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Abstract

We generalize a result by Vélez on second-order linear recurrence sequences that
are uniformly distributed modulo a prime power. Vélez showed that if a second-
order linear recurrence is uniformly distributed modulo a prime power pe, then each
residue modulo pe also appears exactly once in a particular finite subsequence of
that recurrence. We find more general finite subsequences such that each residue
modulo pe appears exactly r times in that subsequence, where r may be greater
than 1.

1. Introduction

Let (w) = w(a, b) denote the sequence satisfying the second-order linear recursion

relation

wn+2(a, b) = awn+1(a, b) + bwn(a, b),

where the parameters a and b and the initial terms w0(a, b) and w1(a, b) are all

integers. Let D = D(a, b) = a2 + 4b be the discriminant of w(a, b). When the

parameters a and b are known, we frequently write wn(a, b) simply as wn. We

distinguish two special recurrences, the Lucas sequence of the first kind (LSFK)

u(a, b) with initial terms u0 = 0 and u1 = 1, and the Lucas sequence of the second

kind (LSSK) v(a, b) with initial terms v0 = 2 and v1 = a. Throughout this paper,

p will denote a prime and m will denote a positive integer. It was shown in [4,

pp. 344–345] that w(a, b) is purely periodic modulo m if gcd(m, b) = 1. From here

on, we assume that gcd(m, b) = 1 and gcd(p, b) = 1. The period length of w(a, b)
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modulo m, denoted by λw(m), is the least positive integer ℓ such that

wn+ℓ ≡ wn (mod m) for all n ≥ 0.

If the recurrence w(a, b) is understood, we will write λw(m) simply as λ(m). The

restricted period of w(a, b) modulom, denoted by hw(m), is the least positive integer

f such that

wn+f ≡ Mwn (mod m) for all n ≥ 0, (1.1)

for some fixed residue M modulo m such that gcd(M,m) = 1. Here, M = Mw(m) is

called the multiplier of w(a, b) modulo m. Since the LSFK u(a, b) is purely periodic

modulo m and has initial term u0 = 0, it is easily seen that hu(m) is the least

positive integer t such that

ut ≡ 0 (mod m).

We easily observe that if λw(m) | r and hw(m) | s, then r is a general period of

w(a, b) modulo m and s is a general restricted period of w(a, b) modulo m. It is

proven in [4, pp. 354–355] that hw(m) | λw(m). Let

Ew(m) =
λw(m)

hw(m)
.

Then by [4, pp. 354–355], Ew(m) is the multiplicative order of the multiplier Mw(m)

modulo m. By repeated applications of (1.1), we see that if h = hw(m), then

wn+hi ≡ M iwn (mod m) (1.2)

for all n ≥ 0 and i ≥ 1.

The recurrence w(a, b) is said to be uniformly distributed (u. d.) modulom if each

residue modulo m appears exactly the same number of times E in a least period

of w(a, b) modulo m, where E ≥ 1. In 1975, Bumby [1] and Webb and Long [12]

independently gave necessary and sufficient criteria for the recurrence w(a, b) to be

u. d. modulo m. These criteria will be presented in Theorem 2.3 in Section 2. In

[11], Vélez sharpened the results of Bumby and Webb and Long, by showing that

if w(a, b) is u. d. modulo pe, then there exist subsequences of w(a, b) that are also

u. d. modulo pe. Vélez’s result is given below.

Theorem 1.1. (Vélez) Suppose that the sequence w(a, b) is uniformly distributed

modulo pe with period λw(p
e) = peE, where e ≥ 1 and each residue modulo pe

appears exactly E times in a least period of w(a, b) modulo pe. Let s be a fixed

nonnegative integer and define {w′
n}∞n=0 by w′

n = ws+nE(a, b). Then each residue

modulo pe appears exactly once in the finite sequence {w′
n}

pe−1
n=0 . Moreover, if p ≥ 3,

then a ̸≡ 0 (mod p) and E = ordp(a/2), while E = 1 if p = 2.

We note that already in 1975, twelve years before Vélez’s paper, Bumby [1] gave

a more precise result than that of Theorem 1.1 above for the case in which e = 1.
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Theorem 1.2. (Bumby) Let the sequence w(a, b) be uniformly distributed modulo

p with period λw(p) = pE, where each residue modulo p appears exactly E times in a

least period of w(a, b) modulo p. Let c be any multiple of E such that gcd(c, p) = 1.

Then for every nonnegative integer s, the sequence ws, ws+c, . . . , ws+(p−1)c is con-

gruent to an arithmetic progression with nonzero difference modulo p.

Our main result, which is given below, generalizes Theorem 1.1. The proof of

Theorem 1.3 will be given in Section 3 and is shorter than the proof of Theorem

1.1 given by Vélez in [11].

Theorem 1.3. Suppose that the sequence w(a, b) is uniformly distributed modulo

pe with period λw(p
e) = peE, where gcd(b, p) = 1, e ≥ 1, and each residue modulo

pe appears exactly E times in a least period of w(a, b) modulo pe. Let g be any

fixed positive integer such that gcd(g, p) = 1. Let d = gcd(g,E) and let r = E
d . Let

s be a fixed nonnegative integer and define {w′
n}∞n=0 by w′

n = ws+ng(a, b). Then

each residue modulo pe appears exactly r times in the finite sequence {w′
n}

per−1
n=0 .

Further, if p ≥ 3, then a ̸≡ 0 (mod p) and E = ordp(a/2), while E = 1 if p = 2.

2. Auxiliary Results

Before proving our principal result, Theorem 1.3, we introduce some definitions

and useful statements. Associated with the recurrence w(a, b) is the characteristic

polynomial

f(x) = x2 − ax− b

with characteristic roots α = (a+
√
a2 + 4b)/2, β = (a−

√
a2 + 4b)/2, and discrim-

inant D = D(a, b) = (α − β)2 = a2 + 4b. We will frequently consider the case in

which p | D for some prime p. In that case, α ≡ β ≡ a/2 (mod p) if p is odd. We

further note that if p = 2 and p | D, then a is even. By the Binet formulas,

un =
αn − βn

α− β
, vn = αn + βn, if D ̸= 0,

while

un = nαn−1, vn = 2αn, if D = 0.

More generally,

wn = cαα
n + cββ

n if D ̸= 0,

where

cα =
w1 − βw0

α− β
, cβ =

αw0 − w1

α− β
,

(see [5, p. 174]), while

wn = (c1n+ c2)α
n if D = 0,
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where

c1 =
w1 − w0α

α
, c2 = w0,

(see [9, pp. 33–35]).

A recurrence w(a, b) is called regular modulo p, or p-regular for short, if∣∣∣∣w0 w1

w1 w2

∣∣∣∣ = w0w2 − w2
1 ̸≡ 0 (mod p).

Remark 2.1. If w(a, b) is not p-regular, then it is said to be p-irregular. It is clear

that w(a, b) is p-regular if and only if the vectors (w0, w1) and (w1, w2) are linearly

independent modulo p. Further, w(a, b) is p-irregular precisely when w(a, b) satisfies

a recursion relation modulo p of order less than two. Clearly, w(a, b) is p-irregular

if p | gcd(w0, w1). We note that for the LSFK u(a, b),

u0u2 − u2
1 = 0 · a− 12 = −1 ̸≡ 0 (mod p),

while for the LSSK v(a, b),

v0v2 − v21 = 2(a2 + 2b)− a2 = a2 + 4b = D(a, b).

Thus, u(a, b) is always p-regular, while v(a, b) is p-irregular if and only if p | D(a, b).

Lemma 2.2 below, which is proved in [2, p. 695], characterizes those sequences

w(a, b) that are p-irregular in the case in which w0 ̸≡ 0 (mod p).

Lemma 2.2. Consider the sequences w(a, b) and w′(a, b) with discriminant D and

characteristic roots α and β. Suppose that p ∤ b. Then the following hold:

(i) If w0 ≡ 0 (mod p), then w(a, b) is p-irregular if and only if w1 ≡ 0 (mod p).

(ii) Suppose that p is odd, p ∤ gcd(w0, w1), and (D/p) = −1, where (D/p) denotes

the Legendre symbol and (D/p) = 0 if p | D. Then w(a, b) is p-regular.

(iii) Suppose that p is odd, p ∤ gcd(w0, w1), and (D/p) = 1. Then α and β lie

in Z/pZ and αβ = −b ̸≡ 0 (mod p). Moreover, w(a, b) is p-irregular if and

only if either w1 ≡ αw0 or w1 ≡ βw0 (mod p). If w1 ≡ αw0 (mod p), then

wn ≡ αnw0 for n ≥ 0. If w1 ≡ βw0 (mod p), then wn ≡ βnw0 for n ≥ 0.

(iv) Suppose that p is odd, p ∤ gcd(w0, w1), and p | D. Then α ≡ β ≡ a/2

(mod p) and a ̸≡ 0 (mod p). Furthermore, w(a, b) is p-irregular if and only

if w1 ≡ (a/2)w0 (mod p), in which case wn ≡ (a/2)nw0 for n ≥ 0.

(v) Suppose that p = 2 and 2 ∤ gcd(w0, w1). Then w(a, b) is 2-irregular if and

only if a ≡ 0 (mod 2), b ≡ 1 (mod 2), and w0 ≡ w1 ≡ 1 (mod 2), in which

case 2 | D and wn ≡ 1 (mod 2) for n ≥ 0.



INTEGERS: 25 (2025) 5

(vi) If w(a, b) is p-irregular, then either wn ≡ 0 (mod p) for all n ≥ 0 or wn ̸≡ 0

(mod p) for all n ≥ 0. In particular, if there exists terms wi and wj such that

i ̸= j, wi ≡ 0 (mod p), and wj ̸≡ 0 (mod p), then w(a, b) is p-regular.

(vii) If (w) = w(a, b) and (w′) = w′(a, b) are both p-regular and e ≥ 1, then

λw(p
e) = λw′(pe), hw(p

e) = hw′(pe), Mw(p
e) ≡ Mw′(pe) (mod pe), and

Ew(p
e) = Ew′(pe).

Proof. All parts except part (vi) follow from results in [2, p. 695]. Part (vi) follows

from parts (i)–(v).

Theorem 2.3. Let w(a, b) be a recurrence modulo pe with characteristic roots α

and β and discriminant D = (α− β)2 = a2 + 4b. Then the following hold.

(i) The recurrence w(a, b) is u. d. modulo p if and only if p | D and w(a, b) is

regular modulo p. In this case, h(p) = p, λ(p) = pE(p), and each residue

modulo p appears exactly E(p) times in a least period of w(a, b) modulo p.

If p ≥ 3 and w(a, b) is u. d. modulo p, then a ̸≡ 0 (mod p), α ≡ β ≡ a/2

(mod p), and E(p) = ordp(Mw(p)) = ordp(α) = ordp(a/2). If p = 2, then

E(p) = 1. In all cases, E(p) | p− 1.

(ii) Suppose that p ≥ 5 and e ≥ 2. Then w(a, b) is u. d. modulo pe if and only if

p | D and w(a, b) is regular modulo p. In this case, a ̸≡ 0 (mod p), h(pe) = pe,

E(p) = ordp(a/2), and λ(pe) = peE(p). Moreover, each residue modulo pe

appears exactly E(p) times in a least period of w(a, b) modulo pe. Further,

E(p) | p− 1.

(iii) Suppose that p = 3 and e ≥ 2. Then w(a, b) is u. d. modulo 3e if and only if

3 | D, D ̸≡ 6 (mod 9), and w(a, b) is regular modulo 3. In this case, a ̸≡ 0

(mod 3), h(3e) = 3e, E(3) = ord3(a/2), and λ(3e) = 3eE(3). Moreover,

each residue modulo 3e appears exactly E(3) times in a least period of w(a, b)

modulo 3e. Furthermore, E(3) | 2.

(iv) Suppose that p = 2 and e ≥ 2. Then w(a, b) is u. d. modulo 2e if and only

if 2 | D, a ≡ 2 (mod 4), b ≡ 3 (mod 4), w0 ̸≡ w1 (mod 2), and w(a, b)

is regular modulo 2. In this case, h(2e) = 2e, E(2) = 1, and λ(2e) = 2e.

Moreover, each residue modulo 2e appears exactly once in a least period of

w(a, b) modulo 2e.

(v) If p ≥ 3 and p | D, then w(a, b) is regular modulo p if and only if p ∤ 2w1−w0.

If p = 2 and p | D, then a ≡ 0 (mod 2) and w(a, b) is regular modulo 2 if and

only if w0 ̸≡ w1 (mod 2).

Proof. This follows from Lemma 2.2 (iv) and (v) of this paper and results in [1],

[12], [8], [11, p. 38], Theorem 1.11 of [6], and [7, pp. 30–48].
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Theorem 2.4 below will be needed to prove Theorem 1.3.

Theorem 2.4. Let w(a, b) be any second-order linear recurrence and define w′
n

by w′
n = wtn+r(a, b), where n ≥ 0, t is a fixed positive integer, and r is a fixed

nonnegative integer. Then for all n ≥ 0,

w′
n+2 = a′w′

n+1 + b′w′
n,

where a′ = vt(a, b) and b′ = (−1)t+1bt, and the sequence {w′
n}∞n=0 is equal to the

second-order recurrence sequence w(a′, b′). Further, if α and β are the character-

istic roots of w(a, b) and D(a, b) is the discriminant of w(a, b), then w(a′, b′) has

characteristic roots αt and βt and discriminant D(a′, b′) = (ut(a, b))
2D(a, b).

Proof. All assertions of Theorem 2.4 follow from [10], except for the one concerning

the discriminant of w(a′, b′). We note that

D(a′, b′) = (αt − βt)2 =
(αt − βt

α− β

)2

(α− β)2 = (ut(a, b))
2D(a, b).

3. Proof of the Main Theorem

We are now able to prove Theorem 1.3.

Proof of Theorem 1.3. Let (w) = w(a, b) with characteristic roots α and β and

discriminant D = D(a, b). Since (w) is u. d. modulo pe, we see by Theorem 2.3

that p | D, (w) is p-regular, h = hw(p) = p, E = Ew(p) = ordp(α) = ordp(a/2),

and λw(p
e) = peE. Further, each residue modulo pe appears exactly E times in a

least period of (w) modulo pe. Moreover, there exists a nonnegative integer ℓ such

that 0 ≤ ℓ ≤ h− 1 = p− 1 and wℓ ≡ 0 (mod p). Then wn(a, b) ≡ 0 (mod p) if and

only if n ≡ ℓ (mod p).

We define the sequence {w′
n}∞n=0 by w′

n = ws+ng(a, b). Then by Theorem 2.4,

{w′
n}∞n=0 = (w′) = w(a′, b′), where a′ = vg(a, b) and b′ = (−1)g+1bg. Additionally,

by Theorem 2.4, (w′) has characteristic roots αg and βg and discriminant

D′ = D(a′, b′) = (ug(a, b))
2D.

Since gcd(b, p) = 1 and p | D, we see that gcd(b′, p) = 1 and p | D′. We will

show below that (w′) = w(a′, b′) is u. d. modulo pe and E′ = Ew′(p) = r. Then

by Theorem 2.3, it would follow that λw′(pe) = per and each residue modulo pe

appears exactly r times in a least period of (w′) = w(a′, b′), as desired.

We first show that (w′) = w(a′, b′) is p-regular. Consider the first h = p terms

ws(a, b), ws+g(a, b), . . . , ws+(p−1)g(a, b)
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of w(a′, b′). Since gcd(g, p) = 1, it follows that the set {s, s + g, . . . , s + (p − 1)g}
is congruent to the set {0, 1, . . . , p − 1} modulo p. Thus, ws+ig(a, b) ≡ 0 (mod p)

if and only i ≡ ℓ (mod p), where 0 ≤ i ≤ p − 1. Hence, there are terms w′
i and

w′
j such that w′

i ≡ 0 (mod p) and w′
j ̸≡ 0 (mod p). It now follows by Lemma 2.2

(vi) that w(a′, b′) is p-regular. It further follows by Theorem 2.3 (i) and (ii) that

w(a′, b′) is u. d. modulo pe if either e = 1 or it is the case that e ≥ 2 and p ≥ 5.

We now suppose that p = 3 and e ≥ 2. Then 3 | D and D ̸≡ 6 (mod 9) by

Theorem 2.3 (iii), since w(a, b) is u. d. modulo 3e. By Theorem 2.4,

D′ = D(a′, b′) = (ug(a, b))
2D.

By inspection, (ug(a, b))
2 ≡ 0, 1, 4, or 7 (mod 9), while D ≡ 0 or 3 (mod 9). By

examination, we then observe that D′ = (ug(a, b))
2D ≡ 0 or 3 (mod 9), and also

D′ ̸≡ 6 (mod 9). Consequently, w(a′, b′) is u. d. modulo 3e by Theorem 2.3 (iii).

We next suppose that p = 2 and e ≥ 2. Then g ≡ 1 (mod 2), since gcd(g, 2) = 1.

Moreover, a ≡ 2 (mod 4), b ≡ 3 (mod 4), and w0(a, b) ̸≡ w1(a, b) (mod 2) by

Theorem 2.3 (iv). Since a ≡ 0 (mod 2) and b ≡ 1 (mod 2), we can find that

w2i(a, b) ≡ w0(a, b) (mod 2) and w2i+1(a, b) ≡ w1(a, b) (mod 2) for i ≥ 0. By

Theorem 2.1, a′ = vg(a, b) and b′ = (−1)g+1bg ≡ 1 · 3g ≡ 3 (mod 4). Noting

that v0(a, b) = 2 and v1(a, b) = a ≡ 2 (mod 4), it follows now by induction that

vn(a, b) ≡ 2 (mod 4) for all n ≥ 0. Hence, a′ ≡ 2 (mod 4) and b′ ≡ 3 mod 4.

We now show that w1(a
′, b′) ̸≡ w0(a

′, b′). By definition, w0(a
′, b′) = ws(a, b) and

w1(a
′, b′) = ws+g(a, b), where gcd(g, 2) = 1. Then s ̸≡ s+g (mod 2), which implies

that w1(a
′, b′) ̸≡ w0(a

′, b′) (mod 2). Hence, w(a′, b′) is u. d. modulo 2e by Theorem

2.3 (iv).

Finally, we show that λw′(pe) = per, which then implies that each residue modulo

pe appears exactly r times in a least period of w(a′, b′) modulo pe, because w(a′, b′)

is u. d. modulo pe. By Theorem 2.3 (i) and (ii), λw′(pe) = peEw′(p). It thus suffices

to show that Ew′(p) = r. By our earlier arguments, w(a′, b′) has characteristic roots

αg and βg and Ew′(p) = ordp(α
g). Since Ew(p) = ordp(α) by our above discussion,

we see that

Ew′(p) = ordp(α
g) =

Ew(p)

gcd(Ew(p), g)
= r.

Our result now follows. □

4. Conclusions

Remark 4.1. We observe that in a certain sense, Theorem 1.3 is the best possible.

Let g be any fixed positive integer. Let s be a fixed nonnegative integer and define

{w′
n}∞n=0 by w′

n = ws+ng(a, b). Suppose that gcd(g, p) > 1. Let g = pi for some

positive integer i. We claim that the finite subsequence {w′
n}

per−1
n=0 does not contain
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all residues modulo pe, where e ≥ 1. By Theorem 2.3 (i), h(p) = p. It now follows

by (1.2) that

w′
n = ws+ng ≡ Mniws (mod p) (4.1)

for n ∈ {0, 1, . . . , per − 1}, where M = M(p). Since gcd(M,p) = 1, we see by (4.1)

that w′
n ̸≡ 0 (mod p) if ws ̸≡ 0 (mod p), while w′

n ≡ 0 (mod p) if ws ≡ 0 (mod p).

We now consider the problem of extending our results from second-order linear

recurrence sequences to kth-order linear recurrence sequences, where k ≥ 2. Let

w(a1, a2, . . . , ak) denote the kth-order linear recurrence defined by

wn+k = a1wn+k−1 + a2wn+k−2 + · · ·+ akwn,

where the parameters a1, a2, . . . , ak and the initial terms w0, w1, . . . , wk−1 are all

integers. Let

g(x) = xk − a1x
k−1 − a2x

k−2 − · · · − ak−1x− ak

be the characteristic polynomial of w(a1, a2, . . . ak) with roots α1, α2, . . . , αk and

discriminant

D =
∏

1≤i<j≤k

(αi − αj)
2.

We make the following conjecture.

Conjecture 4.2. Suppose that the sequence w(a1, a2, . . . , ak) is uniformly dis-

tributed modulo pe with period λw(p
e) = peE, where gcd(ak, p) = 1, e ≥ 1, and

each residue modulo pe appears exactly E times in a least period of w(a1, a2, . . . , ak)

modulo pe. Let g be any fixed positive integer such that gcd(g, p) = 1. Let

d = gcd(g,E) and let r = E
d . Let s be a fixed nonnegative integer and define

{w′
n}∞n=0 by w′

n = ws+ng(a1, a2, . . . , ak). Then each residue modulo pe appears

exactly r times in the finite sequence {w′
n}

per−1
n=0 .

The example below provides some justification for Conjecture 4.2.

Example 4.3. Consider the third-order linear recurrence (w) = w(3,−1,−2) de-

fined by

wn+3 = 3wn+2 − wn+1 − 2wn,

with initial terms w0 = 0, w1 = 0, w2 = 1, and having the characteristic polynomial

f(x) = x3 − 3x2 + x+ 2

with characteristic roots α1 = (1+
√
5)/2, α2 = (1−

√
5)/2, α3 = 2, and discriminant

D = 5. By inspection, (w) is u. d. modulo 25 with period λ(25) = 100 = 25 · 4. Let
g be a fixed positive integer such that gcd(g, 5) = 1. Let

r =
4

gcd(4, g)
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Consider the finite subsequence of (w) defined by

w0, wg, w2g, . . . w(25r−1)g. (4.2)

By examination, the subsequence (4.2) is u. d. with each residue modulo 25 ap-

pearing exactly r times when (g, r) = (4, 1) or (2, 2) or (3, 4).
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