

GENERALIZATION OF A THEOREM OF VÉLEZ ON UNIFORM DISTRIBUTION IN SECOND-ORDER LINEAR RECURRENCES

Lawrence Somer

Department of Mathematics, Catholic University of America, Washington, D.C. somer@cua.edu

Michal Křížek

Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic krizek@math.cas.cz

Received: 1/25/24, Revised:10/16/24, Accepted: 12/20/24, Published: 1/17/25

Abstract

We generalize a result by Vélez on second-order linear recurrence sequences that are uniformly distributed modulo a prime power. Vélez showed that if a secondorder linear recurrence is uniformly distributed modulo a prime power p^e , then each residue modulo p^e also appears exactly once in a particular finite subsequence of that recurrence. We find more general finite subsequences such that each residue modulo p^e appears exactly r times in that subsequence, where r may be greater than 1.

1. Introduction

Let (w) = w(a, b) denote the sequence satisfying the second-order linear recursion relation

$$w_{n+2}(a,b) = aw_{n+1}(a,b) + bw_n(a,b),$$

where the parameters a and b and the initial terms $w_0(a, b)$ and $w_1(a, b)$ are all integers. Let $D = D(a, b) = a^2 + 4b$ be the discriminant of w(a, b). When the parameters a and b are known, we frequently write $w_n(a, b)$ simply as w_n . We distinguish two special recurrences, the Lucas sequence of the first kind (LSFK) u(a, b) with initial terms $u_0 = 0$ and $u_1 = 1$, and the Lucas sequence of the second kind (LSSK) v(a, b) with initial terms $v_0 = 2$ and $v_1 = a$. Throughout this paper, p will denote a prime and m will denote a positive integer. It was shown in [4, pp. 344–345] that w(a, b) is purely periodic modulo m if gcd(m, b) = 1. From here on, we assume that gcd(m, b) = 1 and gcd(p, b) = 1. The period length of w(a, b)

DOI: 10.5281/zenodo.14679256

modulo m, denoted by $\lambda_w(m)$, is the least positive integer ℓ such that

$$w_{n+\ell} \equiv w_n \pmod{m}$$
 for all $n \ge 0$

If the recurrence w(a, b) is understood, we will write $\lambda_w(m)$ simply as $\lambda(m)$. The restricted period of w(a, b) modulo m, denoted by $h_w(m)$, is the least positive integer f such that

$$w_{n+f} \equiv M w_n \pmod{m} \quad \text{for all } n \ge 0, \tag{1.1}$$

for some fixed residue M modulo m such that gcd(M, m) = 1. Here, $M = M_w(m)$ is called the *multiplier of* w(a, b) modulo m. Since the LSFK u(a, b) is purely periodic modulo m and has initial term $u_0 = 0$, it is easily seen that $h_u(m)$ is the least positive integer t such that

$$u_t \equiv 0 \pmod{m}$$
.

We easily observe that if $\lambda_w(m) \mid r$ and $h_w(m) \mid s$, then r is a general period of w(a, b) modulo m and s is a general restricted period of w(a, b) modulo m. It is proven in [4, pp. 354–355] that $h_w(m) \mid \lambda_w(m)$. Let

$$E_w(m) = \frac{\lambda_w(m)}{h_w(m)}.$$

Then by [4, pp. 354–355], $E_w(m)$ is the multiplicative order of the multiplier $M_w(m)$ modulo m. By repeated applications of (1.1), we see that if $h = h_w(m)$, then

$$w_{n+hi} \equiv M^i w_n \pmod{m} \tag{1.2}$$

for all $n \ge 0$ and $i \ge 1$.

The recurrence w(a, b) is said to be *uniformly distributed* (u. d.) modulo m if each residue modulo m appears exactly the same number of times E in a least period of w(a, b) modulo m, where $E \ge 1$. In 1975, Bumby [1] and Webb and Long [12] independently gave necessary and sufficient criteria for the recurrence w(a, b) to be u. d. modulo m. These criteria will be presented in Theorem 2.3 in Section 2. In [11], Vélez sharpened the results of Bumby and Webb and Long, by showing that if w(a, b) is u. d. modulo p^e , then there exist subsequences of w(a, b) that are also u. d. modulo p^e . Vélez's result is given below.

Theorem 1.1. (Vélez) Suppose that the sequence w(a, b) is uniformly distributed modulo p^e with period $\lambda_w(p^e) = p^e E$, where $e \ge 1$ and each residue modulo p^e appears exactly E times in a least period of w(a, b) modulo p^e . Let s be a fixed nonnegative integer and define $\{w'_n\}_{n=0}^{\infty}$ by $w'_n = w_{s+nE}(a, b)$. Then each residue modulo p^e appears exactly once in the finite sequence $\{w'_n\}_{n=0}^{e^{-1}}$. Moreover, if $p \ge 3$, then $a \not\equiv 0 \pmod{p}$ and $E = \operatorname{ord}_p(a/2)$, while E = 1 if p = 2.

We note that already in 1975, twelve years before Vélez's paper, Bumby [1] gave a more precise result than that of Theorem 1.1 above for the case in which e = 1. **Theorem 1.2. (Bumby)** Let the sequence w(a, b) be uniformly distributed modulo p with period $\lambda_w(p) = pE$, where each residue modulo p appears exactly E times in a least period of w(a, b) modulo p. Let c be any multiple of E such that gcd(c, p) = 1. Then for every nonnegative integer s, the sequence $w_s, w_{s+c}, \ldots, w_{s+(p-1)c}$ is congruent to an arithmetic progression with nonzero difference modulo p.

Our main result, which is given below, generalizes Theorem 1.1. The proof of Theorem 1.3 will be given in Section 3 and is shorter than the proof of Theorem 1.1 given by Vélez in [11].

Theorem 1.3. Suppose that the sequence w(a, b) is uniformly distributed modulo p^e with period $\lambda_w(p^e) = p^e E$, where gcd(b, p) = 1, $e \ge 1$, and each residue modulo p^e appears exactly E times in a least period of w(a, b) modulo p^e . Let g be any fixed positive integer such that gcd(g, p) = 1. Let d = gcd(g, E) and let $r = \frac{E}{d}$. Let s be a fixed nonnegative integer and define $\{w'_n\}_{n=0}^{\infty}$ by $w'_n = w_{s+ng}(a, b)$. Then each residue modulo p^e appears exactly r times in the finite sequence $\{w'_n\}_{n=0}^{p^e r-1}$. Further, if $p \ge 3$, then $a \not\equiv 0 \pmod{p}$ and $E = \operatorname{ord}_p(a/2)$, while E = 1 if p = 2.

2. Auxiliary Results

Before proving our principal result, Theorem 1.3, we introduce some definitions and useful statements. Associated with the recurrence w(a, b) is the characteristic polynomial

 $f(x) = x^2 - ax - b$

with characteristic roots $\alpha = (a + \sqrt{a^2 + 4b})/2$, $\beta = (a - \sqrt{a^2 + 4b})/2$, and discriminant $D = D(a, b) = (\alpha - \beta)^2 = a^2 + 4b$. We will frequently consider the case in which $p \mid D$ for some prime p. In that case, $\alpha \equiv \beta \equiv a/2 \pmod{p}$ if p is odd. We further note that if p = 2 and $p \mid D$, then a is even. By the Binet formulas,

$$u_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad v_n = \alpha^n + \beta^n, \quad \text{if } D \neq 0,$$

while

$$u_n = n\alpha^{n-1}, \quad v_n = 2\alpha^n, \quad \text{if } D = 0.$$

More generally,

$$w_n = c_\alpha \alpha^n + c_\beta \beta^n \quad \text{if } D \neq 0,$$

where

$$c_{\alpha} = \frac{w_1 - \beta w_0}{\alpha - \beta}, \quad c_{\beta} = \frac{\alpha w_0 - w_1}{\alpha - \beta},$$

(see [5, p. 174]), while

$$w_n = (c_1 n + c_2)\alpha^n \quad \text{if } D = 0,$$

where

$$c_1 = \frac{w_1 - w_0 \alpha}{\alpha}, \quad c_2 = w_0,$$

(see [9, pp. 33–35]).

A recurrence w(a, b) is called *regular modulo* p, or *p*-regular for short, if

$$\begin{vmatrix} w_0 & w_1 \\ w_1 & w_2 \end{vmatrix} = w_0 w_2 - w_1^2 \not\equiv 0 \pmod{p}.$$

Remark 2.1. If w(a, b) is not *p*-regular, then it is said to be *p*-irregular. It is clear that w(a, b) is *p*-regular if and only if the vectors (w_0, w_1) and (w_1, w_2) are linearly independent modulo *p*. Further, w(a, b) is *p*-irregular precisely when w(a, b) satisfies a recursion relation modulo *p* of order less than two. Clearly, w(a, b) is *p*-irregular if $p \mid \text{gcd}(w_0, w_1)$. We note that for the LSFK u(a, b),

$$u_0 u_2 - u_1^2 = 0 \cdot a - 1^2 = -1 \not\equiv 0 \pmod{p},$$

while for the LSSK v(a, b),

$$v_0v_2 - v_1^2 = 2(a^2 + 2b) - a^2 = a^2 + 4b = D(a, b).$$

Thus, u(a, b) is always *p*-regular, while v(a, b) is *p*-irregular if and only if $p \mid D(a, b)$.

Lemma 2.2 below, which is proved in [2, p. 695], characterizes those sequences w(a, b) that are *p*-irregular in the case in which $w_0 \neq 0 \pmod{p}$.

Lemma 2.2. Consider the sequences w(a, b) and w'(a, b) with discriminant D and characteristic roots α and β . Suppose that $p \nmid b$. Then the following hold:

- (i) If $w_0 \equiv 0 \pmod{p}$, then w(a, b) is p-irregular if and only if $w_1 \equiv 0 \pmod{p}$.
- (ii) Suppose that p is odd, $p \nmid \gcd(w_0, w_1)$, and (D/p) = -1, where (D/p) denotes the Legendre symbol and (D/p) = 0 if $p \mid D$. Then w(a, b) is p-regular.
- (iii) Suppose that p is odd, $p \nmid \gcd(w_0, w_1)$, and (D/p) = 1. Then α and β lie in $\mathbb{Z}/p\mathbb{Z}$ and $\alpha\beta = -b \not\equiv 0 \pmod{p}$. Moreover, w(a, b) is p-irregular if and only if either $w_1 \equiv \alpha w_0$ or $w_1 \equiv \beta w_0 \pmod{p}$. If $w_1 \equiv \alpha w_0 \pmod{p}$, then $w_n \equiv \alpha^n w_0$ for $n \ge 0$. If $w_1 \equiv \beta w_0 \pmod{p}$, then $w_n \equiv \beta^n w_0$ for $n \ge 0$.
- (iv) Suppose that p is odd, $p \nmid \gcd(w_0, w_1)$, and $p \mid D$. Then $\alpha \equiv \beta \equiv a/2 \pmod{p}$ and $a \not\equiv 0 \pmod{p}$. Furthermore, w(a, b) is p-irregular if and only if $w_1 \equiv (a/2)w_0 \pmod{p}$, in which case $w_n \equiv (a/2)^n w_0$ for $n \geq 0$.
- (v) Suppose that p = 2 and $2 \nmid \gcd(w_0, w_1)$. Then w(a, b) is 2-irregular if and only if $a \equiv 0 \pmod{2}$, $b \equiv 1 \pmod{2}$, and $w_0 \equiv w_1 \equiv 1 \pmod{2}$, in which case $2 \mid D$ and $w_n \equiv 1 \pmod{2}$ for $n \geq 0$.

- (vi) If w(a, b) is p-irregular, then either $w_n \equiv 0 \pmod{p}$ for all $n \geq 0$ or $w_n \neq 0 \pmod{p}$ for all $n \geq 0$. In particular, if there exists terms w_i and w_j such that $i \neq j$, $w_i \equiv 0 \pmod{p}$, and $w_j \neq 0 \pmod{p}$, then w(a, b) is p-regular.
- (vii) If (w) = w(a,b) and (w') = w'(a,b) are both p-regular and $e \ge 1$, then $\lambda_w(p^e) = \lambda_{w'}(p^e)$, $h_w(p^e) = h_{w'}(p^e)$, $M_w(p^e) \equiv M_{w'}(p^e) \pmod{p^e}$, and $E_w(p^e) = E_{w'}(p^e)$.

Proof. All parts except part (vi) follow from results in [2, p. 695]. Part (vi) follows from parts (i)–(v). \Box

Theorem 2.3. Let w(a,b) be a recurrence modulo p^e with characteristic roots α and β and discriminant $D = (\alpha - \beta)^2 = a^2 + 4b$. Then the following hold.

- (i) The recurrence w(a, b) is u. d. modulo p if and only if $p \mid D$ and w(a, b) is regular modulo p. In this case, h(p) = p, $\lambda(p) = pE(p)$, and each residue modulo p appears exactly E(p) times in a least period of w(a, b) modulo p. If $p \geq 3$ and w(a, b) is u. d. modulo p, then $a \not\equiv 0 \pmod{p}$, $\alpha \equiv \beta \equiv a/2 \pmod{p}$, and $E(p) = \operatorname{ord}_p(M_w(p)) = \operatorname{ord}_p(\alpha) = \operatorname{ord}_p(a/2)$. If p = 2, then E(p) = 1. In all cases, $E(p) \mid p - 1$.
- (ii) Suppose that $p \ge 5$ and $e \ge 2$. Then w(a, b) is u. d. modulo p^e if and only if $p \mid D$ and w(a, b) is regular modulo p. In this case, $a \not\equiv 0 \pmod{p}$, $h(p^e) = p^e$, $E(p) = \operatorname{ord}_p(a/2)$, and $\lambda(p^e) = p^e E(p)$. Moreover, each residue modulo p^e appears exactly E(p) times in a least period of w(a, b) modulo p^e . Further, $E(p) \mid p-1$.
- (iii) Suppose that p = 3 and $e \ge 2$. Then w(a, b) is u. d. modulo 3^e if and only if $3 \mid D, D \not\equiv 6 \pmod{9}$, and w(a, b) is regular modulo 3. In this case, $a \not\equiv 0 \pmod{3}$, $h(3^e) = 3^e$, $E(3) = \operatorname{ord}_3(a/2)$, and $\lambda(3^e) = 3^e E(3)$. Moreover, each residue modulo 3^e appears exactly E(3) times in a least period of w(a, b) modulo 3^e . Furthermore, $E(3) \mid 2$.
- (iv) Suppose that p = 2 and $e \ge 2$. Then w(a, b) is u. d. modulo 2^e if and only if $2 \mid D$, $a \equiv 2 \pmod{4}$, $b \equiv 3 \pmod{4}$, $w_0 \not\equiv w_1 \pmod{2}$, and w(a, b)is regular modulo 2. In this case, $h(2^e) = 2^e$, E(2) = 1, and $\lambda(2^e) = 2^e$. Moreover, each residue modulo 2^e appears exactly once in a least period of w(a, b) modulo 2^e .
- (v) If $p \ge 3$ and $p \mid D$, then w(a, b) is regular modulo p if and only if $p \nmid 2w_1 w_0$. If p = 2 and $p \mid D$, then $a \equiv 0 \pmod{2}$ and w(a, b) is regular modulo 2 if and only if $w_0 \not\equiv w_1 \pmod{2}$.

Proof. This follows from Lemma 2.2 (iv) and (v) of this paper and results in [1], [12], [8], [11, p. 38], Theorem 1.11 of [6], and [7, pp. 30-48].

INTEGERS: 25 (2025)

Theorem 2.4 below will be needed to prove Theorem 1.3.

Theorem 2.4. Let w(a,b) be any second-order linear recurrence and define w'_n by $w'_n = w_{tn+r}(a,b)$, where $n \ge 0$, t is a fixed positive integer, and r is a fixed nonnegative integer. Then for all $n \ge 0$,

$$w'_{n+2} = a'w'_{n+1} + b'w'_n,$$

where $a' = v_t(a, b)$ and $b' = (-1)^{t+1}b^t$, and the sequence $\{w'_n\}_{n=0}^{\infty}$ is equal to the second-order recurrence sequence w(a', b'). Further, if α and β are the characteristic roots of w(a, b) and D(a, b) is the discriminant of w(a, b), then w(a', b') has characteristic roots α^t and β^t and discriminant $D(a', b') = (u_t(a, b))^2 D(a, b)$.

Proof. All assertions of Theorem 2.4 follow from [10], except for the one concerning the discriminant of w(a', b'). We note that

$$D(a',b') = (\alpha^t - \beta^t)^2 = \left(\frac{\alpha^t - \beta^t}{\alpha - \beta}\right)^2 (\alpha - \beta)^2 = (u_t(a,b))^2 D(a,b).$$

3. Proof of the Main Theorem

We are now able to prove Theorem 1.3.

Proof of Theorem 1.3. Let (w) = w(a, b) with characteristic roots α and β and discriminant D = D(a, b). Since (w) is u. d. modulo p^e , we see by Theorem 2.3 that $p \mid D$, (w) is *p*-regular, $h = h_w(p) = p$, $E = E_w(p) = \operatorname{ord}_p(\alpha) = \operatorname{ord}_p(a/2)$, and $\lambda_w(p^e) = p^e E$. Further, each residue modulo p^e appears exactly E times in a least period of (w) modulo p^e . Moreover, there exists a nonnegative integer ℓ such that $0 \leq \ell \leq h - 1 = p - 1$ and $w_\ell \equiv 0 \pmod{p}$. Then $w_n(a, b) \equiv 0 \pmod{p}$ if and only if $n \equiv \ell \pmod{p}$.

We define the sequence $\{w'_n\}_{n=0}^{\infty}$ by $w'_n = w_{s+ng}(a, b)$. Then by Theorem 2.4, $\{w'_n\}_{n=0}^{\infty} = (w') = w(a', b')$, where $a' = v_g(a, b)$ and $b' = (-1)^{g+1}b^g$. Additionally, by Theorem 2.4, (w') has characteristic roots α^g and β^g and discriminant

$$D' = D(a', b') = (u_q(a, b))^2 D.$$

Since gcd(b, p) = 1 and $p \mid D$, we see that gcd(b', p) = 1 and $p \mid D'$. We will show below that (w') = w(a', b') is u. d. modulo p^e and $E' = E_{w'}(p) = r$. Then by Theorem 2.3, it would follow that $\lambda_{w'}(p^e) = p^e r$ and each residue modulo p^e appears exactly r times in a least period of (w') = w(a', b'), as desired.

We first show that (w') = w(a', b') is *p*-regular. Consider the first h = p terms

$$w_s(a,b), w_{s+q}(a,b), \ldots, w_{s+(p-1)q}(a,b)$$

of w(a', b'). Since gcd(g, p) = 1, it follows that the set $\{s, s + g, \ldots, s + (p-1)g\}$ is congruent to the set $\{0, 1, \ldots, p-1\}$ modulo p. Thus, $w_{s+ig}(a, b) \equiv 0 \pmod{p}$ if and only $i \equiv \ell \pmod{p}$, where $0 \leq i \leq p-1$. Hence, there are terms w'_i and w'_j such that $w'_i \equiv 0 \pmod{p}$ and $w'_j \neq 0 \pmod{p}$. It now follows by Lemma 2.2 (vi) that w(a', b') is p-regular. It further follows by Theorem 2.3 (i) and (ii) that w(a', b') is u. d. modulo p^e if either e = 1 or it is the case that $e \geq 2$ and $p \geq 5$.

We now suppose that p = 3 and $e \ge 2$. Then $3 \mid D$ and $D \not\equiv 6 \pmod{9}$ by Theorem 2.3 (iii), since w(a, b) is u. d. modulo 3^e . By Theorem 2.4,

$$D' = D(a', b') = (u_q(a, b))^2 D.$$

By inspection, $(u_g(a,b))^2 \equiv 0, 1, 4$, or 7 (mod 9), while $D \equiv 0$ or 3 (mod 9). By examination, we then observe that $D' = (u_g(a,b))^2 D \equiv 0$ or 3 (mod 9), and also $D' \not\equiv 6 \pmod{9}$. Consequently, w(a',b') is u. d. modulo 3^e by Theorem 2.3 (iii).

We next suppose that p = 2 and $e \ge 2$. Then $g \equiv 1 \pmod{2}$, since gcd(g, 2) = 1. Moreover, $a \equiv 2 \pmod{4}$, $b \equiv 3 \pmod{4}$, and $w_0(a,b) \not\equiv w_1(a,b) \pmod{2}$ by Theorem 2.3 (iv). Since $a \equiv 0 \pmod{2}$ and $b \equiv 1 \pmod{2}$, we can find that $w_{2i}(a,b) \equiv w_0(a,b) \pmod{2}$ and $w_{2i+1}(a,b) \equiv w_1(a,b) \pmod{2}$ for $i \ge 0$. By Theorem 2.1, $a' = v_g(a,b)$ and $b' = (-1)^{g+1}b^g \equiv 1 \cdot 3^g \equiv 3 \pmod{4}$. Noting that $v_0(a,b) = 2$ and $v_1(a,b) = a \equiv 2 \pmod{4}$, it follows now by induction that $v_n(a,b) \equiv 2 \pmod{4}$ for all $n \ge 0$. Hence, $a' \equiv 2 \pmod{4}$ and $b' \equiv 3 \mod{4}$. We now show that $w_1(a',b') \not\equiv w_0(a',b')$. By definition, $w_0(a',b') = w_s(a,b)$ and $w_1(a',b') \equiv w_{s+g}(a,b)$, where gcd(g,2) = 1. Then $s \not\equiv s+g \pmod{2}$, which implies that $w_1(a',b') \not\equiv w_0(a',b') \pmod{2}$. Hence, w(a',b') is u. d. modulo 2^e by Theorem 2.3 (iv).

Finally, we show that $\lambda_{w'}(p^e) = p^e r$, which then implies that each residue modulo p^e appears exactly r times in a least period of w(a',b') modulo p^e , because w(a',b') is u. d. modulo p^e . By Theorem 2.3 (i) and (ii), $\lambda_{w'}(p^e) = p^e E_{w'}(p)$. It thus suffices to show that $E_{w'}(p) = r$. By our earlier arguments, w(a',b') has characteristic roots α^g and β^g and $E_{w'}(p) = \operatorname{ord}_p(\alpha^g)$. Since $E_w(p) = \operatorname{ord}_p(\alpha)$ by our above discussion, we see that

$$E_{w'}(p) = \operatorname{ord}_p(\alpha^g) = \frac{E_w(p)}{\gcd(E_w(p), g)} = r.$$

Our result now follows.

4. Conclusions

Remark 4.1. We observe that in a certain sense, Theorem 1.3 is the best possible. Let g be any fixed positive integer. Let s be a fixed nonnegative integer and define $\{w'_n\}_{n=0}^{\infty}$ by $w'_n = w_{s+ng}(a, b)$. Suppose that gcd(g, p) > 1. Let g = pi for some positive integer i. We claim that the finite subsequence $\{w'_n\}_{n=0}^{p^er-1}$ does not contain all residues modulo p^e , where $e \ge 1$. By Theorem 2.3 (i), h(p) = p. It now follows by (1.2) that

$$w'_n = w_{s+ng} \equiv M^{ni} w_s \pmod{p} \tag{4.1}$$

for $n \in \{0, 1, \dots, p^e r - 1\}$, where M = M(p). Since gcd(M, p) = 1, we see by (4.1) that $w'_n \not\equiv 0 \pmod{p}$ if $w_s \not\equiv 0 \pmod{p}$, while $w'_n \equiv 0 \pmod{p}$ if $w_s \equiv 0 \pmod{p}$.

We now consider the problem of extending our results from second-order linear recurrence sequences to kth-order linear recurrence sequences, where $k \ge 2$. Let $w(a_1, a_2, \ldots, a_k)$ denote the kth-order linear recurrence defined by

$$w_{n+k} = a_1 w_{n+k-1} + a_2 w_{n+k-2} + \dots + a_k w_n,$$

where the parameters a_1, a_2, \ldots, a_k and the initial terms $w_0, w_1, \ldots, w_{k-1}$ are all integers. Let

$$g(x) = x^{k} - a_{1}x^{k-1} - a_{2}x^{k-2} - \dots - a_{k-1}x - a_{k}$$

be the characteristic polynomial of $w(a_1, a_2, \ldots a_k)$ with roots $\alpha_1, \alpha_2, \ldots, \alpha_k$ and discriminant

$$D = \prod_{1 \le i < j \le k} (\alpha_i - \alpha_j)^2.$$

We make the following conjecture.

Conjecture 4.2. Suppose that the sequence $w(a_1, a_2, \ldots, a_k)$ is uniformly distributed modulo p^e with period $\lambda_w(p^e) = p^e E$, where $gcd(a_k, p) = 1, e \ge 1$, and each residue modulo p^e appears exactly E times in a least period of $w(a_1, a_2, \ldots, a_k)$ modulo p^e . Let g be any fixed positive integer such that gcd(g, p) = 1. Let d = gcd(g, E) and let $r = \frac{E}{d}$. Let s be a fixed nonnegative integer and define $\{w'_n\}_{n=0}^{\infty}$ by $w'_n = w_{s+ng}(a_1, a_2, \ldots, a_k)$. Then each residue modulo p^e appears exactly r times in the finite sequence $\{w'_n\}_{n=0}^{\infty}$.

The example below provides some justification for Conjecture 4.2.

Example 4.3. Consider the third-order linear recurrence (w) = w(3, -1, -2) defined by

$$w_{n+3} = 3w_{n+2} - w_{n+1} - 2w_n,$$

with initial terms $w_0 = 0$, $w_1 = 0$, $w_2 = 1$, and having the characteristic polynomial

$$f(x) = x^3 - 3x^2 + x + 2$$

with characteristic roots $\alpha_1 = (1+\sqrt{5})/2$, $\alpha_2 = (1-\sqrt{5})/2$, $\alpha_3 = 2$, and discriminant D = 5. By inspection, (w) is u. d. modulo 25 with period $\lambda(25) = 100 = 25 \cdot 4$. Let g be a fixed positive integer such that gcd(g, 5) = 1. Let

$$r=\frac{4}{\gcd(4,g)}$$

INTEGERS: 25 (2025)

Consider the finite subsequence of (w) defined by

$$w_0, w_g, w_{2g}, \dots w_{(25r-1)g}.$$
 (4.2)

By examination, the subsequence (4.2) is u. d. with each residue modulo 25 appearing exactly r times when (g, r) = (4, 1) or (2, 2) or (3, 4).

Acknowledgments. We thank the anonymous referee for suggestions which improved the content and exposition of the paper. This paper was supported by RVO 67985840 of the Czech Academy of Sciences.

References

- R. T. Bumby, A distribution property for linear recurrences of the second order, Proc. Amer. Math. Soc. 50 (1975), 101-106.
- [2] W. Carlip and L. Somer, Bounds for frequencies of residues of regular second-order recurrences modulo p^r, in Number Theory in Progress, Vol. 2, (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, 691-719.
- [3] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$, Ann. of Math. **15** (1913), 30-70.
- [4] R. D. Carmichael, On sequences of integers defined by recurrence relations, Quart. J. Pure Appl. Math. 48 (1920), 343-372.
- [5] D. Kalman and R. Mena, The Fibonacci numbers exposed, Math. Mag. 76 (2003), 167-181.
- [6] D.H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. 31 (1930), 419-448.
- [7] W. Narkiewicz, Uniform distribution of sequences of integers in residue classes, *Lecture Notes in Mathematics 1087*, Springer, Berlin, 1984.
- [8] M.B. Nathanson, Linear recurrences and uniform distribution, Proc. Amer. Math. Soc. 48 (1975), 289-291.
- [9] T.N. Shorey and R. Tijdeman, Exponential Diophantine equations, Cambridge Univ. Press, Cambridge, 1986.
- [10] L. Somer, Solution to Problem H-377, Fibonacci Quart. 24.3 (1986), 284-285.
- [11] W. Y. Vélez, Uniform distribution of two-term recurrence sequences, Trans. Amer. Math. Soc. 301 (1987), 37-45.
- [12] W. A. Webb and C. T. Long, Distribution modulo p^h of the general linear second order recurrence, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (8) (1975), 92-100.