0 to v2. We show

that repeated applications of Lemma 6.1 statement (1) by Player 1 will lead to their

winning the game. We consider the four cases of n (mod 5), where n ̸≡ 0 (mod 5),

separately.

Case 1: n ≡ 1 (mod 5). Given the first two moves outlined above, Player 1 can

repeatedly apply Lemma 6.1 statement (1) to guarantee moving from uj to uj+1

with j ≡ 3 (mod 5). Since n ≡ 1 (mod 5), then n− 3 ≡ 3 (mod 5). Thus Player 1

guarantees moving from un−3 to un−2. Regardless of Player 2’s next move, Player

1 will win at either u0 or v0.

Case 2: n ≡ 2 (mod 5). Applying Lemma 6.1 statement (1), Player 1 guarantees

moving from uj to vj with j ≡ 0 (mod 5). Hence, Player 1 guarantees moving from

un−7 to vn−7 since n ≡ 2 (mod 5) implies n− 7 ≡ 0 (mod 5).

From vn−7, Player 2 is forced to move to vn−5. Player 1 will now move to vn−3.

If Player 2 moves to un−3, then Player 1 will move to un−2 and win on their next

turn at either v0 or u0.

If Player 2 moves instead to vn−1, then Player 1 will move to v1, which has not

been previously visited. If n > 7, then regardless of Player 2’s next move, Player

1 will win at either u0 or u3, the latter of which has been visited due to the first

application of Lemma 6.1 statement (1).
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If n = 7, then u3 will not have been previously visited and thus Player 2 will

move to v3. Thereafter Player 1 will move to u3. Regardless of Player 2’s next

move, Player 1 will then win on their next turn at either v2 or v4.

Case 3: n ≡ 3 (mod 5). Applying Lemma 6.1 statement (1), Player 1 guarantees

moving from uj to vj with j ≡ 0 (mod 5). Hence, Player 1 will move from un−3 to

vn−3 since n− 3 ≡ 0 (mod 5). Player 2 is forced to move to vn−1. Then as in the

previous case, Player 1 will move to v1 and win the game on their next turn.

Case 4: n ≡ 4 (mod 5). Applying Lemma 6.1 statement (1), Player 1 guarantees

moving from uj to vj with j ≡ 0 (mod 5). Hence, Player 1 is guaranteed to move

from un−4 to vn−4. Regardless of Player 2’s next move, Player 1 wins on their next

turn at v0 or un−6.

We now consider the starting vertex v0. Player 1 will begin by moving from v0
to u0. Without loss of generality, we assume Player 2 moves from u0 to u1. We

show that Player 1 has a winning strategy via repeated applications of Lemma 6.1

statement (2) which again depends on n (mod 5).

Case 1: n ≡ 1 (mod 5). Since Player 1 moved from v0 to u0 and Player 2 moved

from u0 to u1, Player 1 can guarantee moving from uj to uj+1 where j ≡ 1 (mod 5),

by repeated applications of Lemma 6.1 statement (2). Hence, Player 1 is guaranteed

to move from un−5 to un−4 because n ≡ 1 (mod 5), thus n−5 ≡ 1 (mod 5). Player

2 is forced to move from un−4 to un−3. Player 1 will move from un−3 to un−2, and

regardless of Player 2’s next move, Player 1 will win at either u0 or v0.

Case 2: n ≡ 2 (mod 5). Through repeated applications of Lemma 6.1 statement

(2), Player 1 can guarantee moving from vj to uj with j ≡ 0 (mod 5). Hence,

Player 1 can guarantee moving from vn−2 to un−2 since n ≡ 2 (mod 5). Regardless

of Player 2’s next move, Player 1 will win the game at either un−4 or u0.

Case 3: n ≡ 3 (mod 5). Applying Lemma 6.1 statement (2), Player 1 can guar-

antee moving from uj to vj with j ≡ 3 (mod 5). Hence, Player 1 can guarantee

moving from un−5 to vn−5 since n ≡ 3 (mod 5). Player 2 is then forced to move

from vn−5 to vn−3 and Player 1 will choose to move from vn−3 to vn−1. Since v1 has

not yet been visited, Player 2 cannot win on this turn. Regardless of their move,

Player 1 wins on the subsequent turn at u0 or u1.

Case 4: n ≡ 4 (mod 5). Again, Player 1 uses Lemma 6.1 statement (2) to guar-

antee moving from vj to uj with j ≡ 0 (mod 5). Hence, Player 1 is guaranteed to

make a move from vn−4 to un−4 since n ≡ 4 (mod 5). Player 2 is then forced to

move from un−4 to un−3. Player 1 will choose to move from un−3 to un−2 and will

win on their next move at either u0 or v0.

Since we have now shown that Player 1 has a winning strategy regardless of the

starting vertex, this completes the proof.

Now we examine MAC(GP(n, 2)) for the case of n ≡ 0 (mod 5). Player 2 has

a winning strategy for this case. To prove this, we must consider all of Player 1’s
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opening moves. In order to counter all of these moves, Player 2 needs one additional

tool, which we state as an additional lemma.

Lemma 6.3 (Zigzag Lemma). Consider the game MAC(GP(n, 2)) and let A, B ∈
{1, 2}.

1. Suppose 4 ≤ i ≤ n − 5 and that no vertices uk or vk have been visited for

i− 3 ≤ k ≤ i+ 4 as well as vi+5. Suppose Player A moves from vi−4 to vi−2,

Player B moves from vi−2 to vi, and then Player A moves from vi to ui. If

Player B then moves from ui to ui−1, then Player A can guarantee moving

from vi+5 to ui+5 with the two preceding moves being from vi+5−4 to vi+5−2

and then from vi+5−2 to vi+5.

2. Suppose 4 ≤ i ≤ n − 5 and that no vertices uk or vk have been visited for

i− 3 ≤ k ≤ i+4. Suppose Player B moves from vi−4 to vi−2 and then Player

A moves from vi−2 to vi. If Player B moves from vi to ui, then Player A

can guarantee moving from vi+5−2 to vi+5 with the preceding move being from

vi+5−4 to vi+5−2.

Proof. Suppose for 4 ≤ i ≤ n − 5 Player A moves from vi−4 to vi−2, followed by

Player B moving from vi−2 to vi and Player A moving from vi to ui. Now suppose

Player B moves from ui to ui−1. Then Player A will choose to move from ui−1 to

vi−1. Note that if Player B moves to vi−3, then Player A can move to ui−3, thereby

forcing a win on their following move from either ui−4 to vi−4 or from ui−2 to vi−2.

Thus Player B is forced to move from vi−1 to vi+1. Player A then chooses to move

to vi+3. If Player B moves from vi+3 to ui+3, then Player A can move to ui+2 and

win on their next turn by returning to vi or either of ui or vi+1. Hence, Player B

is forced to move from vi+3 to vi+5. Finally Player A can now move from vi+5 to

ui+5 with the previous two moves being from vi+5−4 to vi+5−2 and from vi+5−2 to

vi+5 as claimed. This proves statement (1).

For the second case, suppose that Player B moves from vi−4 to vi−2 and that

Player A subsequently moves from vi−2 to vi. If Player B moves from vi to ui,

then Player A will choose to move from ui to ui−1, and the sequence of moves that

follows is the same as in case statement (1).

The sequence of moves that results from Lemma 6.3 statement (1) and Lemma 6.3

statement (2) are shown in Figure 15. Note that not all edges have been drawn for

clarity purposes. The name Zigzag Lemma arises from the changes in direction of

the game path along the vertices vi, ui, ui−1, vi−1, vi+1.

Remark 6.4. Note that one can repeatedly apply Lemma 6.3 provided that Player

B continues to satisfy the “if condition”, that is, if Player B moves from ui to ui−1

(statement 1) or moves from vi to ui (statement 2).
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Figure 15: The sequence of moves in Lemma 6.3 statement (1) (left) and Lemma 6.3
statement (2) (right), where Player A moves are colored blue and Player B moves
are colored red.

Remark 6.5. Note that both strategies from Lemma 6.1 and Lemma 6.3 work

“in reverse” as well. If the subscripts are decreasing (increasing) in the original

statement, then they are increasing (decreasing) in the “reverse” statement.

For example, for Lemma 6.1 statement (1), let 0 < i < n−3 and assume for some

integer k0 that no vertices uk or vk have been previously visited for 0 < k0 ≤ k < i.

If Player A moves from ui to vi and then Player B moves from vi to vi−2, then

Player A can guarantee the moves

uj → vj for j ≡ i (mod 5),

vj → uj for j ≡ i− 2 (mod 5),

uj → uj−1 for j ≡ i− 3 (mod 5),

for 0 < k0 ≤ j ≤ i.

We additionally note that the case where i = 1 is a special case. If the game be-

gins with the moves v0 → v2 → u2 → u1 → v1, then Player 2 can apply Lemma 6.1

statement (1) in reverse as Player A despite not satisfying the condition for k0.

The other results for Lemma 6.1 and Lemma 6.3 applied in reverse can be written

out similarly.

Theorem 6.6. Player 2 has a winning strategy for MAC(GP(n, 2)) for n ≡ 0

(mod 5) regardless of starting vertex.

Proof. Recall that, without loss of generality, the game begins at either u0 or v0.
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First we assume the starting vertex is v0, and we examine the following two cases

for the first move: Player 1 moves from v0 to v2 and Player 1 moves from v0 to u0.

Case 1: Player 1 moves from v0 to v2. Note Player 1 could move from v0 to vn−2,

but without loss, we assume they move to v2. Player 2 will then move from v2 to

u2. If Player 1 then moves from u2 to u3, then Player 2 can move from u3 to u4

and use Lemma 6.1 statement (2) to guarantee moving from ui to ui+1 for i ≡ 3

(mod 5). In particular, Player 2 guarantees moving from un−2 to un−1 since n ≡ 0

(mod 5). Regardless of Player 1’s next move, Player 2 will win at v0 or vn−3, the

latter of which is guaranteed to be previously visited, also by Lemma 6.1 statement

(2).

Suppose instead that Player 1 moves from u2 to u1. From here, Player 2 is forced

to move to v1. Player 1 then has two choices, which we will analyze separately.

Subcase 1a: Player 1 moves to v3. Then Player 2 moves to v5, which is winning if

n = 5 (in this case, v5 = v0). If n > 5, Player 1 is forced to move to v7. Indeed, if

Player 1 moves from v5 to u5, then Player 2 will move from u5 to u4 and will win

on their next turn at one of v3, u2, or v2. Thus, Player 1 must move from v5 to

v7 and then Player 2 will choose to move to u7. If Player 1 moves to u8, then as

above, Player 2 will move from u8 to u9 and use repeated applications of Lemma 6.1

statement (2) to win at v0 or vn−3.

Suppose instead that Player 1 moves from u7 to u6. Then by applying Lemma 6.3

statement (1) with i = 7 and Player A being Player 2, Player 2 can guarantee moving

from v12 to u12 with the two preceding moves being from v8 to v10 (by Player 2),

which is winning if n = 10, and then from v10 to v12 (by Player 1), if n > 10.

If Player 1 continues to move from uj to uj−1 for j ≡ 2 (mod 5), then repeated

applications of Lemma 6.3 statement (1) ensure Player 2 moves from vj+5 to uj+5.

In this case, Player 2 will eventually move from vn−3 to un−3. Player 1, by our

assumption, moves to un−4. Note that this satisfies the hypotheses of Lemma 6.3

statement (1) with Player 2 as Player A, except that i = n−3 is too large. However,

we note that the “two preceding moves” in the statement of Lemma 6.3 statement

(1) are still guaranteed with i = n−3, so Player 2 is guaranteed to move from vn−2

to v0 since n− 2 ≡ 3 (mod 5). Thus, Player 1 must move from uj to uj+1 for some

j ≡ 2 (mod 5). In this case, we can apply Lemma 6.1 statement (2) as before with

Player A being Player 2. Hence, Player 2 guarantees moving from un−2 to un−1

and wins on their subsequent turn at v0 or vn−3.

Subcase 1b: Player 1 moves from v1 to vn−1. Then since the previous move is from

u1 to v1, Lemma 6.1 statement (1) applies in reverse (see Remark 6.5, specifically

the special case when i = 1). Hence, Player 2 can guarantee moving from vi to ui

for i ≡ 4 (mod 5). In doing so, Player 2 wins on the turn following their move from

v4 to u4. Indeed, Player 1 moves to either u3 or u5 on their following turn, whereby

Player 2 completes a cycle at u2 or u6, respectively.

Case 2: Player 1 begins by moving from v0 to u0. We first show that Player 1 loses
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if they use Lemma 6.1 at their first opportunity to do so, which implies that Player

1 must at some point deviate from the guaranteed moves in Lemma 6.1. We then

show that, given any deviation from this strategy by Player 1, Player 2 will have a

winning strategy.

If Player 1 moves from v0 to u0 and Player 2 moves from u0 to u1, then Lemma 6.1

statement (2) applies with Player 1 as Player A. Thus, Player 1 ensures the following

moves:

vi → ui for i ≡ 0 (mod 5),

ui → ui+1 for i ≡ 1 (mod 5),

ui → vi for i ≡ 3 (mod 5),

for all 0 ≤ i < n. Should Player 1 execute this strategy, they will eventually move

from un−2 to vn−2. This is a losing move since Player 2 can then move to v0 on

the next move. Thus, we may assume that Player 1 applies Lemma 6.1 statement

(2) until a certain point in the game and then deviates from this strategy. Thus,

there are 3 cases, one for each of the move types listed above. See Figure 16 for a

visual aid on the three cases, which are labeled red, blue, and green. A solid line

denotes the guaranteed move from Lemma 6.1 and the dotted line denotes Player

1’s deviation, with i an integer satisfying i > 0 and i ≡ 0 (mod 5).

Subcase 2a: For some i > 0 with i ≡ 0 (mod 5), Player 1 moves from vi to vi+2

instead of vi to ui. Player 2 then moves from vi+2 to vi+4.

If Player 1 moves from vi+4 to ui+4, then Player 2 moves to ui+3 and we apply

Lemma 6.3 statement (2) with Player 2 as Player A so that Player 2 guarantees

moving from vi+7 to vi+9. If Player 1 continues to move from vj to uj where j ≡ 4

(mod 5), then Lemma 6.3 statement (2) will guarantee Player 2 moves from vj+3

to vj+5. Suppose Player 1 moves from vj to uj for all j ≡ 4 (mod 5) with j ≥ i+4.

Then Player 2 wins by moving from vn−3 to vn−1 since Player 1 will then move to

either v1, losing at u1 the next turn, or to un−1, losing at u0 the next turn.

Thus, Player 1 must move from vj to vj+2 for some i + 4 ≤ j ≤ n − 1, where

j ≡ 4 (mod 5). Player 2 will then move from vj+2 to uj+2, where we note j+2 ≡ 1

(mod 5). If Player 1 continues to move from uk to uk−1, with k ≡ 1 (mod 5) and

k ≥ j + 2, then Lemma 6.3 statement (1) will guarantee Player 2 moves from vk+5

to uk+5.

As above, if Player 1 moves from uk to uk−1 for all k ≡ 1 (mod 5) with k ≥ j+2,

then Player 2 guarantees moving from vn−4 to un−4. By assumption, Player 1

will move from un−4 to un−5. This again satisfies the hypotheses of Lemma 6.3

statement (1) with Player 2 as Player A, except that i = n − 4 is too large, but

the “two preceding moves” in the statement of Lemma 6.3 statement (1) are still

guaranteed with i = n − 4, so Player 2 is guaranteed to move from vn−3 to vn−1

and wins on their next turn at u0 or u1.

Finally, Player 1 must move from uk to uk+1, for some k ≥ j + 2, where k ≡ 1
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Figure 16: The three cases of Player 1 deviating from the forced moves of Lemma 6.1.

(mod 5). Then by Lemma 6.1 statement (2) Player 2 can guarantee moving from uℓ

to uℓ+1 for all ℓ ≥ k + 1 and ℓ ≡ 2 (mod 5). Hence Player 2 eventually guarantees

moving from un−3 to un−2 and will win on their next turn at either u0 or v0.

Subcase 2b: Player 1 moves from ui to vi for some 1 ≤ i ≤ n − 4 with i ≡ 1

(mod 5). If i ≥ 6, then Player 2 moves to vi−2. Regardless of Player 1’s next move,

Player 2 will win at a previously visited vertex (say vi−6 or ui−3).

If i = 1, then Player 2 moves to vn−1. Player 1 is then forced to vn−3 and Player

2 then moves to vn−5. If n = 5, then Player 2 wins on this move.

Now if n > 5 and Player 1 moves from vn−5 to un−5, then applying Lemma 6.3

statement (2) in reverse ensures Player 2 moves from vn−8 to vn−10. If Player 1

continues to move from vj to uj where j ≡ 0 (mod 5), then Lemma 6.3 statement

(2) will guarantee that Player 2 moves from vj−3 to vj−5.

If Player 1 moves from vj to uj for all j ≡ 0 (mod 5), with j ≤ n−5, then Player

2 will move from v2 to v0 to win. Thus, for some 5 ≤ j ≤ n−5 with j ≡ 0 (mod 5),

Player 1 will move from vj to vj−2. Player 2 will then move to uj−2.

From this point, if Player 1 always moves from uk to uk+1 where k ≡ 3 (mod 5),

then applying Lemma 6.3 statement (1) in reverse will guarantee that Player 2

moves from vk−1 to vk−3. Player 2 then wins by reaching v0 from v2. Thus, at

some point Player 1 must move from uk to uk−1 for some 3 ≤ k ≤ j − 2, where
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k ≡ 3 (mod 5). Then by applying Lemma 6.1 statement (2) in reverse, Player 2

guarantees being able to move from uℓ to uℓ−1 where ℓ ≤ k− 1 and ℓ ≡ 2 (mod 5).

Player 2 thus wins by moving from u2 to u1.

Subcase 2c: Player 1 moves from ui to ui+1 for some i with 3 ≤ i ≤ n − 2 and

i ≡ 3 (mod 5). Then Player 2 moves from ui+1 to vi+1. Player 1 is then forced to

move from vi+1 to vi+3 since ui−1 has been previously visited in this case. Hence,

by Lemma 6.1 statement (1), Player 2 guarantees moving from uj to uj+1 for j ≡ 2

(mod 5), with j ≥ i+4. In particular, Player 2 moves from un−3 to un−2. If Player

1 moves to un−1, then Player 2 wins at u0. If Player 1 moves to vn−2, then Player

2 wins at v0.

The case with starting vertex u0 is very similar to the case above. A detailed

proof of this case can be found in Appendix A.

6.2. Graph Joins

Before we state the winning strategies for AAC(GP(n, k)), we define a more general

graph structure, which we call the straight join. We will prove a result for straight

joins and then obtain a winning strategy for AAC(GP(n, k)) as a corollary.

However, we first recall the more general notion of a graph join. Given two graphs

Γ1 and Γ2, the graph join Γ1 +Γ2 is a disjoint union of both graphs, together with

new edges joining every vertex in Γ1 with every vertex in Γ2. For example, the

wheel graph Wn is a graph join Cn−1 +K1.

Definition 6.7. Let Γ1 and Γ2 be finite simple graphs with vertex sets V Γ1

and V Γ2, respectively. Suppose |V Γ1| = |V Γ2| = n and vertex sets V Γ1 =

{v10 , v11 , . . . , v1n−1} and V Γ2 = {v20 , v21 , . . . , v2n−1}. Then we define the straight join

of the graphs Γ1 and Γ2 to be the graph Γ with vertex set V Γ = V Γ1 ∪ V Γ2 and

edge set

EΓ = EΓ1 ∪ EΓ2 ∪ {(v1i , v2i ) | i = 0, 1, . . . , n− 1}.

We use the notation Γ1 ↔ Γ2 to denote the straight join.

Observe that the straight join is a subgraph of the join of two graphs which have

the same number of vertices. We consider a couple of examples. The family of

dihedral Cayley graphs or prism graphs is readily seen to be the family of straight

joins Cn ↔ Cn, n ≥ 3, where Cn denotes the cycle graph on n vertices. Also,

the family of graphs GP(n, 2) is formed by a straight join of Cn and an (n, 2)-star

polygon.

We can now state and prove a general result for the Avoid-A-Cycle game played

on any straight-join graph.

Theorem 6.8. Suppose Γ = Γ1 ↔ Γ2. Then Player 1 has a winning strategy for

AAC(Γ).
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Proof. By Definition 6.7, every vertex v1 in Γ1 is matched with a vertex v2 in Γ2 via

the edges (v1, v2). These edges thus create a perfect matching of Γ1 ↔ Γ2. Hence,

Player 1 has a winning strategy by Theorem 2.8.

Corollary 6.9. Player 1 has a winning strategy for AAC(GP(n, k), v) for any start-

ing vertex v.

Note that the specific strategy for Player 1 on AAC(GP(n, k)) is to only choose

edges of the form (ui, vi). This is the exact same strategy utilized in [7, Theorem

3.9], which makes sense as the dihedral Cayley graphs are straight join graphs.

Since the new edges created in Γ1 ↔ Γ2 form a perfect matching, Theorem 6.8

tells us more generally how Player 1 can win AAC on any graph join.

Corollary 6.10. Suppose Γ = Γ1 + Γ2 where 2 ≤ |Γ1| = |Γ2| < ∞. Then Player 1

has a winning strategy for AAC(Γ).

Proof. Let n = |Γ1| = |Γ2|. We can enumerate the vertices of each graph by V Γ1 =

{v10 , v11 , . . . , v1n−1} and V Γ2 = {v20 , v21 , . . . , v2n−1}. Then the edges (v1i , v
2
i ), i =

0, 1, . . . , n− 1, form a perfect matching in Γ1 + Γ2 just as in Theorem 6.8.

Now consider the following question: if we know a given player has a winning

strategy for Make-A-Cycle or Avoid-A-Cycle on one of the graphs in a graph join

Γ1+Γ2, can we leverage this knowledge to conclude something about the games on

Γ1 + Γ2? For the Make-A-Cycle game, we can determine exactly which player has

a winning strategy.

Theorem 6.11. Suppose Γ1 and Γ2 are simple graphs both of cardinality at least

two. Fix a starting vertex si in Γi, where i ∈ {1, 2}. Then Player 1 has a winning

strategy for MAC(Γ1 + Γ2, si) if and only if Player 1 has a winning strategy for

MAC(Γi, si) or if all vertices in Γi are adjacent to si.

Proof. Without loss of generality, we fix i = 1. We first prove the backward direc-

tion, where Player 1 has a winning strategy for MAC(Γ1, s1). Then their strategy for

MAC(Γ1 +Γ2, s1) will be to execute their strategy on Γ1 until/unless Player 2 moves

to a vertex in Γ2. Should that happen, Player 1 will move back to s1 to win, as, by

the definition of join, there necessarily exists an edge between s1 and every vertex

in Γ2. Note that this move is not a backtrack since the first move of the game is

within Γ1. Hence, Player 1 has a winning strategy on the graph join Γ1 + Γ2.

Now we consider the case where all vertices in Γ1 are adjacent to s1. Then Player

1 will move to some vertex, say v1 ∈ Γ1. Then Player 2 has two options: they can

either move in Γ1 or move to Γ2. If |Γ1| ≥ 3, then Player 2 may move to some

vertex u1 /∈ {s1, v1} with u1 ∈ Γ1. However, since u1 is adjacent to s1, Player 1

wins on the subsequent turn. If Player 2 moves to some vertex v2 ∈ Γ2, then Player
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1 wins on the subsequent turn by returning to s1, which is adjacent to all vertices

in Γ2 by the definition of the graph join.

We now prove the forward direction. Suppose Player 2 has a winning strategy

on MAC(Γ1, s1) and there exists a vertex v1 in Γ1 not adjacent to s1. As long as

Player 1 moves within Γ1, Player 2 can implement their winning strategy. If Player

1 moves to Γ2 after their first move, then Player 2 can win back at s1 in the same

manner as Player 1 did in the case above. Hence, suppose Player 1 moves from s1
to a vertex v2 in Γ2 on the first move of the game. Player 2 will then move to v1 on

the following move. Since Player 1 cannot move to s1 and cannot backtrack to v2,

they cannot win on their next turn. If Player 1 moves to a vertex in Γ1, Player 2

will win on their next turn by moving back to v2, and if Player 1 moves to a vertex

in Γ2, then Player 2 will win on their next turn by moving back to s1.

We can see from Theorem 6.11 that the Make-A-Cycle game on graph joins is

very similar to Make-A-Cycle games on complete graphs due to the saturation of

vertices in each graph created by the join. For the Avoid-A-Cycle game, we have

similar results if we assume we are working with Cayley graphs.

Theorem 6.12. Suppose Γ1 and Γ2 are both Cayley graphs having cardinality at

least two. Fix a starting vertex s1 in Γ1. Then Player 1 has a winning strategy for

AAC(Γ1 + Γ2, s1) if and only if |Γ1| ≡ |Γ2| (mod 2).

Proof. Recall by Theorem 2.9 that a Cayley graph of even cardinality has a perfect

matching, while a Cayley graph with odd cardinality always has a near-perfect

matching for any vertex v such that v is unsaturated.

Suppose |Γ1| ≡ |Γ2| (mod 2). If |Γ1| and |Γ2| are both even, then each graph has

a perfect matching, say M1 and M2 for Γ1 and Γ2, respectively. Then M1 ∪M2 is a

perfect matching for Γ1+Γ2 and thus Player 1 wins AAC(Γ1+Γ2, s1) by Theorem 2.8.

Now suppose Γ1 and Γ2 are both of odd cardinality. Let N1 be a near-perfect

matching of Γ1 that does not saturate s1. Pick some vertex s2 in Γ2 and let N2 be a

near-perfect matching not containing s2. Then the set of edges N1 ∪N2 ∪{(s1, s2)}
is a perfect matching in Γ1 + Γ2, and therefore Player 1 has a winning strategy

again by Theorem 2.8.

Now consider the case where |Γ1| ̸≡ |Γ2| (mod 2). Without loss of generality,

suppose |Γ1| is even and |Γ2| is odd. Take a perfect matching M in Γ1 and a near-

perfect matching N missing the vertex s2 in the Cayley graph Γ2. Note that M ∪N

is a near-perfect matching in Γ1 + Γ2. Since M is perfect, the starting vertex s1
is saturated by an edge e = (s1, v1) ∈ M . Let e′ = (s2, v1), one of the new edges

formed by the join Γ1 + Γ2. Define a new matching M ′ by:

M ′ = (M − {e}) ∪ (N ∪ {e′}).

We now have that M ′ is a near-perfect matching in Γ1 +Γ2 that does not saturate

s1. Thus, by Theorem 2.8, Player 2 has a winning strategy.
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6.3. Make-A-Cycle for Graph Family GP(2n, n)

In this section we examine winning strategies for the graphs GP(2n, n). Recall that

the GP(2n, n) graphs were not originally defined to be generalized Petersen graphs.

Indeed, this subclass of graphs is markedly different from the other GP(n, k) graphs.

See Figure 17. This results in a notably different strategy for the Make-A-Cycle

game in comparison to the strategy on other generalized Petersen graphs.

Like the other generalized Petersen graphs, the graphs GP(2n, n) have the same

two general starting positions for our cycle games. That is, without loss of generality,

we will consider the games to start at either u0 or v0.

Player 1 has a winning strategy for the Avoid-A-Cycle game on GP(2n, n) by

Theorem 6.8. However, as stated above, the Make-A-Cycle game is different than

when played on the GP(n, 2) generalized Petersen graphs. While winning strategies

for MAC(GP(n, 2)) depended on the value of n modulo 5, we will see that the winning

strategies for MAC(GP(2n, n)) depend on the value of n modulo 6.

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

v0
v1

v2

v3
v4v5

v6

v7

v8

v9

Figure 17: The graph GP(10, 5). Note that there is no vertex in the center.

Remark 6.13. Let A, B ∈ {1, 2} and consider the game MAC(GP(2n, n)). Note

that if Player A starts their turn at a vertex ui and chooses the edge (ui, vi), then

the next two moves are forced:

ui
A−→ vi

B−→ vn+i
A−→ un+i.

Hence, by choosing the edge (ui, vi), Player A has effectively moved from the vertex

ui to un+i. We use the notation ui −↠ un+i to denote an effective move for proofs

in this section.

If a player effectively moves from a vertex ui to un+i, then the subsequent move

is often forced. We summarize when this occurs in the following lemma, which we

refer to as the Bow Tie Lemma because the sequence of moves resembles a bow tie

on the graph. See Figure 18.
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Lemma 6.14 (Bow Tie Lemma). Consider the game MAC(GP(2n, n)) and let A, B ∈
{1, 2}. For 1 ≤ i ≤ 2n − 1, suppose Player B moves from ui−1 to ui followed by

Player A effectively moving from ui to un+i. Assuming neither player can win on

their next turn, then the next two moves are forced: Player B moves from un+i to

un+i+1 and Player A moves from un+i+1 to un+i+2.

Proof. Assuming the moves in the statement of the lemma, suppose Player B moves

to un+i−1. Then Player A can effectively move to ui−1, which has previously been

visited by assumption. Thus Player B must move to un+i+1. See the left graph in

Figure 18, where Player A moves are colored in blue and Player B in red.

If Player A effectively moves from un+i+1 to ui+1, then Player B moves to ui to

complete a cycle. Hence, Player A is forced to move from un+i+1 to un+i+2. See

the right graph in Figure 18.

ui−1

ui

un+i

un+i−1

ui+1

ui

un+i

un+i+1

Figure 18: Examples of an application of Lemma 6.14, which we refer to as a bow
tie move. Player A moves are blue and Player B red.

The following lemma relies heavily upon Lemma 6.14 and states that, given a set

of preceding moves, a player can guarantee moving to a specific vertex in GP(2n, n).

In particular, this vertex is six vertices farther along the outside of the graph in the

same direction as these preceding moves. Because of this, we have named it the

Forward Six Lemma, and it is this lemma that is the reason we will see winning

strategies depend on n modulo 6.

Lemma 6.15 (Forward Six Lemma). Consider the game MAC(GP(2n, n)) and let k

be an integer with 0 ≤ k ≤ 2n − 8 and let A, B ∈ {1, 2}. Suppose Player B moves

from uk−2 to uk−1 and Player A moves uk−1 to uk. Assuming vertices ui with index

i ∈ {k + 1, k + 2, . . . , k + 6} ∪ {n+ k − 1, n+ k, n+ k + 1, . . . , n+ k + 5} have not

been previously visited, then Player A can guarantee reaching uk+6 by way of uk+5

with the previous move being Player B moving from uk+4 to uk+5.
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Proof. To show that Player A can guarantee reaching uk+6, we must show two cases

depending on Player B’s choices.

Case 1: Player B effectively moves from uk to un+k. By Lemma 6.14, the next

two moves are forced and hence Player B must move to un+k+2. Then Player A

will choose to move to un+k+3 and there are two subcases.

Subcase 1a: Player B moves to un+k+4. Then Player A will effectively move to

uk+4. By Lemma 6.14, Player A will move from uk+5 to uk+6 on their next turn.

See the left image Figure 19.

Subcase 1b: Player B effectively moves to uk+3. Then the next two moves are

forced and Player B must move to uk+5. Hence, Player A chooses to move from

uk+5 to uk+6 as desired.

Case 2: Player B moves from uk to uk+1. Then Player A will choose to move

to vk+1 and hence will effectively move to un+k+1. By Lemma 6.14, the next two

moves are forced to be Player B moving from un+k+1 to un+k+2 followed by Player

A moving to un+k+3. Now there are two cases exactly as above and, in both cases,

Player A is guaranteed to move from uk+5 to uk+6. See the right image of Figure 19

for an example of one of the cases.

uk−2

uk

un+k

uk+6

uk−2

uk

un+k

uk+6

Figure 19: Examples of two of the cases in Lemma 6.15. Player A moves are blue
and Player B red.

Theorem 6.16. Player 1 has a winning strategy for MAC(GP(2n, n), u0) if and

only if n ̸≡ 1 (mod 6) and n ̸≡ 3 (mod 6). Player 1 has a winning strategy for

MAC(GP(2n, n), v0) if and only if n ̸≡ 3 (mod 6).

Proof. For the cases of 2 ≤ n ≤ 9, one can verify by hand or with computer code

(see Section 7) that the theorem statement holds. Thus, we suppose that n ≥ 10

for the remainder of the proof. The key element here is Lemma 6.15, which allows a

player to guarantee moving from a vertex ui to ui+6; hence the modulo 6 condition

in the statement of the theorem.



INTEGERS: 24 (2024) 35

First, we consider the starting vertex u0. Suppose n is even. Player 1 first moves

to u1. We now consider two cases depending on Player 2’s first move.

Case 1: Player 2 chooses to move from u1 to u2. Then Player 1 will choose to

move from u2 to u3. Then by Lemma 6.15, Player 1 can guarantee moving from

u8 to u9. By repeated applications of Lemma 6.15, Player 1 is able to guarantee

moving to vertices of the form ux where x ≡ 3 (mod 6) and x < n.

Subcase 1a: n ≡ 0 (mod 6). Then Player 1 guarantees first reaching un−3. If

Player 2 moves to un−2 then, by Table 1, Player 1 wins at u0. Otherwise, by

Table 2 with Player 1 as Player A, we see that Player 1 still wins, either at u0 or

back at un−3.

Subcase 1b: n ≡ 2 (mod 6). Then Player 1 can guarantee moving from un−6 to

un−5 (since n − 5 ≡ 3 (mod 6)). If Player 2 moves to un−4, then Player 1 will

move to un−3 and by the previous case we get that Player 1 wins. Should Player 2

effectively move to u2n−5, then by Lemma 6.14, the next two moves are forced so

that Player 2 moves from u2n−4 to u2n−3. Player 1 will choose to move to u2n−2.

If Player 2 moves to u2n−1, then Player 1 will win at u0. Otherwise, Player 2

effectively moves to un−2 and we see by Table 1 that Player 1 wins at u0.

Subcase 1c: n ≡ 4 (mod 6). Then Player 1 can guarantee moving from un−2 to

un−1. Hence, by Table 1, Player 1 wins.

Case 2: Player 2 effectively moves from u1 to un+1. Then by Lemma 6.14, Player

1 is forced to move to un+2 and Player 2 is forced to move to un+3. Player 1 will

then choose to move to un+4. By repeated applications of Lemma 6.15, Player 1 is

able to guarantee moving to vertices of the form un+x where x ≡ 4 (mod 6) (and

4 ≤ x ≤ n).

Subcase 2a: n ≡ 0 (mod 6). Then Player 1 guarantees moving from u2n−3 to

u2n−2. From this point, Player 1 wins since Player 2 either moves to u2n−1, whereby

Player 1 wins at u0, or Player 2 effectively moves to un−2, whereby Player 1 wins

at u0 by the moves in Table 1.

Subcase 2b: n ≡ 2 (mod 6). Then Player 1 guarantees moving from u2n−5 to

u2n−4. If Player 2 moves to u2n−3, then Player 1 will move to u2n−2 and win as

in the previous case. If Player 2 effectively moves to un−4, then, by Lemma 6.14,

Player 1 will move to un−3 and Player 2 to un−2. Hence, Player 1 wins by Table 1.

Subcase 2c: n ≡ 4 (mod 6). Then since n+ 4 ≡ 2 (mod 6) and 2n ≡ 2 (mod 6),

Player 1 guarantees moving from u2n−7 to u2n−6. Note that we cannot reapply

Lemma 6.15, since 2n− 6 > 2n− 8. However, by the proof of Lemma 6.15, Player

1, as Player A, can still guarantee reaching u2n−2. From here, Player 2 can either

move to u2n−1, whereby Player 1 will win at u0, or effectively move to un−2. In

the latter case, Player 2 is forced to move to un by Lemma 6.14, and Player 1 then

wins by effectively moving to u0.

Now suppose that n is odd. If Player 1 moves to u1, then Player 2 can move

to u2 and repeatedly apply Lemma 6.15 to win via a similar argument to the even
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Player 2 moves to un−2 by Player 1 moves Player 1 wins by

un−3
2−→ un−2 un−1

2−→ un
1

−↠ u0

or, un−2
1−→ un−1 or,

u2n−2
2

−↠ un−2 un−1
2

−↠ u2n−1
1−→ u0

Table 1: Moves for MAC(GP(2n, n), u0), where n is even.

From un−3 Player B moves Player A moves Player A wins by

un−3
B
−↠ u2n−3 u2n−3

A−→ u2n−2 u2n−2
B−→ u2n−1

A−→ u0

or,

u2n−2
B
−↠ un−2

A−→ un−3

Table 2: Moves used in the n ≡ 0, 1, 3 (mod 6) cases for MAC(GP(2n, n), u0).

case for Player 1. Thus we may assume Player 1 effectively moves to un instead.

Without loss of generality, Player 2 moves to un+1. If Player 1 effectively moves to

u1, then Player 2 will win at u0. Hence Player 1 will move to un+2. There are now

three cases depending on n modulo 6.

Case 1: n ≡ 1 (mod 6). Then Player 2 will effectively move from un+2 to u2. By

Lemma 6.14, Player 1 moves to u3 and Player 2 to u4. By repeated applications

of Lemma 6.15, Player 2 can guarantee moving from un−4 to un−3 since n− 3 ≡ 4

(mod 6).

If Player 1 moves to un−2, then Player 2 will effectively move to u2n−2. By

Lemma 6.14, Player 1 is forced to u2n−1 and Player 2 wins at u0. Otherwise, Player

1 effectively moves to u2n−3 from un−3. Using Table 2 with Player 2 as Player A,

we see that Player 2 wins at u0 or un−3.

Case 2: n ≡ 3 (mod 6). Then Player 2 will move from un+2 to un+3. Since

n + 3 ≡ 2n ≡ 0 (mod 6), repeated applications of Lemma 6.15 guarantee that

Player 2 moves from u2n−7 to u2n−6. Note that we cannot reapply Lemma 6.15,

since 2n− 6 > 2n− 8. Thus, we will consider Player 1’s options from this point.

If Player 1 effectively moves to un−6, then, by Lemma 6.14, Player 2 moves to

un−5 and Player 1 to un−4. Player 2 will then move to un−3. On the other hand,

if Player 1 moves from u2n−6 to u2n−5, then Player 2 will effectively move to un−5

and then guarantee moving from un−4 to un−3 by Lemma 6.14.

From un−3, Player 1 can move to un−2 or effectively move to u2n−3. In the

former case, Player 2 will effectively move to u2n−2 and win at u0 by Lemma 6.14.

In the latter case, Player 2 wins by Table 2 with Player 2 as Player A.

Case 3: n ≡ 5 (mod 6). Then by repeated applications of Lemma 6.15 from un+2,

Player 1 guarantees moving from u2n−4 to u2n−3 since n+2 ≡ 2n−3 ≡ 1 (mod 6).

Player 2 can then move to u2n−2, whereby Player 1 effectively moves to un−2 and
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will win at un, or Player 2 can effectively move to un−3, whereby Player 1 moves

to un−2 and will win at un.

We now consider MAC(GP(2n, n), v0) and show that Player 1 has a winning strat-

egy unless n ≡ 3 (mod 6). We examine each case of n modulo 6 separately.

Case 1: n ≡ 0 (mod 6). Then Player 1 will begin by moving from v0 to vn and

then Player 2 to un. Player 1 will then move to un+1 where Player 2 has two choices:

they can move to un+2 or effectively move to u1. If Player 2 moves to un+2, then

Player 1 will move to un+3. By repeated applications of Lemma 6.15, Player 1 can

guarantee moving from u2n−4 to u2n−3. By Table 3 we see that Player 1 will win.

Suppose Player 2 effectively moves from un+1 to u1. Player 1 will move to u2

and, by Lemma 6.14, Player 2 is forced to move to u3. Player 1 will then move to

u4 so that repeated applications of Lemma 6.15 will guarantee them moving from

un−3 to un−2. Then Player 1 will win at un if Player 2 moves to un−1, or Player 1

will win at v0 if Player 2 effectively moves to u2n−2 since Player 2 is forced to move

to u0 by Lemma 6.14.

Player 2 moves Player 1 moves Player 1 wins by

u2n−3
2−→ u2n−2 u2n−2

1−→ u2n−1 u2n−1
2−→ u0

1−→ v0
or,

u2n−1
2

−↠ un−1
1−→ un

u2n−3
2

−↠ un−3 un−3
1−→ un−2 un−2

2−→ un−1
1−→ un

or,

un−2
2

−↠ u2n−2
1−→ u2n−3

Table 3: Moves in the case of n ≡ 0 (mod 6) for MAC(GP(2n, n), v0).

Case 2: n ≡ 1 (mod 6). Player 1 will move from v0 to u0 on their first turn.

Without loss of generality, Player 2 will move to u1. Player 1 will effectively move

to un+1. From here, Player 2 can move to un+2 or to un. If Player 2 moves to

un+2, then Player 1 will move to un+3 and by repeated applications of Lemma 6.15,

Player 1 can guarantee moving from u2n−5 to u2n−4. By Table 4, Player 1 wins.

Instead, if Player 2 moves from un+1 to un, then Player 1 is forced to move to

un−1, else Player 2 wins at v0. Since u0 has been previously visited, Player 2 cannot

effectively move to u2n−1. Hence, Player 2 moves to un−2. Player 1 will then move

to un−3 so that repeated applications of Lemma 6.15 (in reverse) will guarantee

Player 1 moving from u5 to u4. If Player 2 effectively moves to un+4 then Player 1

will win at un+1 since Player 2 is forced to move to un+2 by Lemma 6.14. If Player

2 moves to u3, then Player 1 will effectively move to un+3 so that, by Lemma 6.14,

they win at un+1.

Case 3: n ≡ 2 (mod 6). Similar to the previous case, Player 1 will start by moving

to u0 and, without loss of generality, we can assume Player 1 moves from u1 to u2
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Player 2 moves Player 1 moves Player 1 wins by

u2n−4
2−→ u2n−3 u2n−3

1−→ u2n−2 u2n−2
2−→ u2n−1

1−→ u0

or,

u2n−2
2

−↠ un−2
1−→ un−1,

un−1
2−→ un

1−→ un+1

u2n−4
2

−↠ un−4 un−4
1−→ un−3 un−3

2−→ un−2
1−→ un−1,

un−1
2−→ un

1−→ un+1

or,

un−3
2−→ un−2

1−→ un−1,

un−1
2

−↠ u2n−1
1−→ u0

Table 4: Moves in the case where n ≡ 1 (mod 6) for MAC(GP(2n, n), v0).

on their next turn. By repeated applications of Lemma 6.15, Player 1 guarantees

moving from un−1 to un. Hence, Player 1 will win at v0 if Player 2 moves to vn, or

Player 1 will win at u1 if Player 2 moves to un+1.

Case 4: n ≡ 3 (mod 6). This is the lone case that Player 2 wins. If Player 1 begins

by moving to u0, then Player 2 will move to u1. Player 1 can then move to u2 or to

un+1. If Player 1 moves to u2, then Player 2 will move to u3 and then, by repeated

applications of Lemma 6.15, guarantee moving from un−1 to un. If Player 1 then

moves to vn, then Player 2 will win at v0. If Player 1 instead moves to un+1, then

Player 2 will win by effectively moving to u1.

On the other hand, if Player 1 effectively moves from u1 to un+1, then Player 2

will move to un. Player 1 must move to un−1 since Player 2 wins at v0 should Player

1 move to vn. Player 2 will then move to un−2. Note that Lemma 6.15 can also

be applied “in reverse,” just like previous lemmas in this section (see Remark 6.5).

Doing so here repeatedly, Player 2 can guarantee moving from u2 to u1 to win.

Now suppose Player 1 begins by moving to vn and Player 2 follows by moving

to un. Then, without loss of generality, Player 1 moves to un+1. Player 2 will then

move to un+2, and, by repeated applications of Lemma 6.15, can guarantee moving

from u2n−2 to u2n−1. If Player 1 moves to u2n = u0, then Player 2 wins at v0. If

Player 1 effectively moves to un−1, then Player 2 wins at un.

Case 5: n ≡ 4 (mod 6). Player 1 will begin by moving to vn. Player 2 is forced

to move to un, and Player 1 will then choose to move to un+1. Player 2 can then

move to un+2 or effectively move to u1. If they move to un+2, Player 1 will move to

un+3. Then, by repeated applications of Lemma 6.15, Player 1 guarantees moving

from u2n−2 to u2n−1. Then as in the previous case, Player 1 will win at v0 or at un.

Suppose instead that Player 2 effectively moves from un+1 to u1. Then Player 1

will move to u2 and Player 2 is forced to move to u3 by Lemma 6.14. Player 1 will

then move to u4 and then, by repeated applications of Lemma 6.15, Player 1 can
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guarantee moving from un−1 to un to win.

Case 6: n ≡ 5 (mod 6). Player 1 will begin by moving to u0. Without loss of

generality, assume Player 2 moves to u1. Then Player 1 effectively moves from u1

to un+1. Player 2 can then move to un+2 or to un. If Player 2 moves to un+2,

then Player 1 will move to un+3. By repeated applications of Lemma 6.15, Player

1 can guarantee moving from u2n−3 to u2n−2. Player 2 is then forced to effectively

move to un−2. Player 1 will then move to un−1. From here, if Player 2 moves to

un, Player 1 wins by moving to un+1 . If Player 2 effectively moves to u2n−1, then

Player 1 wins by moving to u0.

On the other hand, if Player 2 moves from un+1 to un, then Player 1 will move to

un−1. By repeated applications of Lemma 6.15 in reverse, Player 1 can guarantee

moving from u5 to u4 and hence will win as they did in the n ≡ 1 (mod 6) case.

7. Game Code

This work was greatly aided by the use of a computer program written by co-author

Lillis. Some results were first conjectured after using a computer to determine which

player should win a given game. Proofs were then able to be constructed once a

pattern was observed. This approach is being applied in ongoing research such as

determining winning strategies for the Make-A-Cycle game on the family of graphs

GP(n, 3) (see Section 8). The code (written in C++) can be found at this github

repository.

Here is a fun example of how we can use our game code to analyze a unique

graph. Note that if a graph Γ has trivial automorphism group, then one necessarily

needs to examine MAC(Γ, v) and AAC(Γ, v) for every vertex v. The Frucht graph is

a 3-regular graph with a trivial automorphism group (see Figure 20) and twelve

vertices. Hence, analyzing the Make-A-Cycle game by hand here is challenging.

With the aid of the game code, we find that Player 2 wins MAC if and only if the

starting vertex is the one colored red, as seen in Figure 20. For the Avoid-A-Cycle

game, one can see that the Frucht graph has a perfect matching and therefore Player

1 has a winning strategy for every vertex.

8. Open Questions

This work has been a natural extension of the Relator Achievement and Relator

Avoidance games defined in [7]. As was done in that paper, we close with some

open questions.

1. In Theorem 2.8 we were able to characterize winning strategies for the AAC

game due to its equivalence with the Undirected Geography Game. This result

https://github.com/WillLillis/Cycle-Games-on-Graphs
https://github.com/WillLillis/Cycle-Games-on-Graphs
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Figure 20: The Frucht Graph. Image Source: Wikicommons.

highlights how AAC is connected to the graph theory concept of maximum

matchings. We ask: are there any properties of graphs that could provide a

result akin to Theorem 2.8 for the Make-A-Cycle game? For instance, can

anything be said within the class of vertex-transitive graphs as a starting

point?

2. One can see that the Avoid-A-Cycle game is solved for cubic, bridgeless graphs

by Petersen’s Theorem which states that all such graphs have a perfect match-

ing. Hence, we wonder: what can be determined in general for cubic, bridge-

less graphs for the Make-A-Cycle game?

3. Jahangir graphs [9] are generalizations of wheel graphs. How do the results

of Section 4 generalize? This question is already being considered by under-

graduate students at The College of Wooster.

4. For the general case of Make-A-Cycle on stacked prism graphs SP(n,m), we

have some extensions as stated previously in Remark 5.3 and Remark 5.5. For

the general case of SP(n,m) with n even, we have results for only a few special

cases, which were achieved using the following generalization of Lemma 5.8.

Lemma 8.1. For the game MAC(SP(n,m)), with B ∈ {1, 2}, suppose Player B

moves from (i−1, 0) to (i, 0) such that no vertices (p, q) with i−1 < p < n−1

and 0 ≤ q ≤ m− 1 have been previously visited. Then Player B can guarantee

moving from (i+m,m− 1) to (i+m+ 1,m− 1).

Can this lemma (or possibly other observations) yield a general statement

regarding the Make-A-Cycle game for the SP(n,m) family of graphs?

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Frucht_planar_Lombardi.svg/230px-Frucht_planar_Lombardi.svg.png
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5. In Section 6 we proved results for MAC on the family GP(n, 2). What can be

said about graphs GP(n, k) for k > 2? The case of k = 3 is currently being

examined by undergraduate students at The College of Wooster.

6. As we noted in Section 1 and Section 2, the AAC game is equivalent to undi-

rected geography, which the authors of [5] call undirected vertex geography

(to distinguish it from the edge variant they primarily discuss in their paper).

In [5], it is noted that there exist polynomial-time algorithms for finding max-

imum matchings of any graph. Hence, by Theorem 2.8, determining which

player wins an AAC game can be done in polynomial time. Now it is natural

to ask: what is the computational complexity for the MAC game?
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A. Appendix

Below is the proof of Player 2’s winning strategy for MAC(GP(n, 2)) with n ≡ 0

(mod 5) with starting vertex u0 from Theorem 6.6.

Proof. We have two cases based off Player 1’s first move: Player 1 moves from u0

to u1 and Player 1 moves from u0 to v0.

Case 1: Player 1 moves from u0 to u1. Player 2 will then move to v1. Player 1

then has two choices: they can move to v3 or to vn−1.

Subcase 1a: Player 1 moves to v3. Then we can apply Lemma 6.1 statement (1),

with Player 2 as Player A and i = 1, guaranteeing the following moves:

uj → vj for j ≡ 1 (mod 5),

vj → uj for j ≡ 3 (mod 5),

uj → uj+1 for j ≡ 4 (mod 5),

for 1 ≤ j < n. In particular, Player 2 is guaranteed to move from vn−2 to un−2

since n− 2 ≡ 3 (mod 5). From there Player 2 will win on their next move at either

u0 or un−4.

Subcase 1b: Player 1 moves instead to vn−1. Then Player 2 will move to vn−3. If

n = 5, then Player 2 will win on their next move at either u0 or u1. If n > 5, then

we must consider more carefully Player 1’s next move. If Player 1 moves from vn−3

to un−3, then Player 2 will move to un−2.

Now, we wish to apply Lemma 6.3 statement (2) in reverse, with Player A as

Player 2, but the index n−3 is too large for the hypotheses. However, the sequence of

moves detailed in Lemma 6.3 statement (2) are still forced in this case. Specifically,

Player 1 is forced to move to vn−2 since moving to un−1 results in a loss on the

following turn (at either vn−1 or u0). Player 2 then moves to vn−4, forcing Player 1

to move to vn−6, or else Player 2 wins at un−3. Thus, Player 2 is able to move from

vn−6 to vn−8, as Lemma 6.3 statement (2) would guarantee were its hypotheses

satisfied.

Note that, if n = 10, then Player 2 wins on their next turn, at either u0 or u1.

Hence we suppose n > 10. If Player 1 continues to move from vj to uj where j ≡ 2

(mod 5), then repeated applications of Lemma 6.3 statement (2) in reverse ensure

Player 2 moves from vj−3 to vj−5. Eventually, Player 2 will move from v4 to v2
(this being an application of Lemma 6.3 statement (2) with an index of 7) and will

win on their next turn at either u0 or u1. Thus, Player 1 must move from vj to

vj−2 for some 7 < j ≤ n − 3 and where j ≡ 2 (mod 5). Player 2 will then move

from vj−2 to uj−2.

If Player 1 moves from uj−2 to uj−1, then we can apply Lemma 6.3 statement

(1) in reverse, with Player A as Player 2 and i = j − 2, ensuring that Player 2

moves from vj−7 to uj−7. If Player 1 continues to move from uk to uk+1 with k ≡ 0
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(mod 5) and 10 ≤ k ≤ j − 2, then repeated applications of Lemma 6.3 statement

(1) will guarantee that Player 2 moves from vk−5 to uk−5. In this case, Player

2 will eventually move from v5 to u5. Player 1, by our assumption, then moves

to u6. Note that we cannot technically apply Lemma 6.3 statement (1) in reverse

because the vertices u1 and v1 have been previously visited (this is why the j above

was strictly greater than 7). However, the same reasoning as given in the proof of

Lemma 6.3 forces the same moves, specifically that Player 2 is guaranteed to move

from v4 to v2 as one of the “preceding moves”. From there Player 1 moves to v0 or

u2, whereby Player 2 wins at u0 or u1, respectively.

To summarize, we have that Player 1 must move from vj to vj−2 for some 7 <

j ≤ n− 3 with j ≡ 2 (mod 5) and following this, if they continue to make a move

of the form uk to uk+1 with k ≡ 0 (mod 5) and 10 ≤ k ≤ j − 2, then Player 2 will

win. Hence, it must be the case that Player 1 moves from uk to uk−1 instead, for

some 10 ≤ k ≤ j−2. However, this means Player 2 can apply Lemma 6.1 statement

(2) in reverse, where here Player A is again Player 2 and i = k, thus ensuring the

moves

um → um−1 for m ≡ 4 (mod 5),

um → vm for m ≡ 2 (mod 5),

vm → um for m ≡ 0 (mod 5),

for all 5 ≤ m ≤ n − 5. Thus, Player 2 guarantees moving from v5 to u5. Player 1

must move to u4, or else Player 2 wins at u7. Player 2 then moves to u3. From here,

Player 1 can move to v3 or u2, whereby Player 2 will win at v5 or u1, respectively.

Case 2: Player 1 begins by moving from u0 to v0. We show, as in the proof of

Theorem 6.6 given above, that Player 1 loses if they apply the strategy of Lemma 6.1

from this point, which implies that Player 1 must at some point deviate from this

strategy. We then show that, given any deviation from the strategy by Player 1,

Player 2 will have a winning a strategy.

If Player 1 begins by moving from u0 to v0 and Player 2 moves from v0 to v2,

then Lemma 6.1 statement (1) applies with Player 1 as Player A. This guarantees

Player 1 the following moves:

ui → vi for i ≡ 0 (mod 5),

vi → ui for i ≡ 2 (mod 5),

ui → ui+1 for i ≡ 3 (mod 5),

for all 0 ≤ i < n. Should Player 1 execute this strategy, they will eventually move

from un−2 to un−1 and lose when Player 2 moves to u0. Thus, we may assume that

Player 1 applies the strategy of Lemma 6.1 statement (1) until a certain point in

the game and then deviates from the strategy. There are three cases, one for each

of the move types listed above.
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Subcase 2a: For some 0 < i ≤ n − 5 with i ≡ 0 (mod 5), Player 1 moves from

ui to ui+1 instead of ui to vi. Player 2 will move from ui+1 to vi+1 and Player 1

is forced to move from vi+1 to vi+3; otherwise Player 2 will win at ui−1. Now we

apply Lemma 6.1 statement (1) with Player 2 as Player A (and where the starting

index is i + 1). This guarantees that Player 2 can move from uj to vj for j ≡ 1

(mod 5) with i+ 1 ≤ j ≤ n− 4. Once Player 2 moves from un−4 to vn−4, they win

on their next move at either v0 or un−6.

Subcase 2b: Player 1 moves from vi to vi+2, instead of to ui, for some 2 ≤ i ≤ n−3

where i ≡ 2 (mod 5). Player 2 will then move from vi+2 to vi+4. Note that, if

i = n − 3, then Player 2 wins on their next turn since, in this case vi+4 = v1, and

hence regardless of Player 1’s next move, Player 2 can win at either u0 or u3.

Suppose then that 2 ≤ i < n − 8 and Player 1 moves from vi+4 to ui+4. Then

Player 2 will move from ui+4 to ui+3. Hence, Lemma 6.3 statement (2) can be

applied, with Player A as Player 2 and starting parameter equal to i + 4. This

guarantees Player 2 moves from vi+7 to vi+9, with the preceding move being vi+5

to vi+7. Note that, if i = n − 8, then we cannot technically apply Lemma 6.3

statement (2), because the vertices u0 and v0 have been previously visited. However,

the reasoning given in the proof of Lemma 6.3 forces the same moves. Player 2 will

still guarantee moving from vn−1 to v1 and, just as above, will win on their next

turn at either u0 or u3.

Now, if Player 1 continues to move from vj to uj for j ≡ 1 (mod 5), then

Lemma 6.3 statement (2) will guarantee Player 2 moves from vj+3 to vj+5. Suppose

Player 1 moves from vj to uj for all j ≡ 1 (mod 5) with j ≥ i+ 4. Then repeated

applications of Lemma 6.3 statement (2) guarantee that Player 2 can move from

vn−1 to v1, where the last application with j = n − 4 technically cannot be done

but still forces the same moves similar to the case in the above paragraph. From

v1, Player 2 will win on their next turn at either u0 or u3.

Thus, Player 1 must move from vj to vj+2 for some i + 4 ≤ j ≤ n − 9 where

j ≡ 1 (mod 5). Then Player 2 will move from vj+2 to uj+2. If Player 1 moves

from uj+2 to uj+1, then we can apply Lemma 6.3 statement (1) with Player A as

Player 2. Hence, if Player 1 continues to move from uk to uk−1 for k ≥ j + 2 and

k ≡ 3 (mod 5), then repeated applications of Lemma 6.3 statement (1) guarantee

that Player 2 can move from vk+5 to uk+5. Eventually, Player 2 moves from vn−2

to un−2. By assumption, Player 1 will move to un−3. Then although the exact

hypotheses of Lemma 6.3 statement (1) are not satisfied, the same moves are forced

and Player 2 can guarantee moving from vn−1 to v1. They will then win at either

u0 or u3 on their next turn.

Since we have shown that Player 2 wins if Player 1 continues to move from uk

to uk−1, Player 1 must move from uk to uk+1 for some j + 2 ≤ k ≤ n − 7 where

k ≡ 3 (mod 5). Since the previous move by Player 2 was from vk to uk, we can

apply Lemma 6.1 statement (2) with Player 2 as Player A. In particular, Player 2
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guarantees moving from uℓ to vℓ for ℓ ≡ 1 (mod 5). Eventually Player 2 will move

from un−4 to vn−4. From there Player 2 wins on their next turn at either v0 or

un−6.

Subcase 2c: Player 1 moves from ui to vi, instead of to ui+1, for some 3 ≤ i ≤ n−2

where i ≡ 3 (mod 5). If i = n−2, then Player 2 will move to v0 and win. If i < n−2

and i ̸= 3, then Player 2 will move from vi to vi−2. Then, by our assumption of

Player 1’s prior strategy, Player 2 will win on their next turn regardless of Player

1’s move. Should Player 1 move further back to vi−4, then Player 2 will win at

ui−4. If Player 1 moves to ui−2, then Player 2 wins at either ui−1 or ui−3.

Now consider the remaining case that i = 3 and Player 1 moves from u3 to v3.

Then Player 2 will move to v1 and the next two moves are forced: Player 1 must

move from v1 to vn−1, followed by Player 2 from vn−1 to vn−3. If Player 1 moves

to un−3, then we wish to apply Lemma 6.3 statement (2) in reverse, with Player

A as Player 2, but the index n − 3 is too large for the hypotheses. However, the

sequence of moves detailed in Lemma 6.3 statement (2) are still forced in this case.

Specifically, Player 2 moves from un−3 to un−2, forcing Player 1 to move to vn−2

since moving to un−1 results in a loss on the following turn because vn−1 has been

previously visited. Player 2 then moves to vn−4, forcing Player 1 to move to vn−6,

or else Player 2 wins at un−3. Thus, Player 2 is able to move from vn−6 to vn−8,

as Lemma 6.3 statement (2) would guarantee were its hypotheses satisfied.

If Player 1 continues to move from vj to uj , for j ≡ 2 (mod 5) and 7 ≤ j ≤ n−3,

then Lemma 6.3 statement (2) in reverse will guarantee that Player 2 moves from

vj−3 to vj−5. Suppose Player 1 moves from vj to uj for all j ≡ 2 (mod 5) with

7 ≤ j ≤ n − 3. Then repeated applications of Lemma 6.3 statement (2) in reverse

ensure Player 2 moves from v9 to v7. By hypothesis, Player 1 will then move to u7.

As in the previous paragraph, we cannot apply Lemma 6.3 statement (2) in reverse

here, because the vertices u3 and v3 have been previously visited. However, as in

the last paragraph, the moves of Lemma 6.3 statement (2) are still forced. Hence,

we can guarantee that Player 2 wins by moving from v4 to v2.

Now we must assume that Player 1 moves from vk to vk−2 for some 7 ≤ k ≤ n−3

with k ≡ 2 (mod 5). Then Player 2 will move to uk−2. If Player 1 moves from uk−2

to uk−1, then we can apply Lemma 6.3 statement (1) in reverse and guarantee

Player 2 moves from vk−7 to uk−7. If Player 1 continues to move from uℓ to uℓ+1

for all 5 ≤ ℓ ≤ n− 5 with ℓ ≡ 0 (mod 5), then repeated applications of Lemma 6.3

statement (1) in reverse will guarantee Player 2 eventually moves from v5 to u5.

Then, by assumption, Player 1 moves to u6. Player 2 will move from u6 to v6 and

then Player 1 is forced to move to v4 (otherwise, Player 2 wins back at v10). Thus,

Player 2 wins by moving from v4 to v2.

Finally, we have exhausted Player 1’s possible lines of play and they must move

from uℓ to uℓ−1, for some 5 ≤ ℓ ≤ n− 5, with ℓ ≡ 0 (mod 5). If ℓ = 5, then Player

2 wins by moving from u4 to u3. Otherwise, since Player 2’s last move was from vℓ
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to uℓ, we can apply Lemma 6.1 statement (2) in reverse with Player A as Player

2 and i = ℓ in the lemma. Thus, Player 2 is guaranteed to move from v5 to u5.

Regardless of Player 1’s next move, Player 2 will win at either u7 or at u3.
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