
#A10 INTEGERS 25 (2025)

ON A SPECIAL METRIC IN CYCLOTOMIC FIELDS

Katerina Saettone
Department of Mathematics, University of Illinois Urbana-Champaign, Urbana,

Illinois
kas18@illinois.edu

Alexandru Zaharescu
Department of Mathematics, University of Illinois Urbana-Champaign, Urbana,

Illinois
zaharesc@illinois.edu

Zhuo Zhang
Department of Mathematics, University of Illinois Urbana-Champaign, Urbana,

Illinois
zhuoz4@illinois.edu

Received: 8/3/24, Accepted: 1/27/25, Published: 2/21/25

Abstract

Let p be an odd prime and ω be a primitive pth root of unity. In this paper, we
introduce a metric on the cyclotomic field K = Q(ω). We prove that this metric
has several remarkable properties, such as invariance under the action of the Galois
group. Furthermore, we show that points in the ring of integers OK behave in a
highly uniform way under this metric. More specifically, we prove that for a certain
hypercube in OK centered at the origin, almost all pairs of points in the cube are
almost equi-distanced from each other when p and N are large enough. When
suitably normalized, this distance is exactly 1/

√
6.

1. Introduction

Cyclotomic fields play an essential role in algebra and number theory, particularly

in understanding the behavior of prime numbers and the solutions to Diophantine

equations. In this paper, we uncover properties of cyclotomic fields equipped with

a special metric, which we study from both algebraic and probabilistic standpoints.

Let p be an odd prime and ω be a primitive p-th root of unity. The extension

of Q generated by ω in the field of complex numbers is the p-th cyclotomic field
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K = Q(ω). We shall denote by TrK/Q the trace map of the number field K (the

precise definition of TrK/Q will be reviewed in Section 2).

For α ∈ K, we denote by vα the vector in Qp−1 whose jth component is

TrK/Q(αω
j), for 1 ≤ j ≤ p − 1. In this paper, we define d(α, β), the distance

between α and β in K, as the Euclidean distance between the vectors vα and vβ
in Qp−1. We shall show that d is a metric on K, where positive-definiteness is the

only nontrivial property. Note that d is canonically defined and is independent of

the choice of ω.

We aim to investigate this metric d from several perspectives. In Section 3, we

show that d has certain nice properties that are related to the algebraic and number-

theoretic structure of Q(ω). For instance, the metric d is invariant under the action

of the Galois group G = Gal(K/Q). In turn, this gives us an analogy of Krasner’s

lemma within the context of cyclotomic fields equipped with the metric d.

In Section 4, we derive an explicit formula for the metric in terms of the coordi-

nates under the canonical basis {ω, . . . , ωp−1} of K.

In the rest of the paper, we build on the ideas of [1] and [2] to study the metric

d from a statistical point of view. More specifically, for a positive integer N , we

denote by B(p,N) the symmetric box of cyclotomic lattice points:

B(p,N) :=
{
a1ω + . . .+ ap−1ω

p−1 : a1, . . . , ap−1 ∈ [−N,N ] ∩ Z
}
,

which lies in the ring of integers OK . In Section 5, we normalize the metric d so

that the diameter of B(p,N) is exactly 1 in the sense of metric spaces, i.e., the

points furthest apart in B(p,N) are at a distance of exactly 1 from each other.

This gives us a scaled distance, denoted by dp,N (α, β), which serves as a unitary

means of comparing the spacing of points in different hypercubes B(p,N), as p and

N vary. Our main theorem states that points in B(p,N) are almost equi-distanced

from each other in the following sense.

Theorem 1. For any ε > 0, there exists an absolute and effectively computable

constant A(ε) such that if N, p > A(ε), then

1

#B(p,N)2
#

{
(α, β) ∈ B(p,N)×B(p,N) :

∣∣∣∣dp,N (α, β)− 1√
6

∣∣∣∣ > ε

}
< ε.

Theorem 1 reveals a surprising uniformity in the spacing of points among the

high-dimensional lattice points in K. It provides insight into a certain “statistical

regularity” in the geometric properties of cyclotomic fields when viewed through

the lens of this particular metric. Theorem 1 will follow from Theorem 5, which is

an explicit quantitative version that we shall prove in Section 6. Our methods rely

on calculating the various moments of distances between points in B(p,N).
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2. Notations and Definition of the Metric

2.1. Notations and Setup

In this subsection, we set up some notations and recall some preliminary facts from

algebraic number theory that will be needed in the later discussions. More details

can be found in [5], [6], and [11].

Throughout this paper, let p be an odd prime, and let ω be a primitive pth root

of unity, say ω = e2πi/p. Let K = Q(ω) be the pth cyclotomic field. It is well known

that the Galois group G := Gal(K/Q) is isomorphic to the group (Z/pZ)×, which
is cyclic of order p− 1.

We denote by OK the ring of integers of K, that is, the integral closure of Z in

K. It is well known that rings of integers have integral bases, and in this case, an

integral basis of OK is given by {ω, . . . , ωp−1}. Therefore,

OK = {a1ω + . . .+ ap−1ω
p−1 : a1, . . . , ap−1 ∈ Z}.

Many key properties of number fields can be studied via the trace map. Since cy-

clotomic fields are always Galois over Q, the trace map TrK/Q has a simple definition

in this case, which is

TrK/Q(α) =
∑

σ∈Gal(K/Q)

σ(α), α ∈ K. (1)

It can be proved that TrK/Q(α) ∈ Q for all α ∈ K. Furthermore, if α ∈ OK , then

TrK/Q(α) ∈ Z.
Finally, for complex-valued functions f and g, we write f ≪ g or f = O(g) to

indicate that there exists an absolute and effectively computable constant C such

that |f | ≤ C|g| for all inputs.

2.2. Definition of the Metric

We now formally define the metric d mentioned in the introduction. The metric

is, in fact, induced by a norm on K as a Q-vector space. The norm is defined as

follows.

Definition 1. For any α ∈ K, we define

∥α∥ =

√√√√p−1∑
j=1

(
TrK/Q(αωj)

)2

= ∥vα∥E ,

where vα ∈ Qp−1 is the vector whose jth component is Tr(αωj) and ∥ · ∥E denotes

the usual Euclidean norm on Qp−1.

Definition 2. For α, β ∈ K, we define their distance d(α, β) to be ∥α− β∥.
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Theorem 2. The function ∥ · ∥ defined as in Definition 1 is a norm on K.

Proof. We verify the three conditions of a norm. The triangle inequality follows

immediately from the usual triangle inequality in Euclidean spaces Qp−1 ⊆ Rp−1.

For any α ∈ K and λ ∈ Q, we need to prove that ∥λα∥ = |λ|∥α∥. This follows

from the Q-linearity of trace, since it implies that vλα = λvα.

It remains to prove positive-definiteness. Clearly ∥α∥ ≥ 0. Suppose ∥α∥ = 0.

Then vα ∈ Qp−1 is the zero vector. Hence,

TrK/Q(αω
j) = 0,

for all j = 1, . . . , p− 1. Suppose α ̸= 0. Then, we may write

1

α
= c1ω + . . .+ cp−1ω

p−1, where ci ∈ Q.

Therefore,

1 = c1αω + . . .+ cp−1αω
p−1.

Taking the trace of both sides and using the fact that trace is Q-linear, we have

p− 1 =

p−1∑
j=1

cj TrK/Q(αω
j) = 0,

which is a contradiction. Hence, α = 0.

It follows that the function d is indeed a metric on K. The distance defined in

this manner closely resembles the Euclidean distance in vector spaces but also has

properties that are well-suited to the study of cyclotomic fields. This will be further

explored in Section 3.

We remark that the norm in Definition 1 must be distinguished from the usual

norm of an algebraic number (say, over a Galois extension), which is defined to be

the product of all its Galois conjugates. There also exist several other notions of

norms over number fields. For example, one can define the Siegel norm of algebraic

numbers (see [4] and [10] for its construction and some interesting properties; for

some questions related to Siegel’s trace problem, see [8] and [9]). In this paper, the

word “norm” always refers to the norm we just defined unless stated otherwise.

3. Properties of the Metric

The metric d on K = Q(ω) defined above is the main object we investigate in

this paper. To convince the readers that the metric is a natural object worth

studying, we shall first prove a number of remarkable facts about this metric, the

most important one of which is the invariance under the action of the Galois group.

This is the content of the following proposition.
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3.1. Invariance Under the Galois Group Action

Proposition 1. The metric d is invariant under the action of the Galois group

G = Gal(K/Q). In other words, for any σ ∈ G and α, β ∈ K, we have

d(α, β) = d(σ(α), σ(β)).

Proof. It suffices to show that the norm in Definition 1 is invariant under G, i.e.,

∥σ(α)∥ = ∥α∥ for all α ∈ K and σ ∈ G. Suppose σ−1(ω) = ωk, where 1 ≤ k ≤ p−1.

Then we have

∥σ(α)∥ =

√√√√p−1∑
j=1

(
TrK/Q(σ(α)ωj)

)2

=

√√√√p−1∑
j=1

(
TrK/Q

(
σ
(
α · σ−1(ω)j

)))2

=

√√√√p−1∑
j=1

(
TrK/Q

(
α · σ−1(ω)j

))2

=

√√√√p−1∑
j=1

(
TrK/Q

(
αωkj

))2

,

where the third equality follows from the fact that TrK/Q is invariant under G.

Since k must be coprime to p, it follows that {kj : 1 ≤ j ≤ p− 1} is a permutation

of {j : 1 ≤ j ≤ p− 1}. Hence, ∥σ(α)∥ = ∥α∥, as required.

3.2. An Analogue of Krasner’s Lemma

As a consequence of Proposition 1, we now prove that the metric d has another

surprising property, with which we will draw an analogy between the following

version of Krasner’s lemma.

Theorem 3 ([7, Lemma 8.1.6]). Let κ be a complete field with respect to a non-

Archimedean valuation, and let Ω be an algebraic closure of κ. Let α ∈ Ω be

separable over κ and let α = α1, . . . , αn be the conjugates of α over κ. Suppose that

for β ∈ Ω we have

|α− β| < |α− αi| for i = 2, . . . , n,

where | · | denotes the unique extension of the valuation to Ω. Then κ(α) ⊆ κ(β).

We now prove the following analogous result.
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Theorem 4. Let K = Q(ω), where ω is a primitive pth root of unity. Let α be

an element of K and let α1, . . . , αn be the conjugates of α over K, with α1 = α.

Suppose that for β ∈ K we have

d(α, β) <
1

2
d(α, αi) for i = 2, . . . , n,

where d is the metric in Definition 2. Then Q(α) ⊆ Q(β).

Proof. Let G = Gal(K/Q). From Galois theory, Q(α) ⊆ Q(β) if and only if

Gal(K/Q(β)) ⊆ Gal(K/Q(α)). Since G is a cyclic group of order p− 1, the preced-

ing condition is equivalent to |Gal(K/Q(β))| dividing |Gal(K/Q(α))|, which is then

equivalent to [K : Q(β)] dividing [K : Q(α)]. By the tower law, this is equivalent

to [Q(α) : Q] dividing [Q(β) : Q].

As in the statement, let α1, . . . , αn be the Galois conjugates of α over K, with

α1 = α. Similarly, let β1, . . . , βm be the Galois conjugates of β over K, with β1 = β.

Since K/Q is Galois, we have [Q(α) : Q] = n and [Q(β) : Q] = m. Therefore, we

need to prove that n divides m under the hypothesis that d(α, β) < 1
2d(α, αi) for

all i = 2, . . . , n.

Let

r =
1

2
min

2≤i≤n
d(α, αi).

Then d(α, β) < r. For any element x ∈ K, denote by B(x, r) the open ball centered

at x with radius r under the metric d. Observe that if αi, αj are two distinct Galois

conjugates of α, say αi = σ(α) and αj = τ(α), where σ, τ ∈ Gal(K/Q(α)), then

d(αi, αj) = d(σ(α), τ(α)) = d(α, σ−1τ(α)) ≥ 2r.

It follows that any two distinct conjugates αi and αj are at a distance of at least

2r from each other. In particular, the open balls {B(αi, r) : 1 ≤ i ≤ n} are pairwise

disjoint.

We claim that for every βj there exists an αi such that βj ∈ B(αi, r). In other

words, the balls contain all conjugates of β. Indeed, if βj = σ(β), then

d(σ(α), βj) = d(σ(α), σ(β)) = d(α, β) < r,

by Proposition 1. Hence, βj ∈ B(σ(α), r).

Furthermore, we claim that for 1 ≤ i ≤ n, each ball B(αi, r) contains the same

number of conjugates of β. Indeed, suppose αi = σ(α). Then by Proposition 1

again, we have

d(αi, βj) = d(σ(α), βj) = d(α, σ−1(βj)).

Therefore, βj ∈ B(αi, r) if and only if σ−1(βj) ∈ B(α, r). Since σ is a bijection,

this proves that B(α, r) and B(αi, r) contain the same number of Galois conjugates

of β. This number is nonzero because β ∈ B(α, r). Since the balls are disjoint, we

conclude that n divides m, as desired.
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Remark 1. The following example illustrates that the constant 1
2 in the statement

of Theorem 4 is optimal, in the sense that any larger constant would make the

statement false. Consider p = 3, α = ω, and β = − 1
2 . Then α only has one Galois

conjugate other than itself, namely ω2. A straightforward computation shows that

d(α, β) =
3√
2

and d(α, ω2) = 3
√
2.

Therefore,

d(α, β) =
1

2
d(α, ω2),

but Q(α) is not contained in Q(β).

As a simple consequence, we deduce the following corollary, which is reminiscent

of the primitive element theorem in field theory.

Corollary 1. Let α, β ∈ K = Q(ω). Define γn = α + β
n . Then Q(γn) = Q(α, β)

for all sufficiently large n.

Proof. Clearly, Q(γn) ⊆ Q(α, β), so it suffices to prove the reverse inclusion. Note

that

d(α, γn) = ∥α− γn∥ =

∥∥∥∥βn
∥∥∥∥ =

∥β∥
n

.

Thus, when n is sufficiently large, we would have d(α, γn) < 1
2d(α, σ(α)) for all

σ ∈ G. Theorem 4 implies that Q(α) ⊆ Q(γn). In particular, α ∈ Q(γn), and so

β ∈ Q(γn), as desired.

Not only does Corollary 1 prove a special case of the primitive element theorem,

but it also provides a simple algorithm to find generators of subextensions of K.

4. Computing the Metric in Coordinates

In this section, we aim to derive an explicit formula of the metric d in terms of the

coordinates of α ∈ K under the integral basis {ω, . . . , ωp−1}. We first note that

TrK/Q(1) = p− 1, and TrK/Q(ω) = . . . = TrK/Q(ω
p−1) = −1. Therefore, if

α = a1ω + . . .+ ap−1ω
p−1,

then

TrK/Q(α) = −(a1 + . . .+ ap−1), (2)

and for j = 1, . . . , p− 1, we have

TrK/Q(αω
j) = −

p−1∑
i=1

i ̸=p−j

ai + (p− 1)ap−j = TrK/Q(α) + pap−j .
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Therefore,

∥α∥2 =

p−1∑
j=1

TrK/Q(αω
j)2

=

p−1∑
j=1

(
TrK/Q(α) + pap−j

)2

=

p−1∑
j=1

(
TrK/Q(α) + paj

)2

=

p−1∑
j=1

(
TrK/Q(α)

2 + 2paj TrK/Q(α) + p2a2j

)

= (p− 1)TrK/Q(α)
2 + 2pTrK/Q(α)

p−1∑
j=1

aj + p2
p−1∑
j=1

a2j .

From Equation (2) we see that

∥α∥2 = (p− 1)TrK/Q(α)
2 − 2pTrK/Q(α)

2 + p2
p−1∑
j=1

a2j

= p2
p−1∑
j=1

a2j − (p+ 1)TrK/Q(α)
2.

Hence, we have arrived at the following convenient formula, which we shall fre-

quently use in the later sections.

Lemma 1. Suppose α = a1ω + . . .+ ap−1ω
p−1 ∈ K. Then

∥α∥2 = p2∥α∥2E − (p+ 1)TrK/Q(α)
2, (3)

where ∥α∥E is the Euclidean norm of α, i.e., ∥α∥2E =
∑p−1

i=1 a2i .

Also, note that by the Cauchy-Schwarz inequality,

TrK/Q(α)
2 =

( p−1∑
j=1

aj

)2

≤ (p− 1)

p−1∑
j=1

a2j = (p− 1)∥α∥2E ,

so we conclude that

∥α∥2 ≥
(
p2 − (p+ 1)(p− 1)

)
∥α∥2E = ∥α∥2E .

In other words, the norm of α is always larger than or equal to the Euclidean norm

of α.
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5. The Normalized Distance

Let B(p,N) be the hypercube

B(p,N) :=
{
a1ω + . . .+ ap−1ω

p−1 : ai ∈ Z ∩ [−N,N ]
}
⊂ OK .

Then B(p,N) contains (2N + 1)p−1 points in total. In this section, we introduce a

normalized distance on B(p,N). To do so, we shall need to compute the diameter

of the hypercube B(p,N). This is done in the following lemma.

Lemma 2. The diameter of B(p,N), i.e., the maximum distance between two points

in B(p,N), is exactly

diamB(p,N) = 2Np
√
p− 1,

which is achieved by the following pairs of points

α =

p−1∑
i=1

N(−ω)i−1 = Nω −Nω2 + . . .+Nωp−2 −Nωp−1 and β = −α.

Proof. It suffices to maximize Equation (3) for α − β, where α, β ∈ B(p,N). Note

that

α− β = 2α = 2Nω − 2Nω2 − . . .+ 2Nωp−2 − 2Nωp−1.

It is easy to see that choosing such α and β would simultaneously maximize the

Euclidean norm ∥α − β∥2E and minimize the trace term (TrK/Q(α − β))2, because

in this case TrK/Q(α − β) = 0. Therefore, this pair must achieve the maximum

distance. It follows from Lemma 1 that

(diamB(p,N))2 = ∥α− β∥2 = p2(p− 1)(2N)2,

as required.

Definition 3. For α, β ∈ B(p,N), we define the normalized distance of α and β in

the cube by

dp,N (α, β) =
d(α, β)

2Np
√
p− 1

.

If we normalize the metric in this way, then the diameter of the hypercube

B(p,N) is exactly 1. This normalized distance is not only more aesthetically ap-

pealing but also very useful in comparing the distribution of points in different

hypercubes B(p,N), as p and N vary.

6. Almost All Points in B(p,N) are Almost Equi-distanced

In this section, we show that, in an appropriate sense, almost all points in B(p,N)

are “equi-distanced” from each other in the sense of Theorem 1. Our proof relies on
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the explicit calculations of the second and fourth moments of the distances, which

we define below.

Definition 4. Fix p,N , and let k be a positive integer. We define the kth moment

of distances between points in B(p,N) to be the following averaged sum:

Mk(p,N) :=
1

#B(p,N)2

∑
α∈B(p,N)

∑
β∈B(p,N)

d(α, β)k.

6.1. Computation of the Second Moment

Now, we evaluate the second moment of the distances in the following lemmas.

Lemma 3. For integers r ≥ 0 and N ≥ 1, consider the sum of powers

Sr(N) :=
∑

−N≤a≤N

ar.

Then we have:

Sr(N) = 0, if r is odd,

S2(N) =
1

3
N(N + 1)(2N + 1),

S4(N) =
1

15
N(N + 1)(2N + 1)(3N2 + 3N − 1).

Proof. When r is odd, the sum is zero because ar + (−a)r = 0. When r is even,

this follows from the well-known Faulhaber’s formula of sums of powers (see [3] for

example).

Lemma 4. The second moment of distances between points in B(p,N) is given by

M2(p,N) =
2

3
(p3 − 2p2 + 1)N(N + 1)

=
2

3
p3N2 +O(p2N2 + p3N).

Proof. By Lemma 1, we have

∑
α∈B(p,N)

∑
β∈B(p,N)

d(α, β)2 =
∑

−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(
p2

p−1∑
i=1

(ai − bi)
2

− (p+ 1)

p−1∑
i=1

p−1∑
j=1

(ai − bi)(aj − bj)
)
.

We break this sum into two pieces by linearity. The first piece equals

p2
p−1∑
i=1

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)
2. (4)
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The second piece equals

(p+ 1)

p−1∑
i=1

p−1∑
j=1

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)(aj − bj).

We now simplify the second piece. If i ̸= j, then the terms ai − bi and aj − bj are

independent, in which case the sum is zero because∑
−N≤ai,bi≤N

(ai − bi) = 0. (5)

If i = j, then (ai − bi)(aj − bj) = (ai − bi)
2, in which case the sum becomes

(p+ 1)

p−1∑
i=1

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)
2,

which is exactly the same as Equation (4), up to a difference in the coefficient. It

follows that∑
α∈B(p,N)

∑
β∈B(p,N)

d(α, β)2

= (p2 − p− 1)

p−1∑
i=1

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)
2

= (p2 − p− 1)(p− 1)(2N + 1)2p−4
∑

−N≤a1,≤b1≤N

(a21 − 2a1b1 + b21).

Again, we break the above sum by linearity and note that∑
−N≤a1,b1≤N

a1b1 =
( ∑

−N≤a1≤N

a1

)( ∑
−N≤b1≤N

b1

)
= 0, (6)

and ∑
−N≤a1,b1≤N

(a21 + b21) = 2(2N + 1)
∑

−N≤ai≤N

a2i = 2(2N + 1)S2(N), (7)

where the value of S2(N) is computed in Lemma 3. Therefore, we obtain∑
α∈B(p,N)

∑
β∈B(p,N)

d(α, β)2 =
2

3
(p2 − p− 1)(p− 1)(2N + 1)2p−3 ·N(N + 1)(2N + 1)

=
2

3
(p3 − 2p2 + 1)N(N + 1)(2N + 1)2p−2,

and the result follows from dividing the above quantity by #B(p,N)2 = (2N +

1)2p−2.
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We will argue that almost all pairs of points (α, β) ∈ B(p,N)2 are almost
√
µ

away from each other, where

µ = µ(p,N) =
2

3
p3N2 (8)

is exactly the main term appearing in the expression in Lemma 4. To this end, we

shall need to compute the fourth moment M4(p,N).

6.2. Computation of the Fourth Moment

The following lemma will be used several times in the evaluation of M4(p,N), so

we prove it here explicitly.

Lemma 5. We have

p−1∑
i=1

p−1∑
j=1

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)
2(aj − bj)

2 (9)

=
2

45
N(N + 1)(p− 1)(10N2p+ 4N2 + 10Np+ 4N − 3).

Proof. We break Equation (9) into two pieces according to whether i equals j. The

i = j piece equals:

(2N + 1)2p−4(p− 1)
∑

−N≤a1,b1≤N

(a1 − b1)
4. (10)

Since (a1 − b1)
4 = (a41 + b41)+ 4(a31b+ a1b

3
1)+ 6a21b

2
1, we can further rewrite the sum

in Equation (10) as

2(2N + 1)
∑

−N≤a1≤N

a41 + 6
( ∑

−N≤a1≤N

a21

)2

,

since all terms with odd powers vanish. The above quantity can be computed

directly using Lemma 3.

On the other hand, the i ̸= j piece of Equation (9) equals

(2N + 1)2p−6(p− 1)(p− 2)
( ∑

−N≤a1,b1≤N

(
a1 − b1

)2)2

. (11)

The innermost sum inside the square has been previously calculated in Equations

(6) and (7). The result now follows from combining the i = j piece and the i ̸= j

piece. We omit the details of the tedious calculation.
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Lemma 6. The fourth moment of distances between points in B(p,N) is given by

M4(p,N) =
2

45
N(N + 1)(p− 1)((2N2 + 2N)(5p5 − 8p4 + p3 + 8p2 − 21p− 18)

− 3(p2 − p− 1)2)

=
4

9
p6N4 +O(p5N4 + p6N3).

Proof. By Lemma 1, we need to compute∑
α∈B(p,N)

∑
β∈B(p,N)

d(α, β)4

=
∑

−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(
p4
( p−1∑

j=1

(aj − bj)
2
)2

− 2p2(p+ 1)
( p−1∑

i=1

(
ai − bi

)2)( p−1∑
j=1

(
aj − bj

))2

+
(
p+ 1

)2( p−1∑
j=1

(aj − bj)
)4)

.

By linearity, similar to the proof of Lemma 4, we break up the sum above into three

pieces.

The first piece of the sum equals

p4
p−1∑
i=1

p−1∑
j=1

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)
2(aj − bj)

2. (12)

Observe that this has been calculated in Lemma 5

We now evaluate the second piece of the sum, which is

2p2(p+ 1)
∑

−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

p−1∑
i=1

(ai − bi)
2
( p−1∑

i=1

(ai − bi)
)2

. (13)

Omitting the coefficient 2p2(p+ 1), Equation (13) equals

p−1∑
i=1

p−1∑
j=1

p−1∑
k=1

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)
2(aj − bj)(ak − bk)

=

p−1∑
i=1

p−1∑
j=1

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)
2(aj − bj)

2,

because when j ̸= k, the sum vanishes as in Equation (5). Hence, Equation (13) is

the same as Equation (12), up to a constant multiple, so it can also be calculated

using Lemma 5.
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The third piece of the sum is

(p+ 1)2
∑

−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

( p−1∑
j=1

(aj − bj)
)4

. (14)

Omitting the coefficient (p+ 1)
2
, we may rewrite Equation (14) as

p−1∑
i=1

p−1∑
j=1

p−1∑
k=1

p−1∑
l=1

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)(aj − bj)(ak − bk)(al − bl).

(15)

Depending on the relations between i, j, k, and l, the above sum can be split into

pieces that correspond to the set of all integer partitions of 4. For example, if

i = j = k ̸= l, then the partition is 4 = 3 + 1; if i = j ̸= k = l, then the partition

is 4 = 2 + 2. Now, observe that if the partition has an odd number in it (which is

either 1 or 3 in this case), then the sum must vanish because∑
−N≤ai,bi≤N

(ai − bi) =
∑

−N≤ai,bi≤N

(ai − bi)
3 = 0.

Hence, only the partitions 4 = 4 and 4 = 2 + 2 result in nonzero summands.

Therefore, Equation (15) equals (omitting the coefficient (p+ 1)2)

p−1∑
i=1

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)
4

+

(
4
2

)
2

p−1∑
i=1

p−1∑
j=1
j ̸=i

∑
−N≤a1,b1≤N

· · ·
∑

−N≤ap−1,bp−1≤N

(ai − bi)
2(aj − bj)

2,

which can be further simplified to

(p− 1)(2N + 1)2p−4
∑

−N≤a1,b1≤N

(a1 − b1)
4

+ 3(p− 1)(p− 2)(2N + 1)2p−6
( ∑

−N≤a1,b1≤N

(a1 − b1)
2
)2

.

We recognize that these two smaller sums have been previously calculated in the

two subcases of Lemma 5 (see Equations (10) and (11), respectively). Again, we

omit some details of the tedious calculation.

Now, combining these three pieces gives the total sum in the lemma, and dividing

the quantity by #B(p,N)2 = (2N + 1)2p−2 yields the result.

Remark 2. We shall never appeal to the first explicit formula of M4(p,N) in

Lemma 6. Rather, the second asymptotic estimate of M4(p,N) will be much more

useful in the following analyses.
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6.3. Computation of the Second Moment about the Mean

In this subsection, we apply Lemmas 4 and 6 to obtain an estimate of the second

moment of distances about the mean between points in B(p,N), which is formally

defined by

R(p,N) :=
1

#B(p,N)2

∑
α∈B(p,N)

∑
β∈B(p,N)

(d(α, β)2 − µ)2,

where µ is defined by Equation (8). R(p,N) will play a crucial role in the proof

of our main theorem, and the following lemma establishes an upper bound of this

quantity.

Lemma 7. We have

R(p,N) ≪ p5N4 + p6N3.

Proof. Indeed, we have∑
α,β

(d(α, β)2 − µ)2 =
∑
α,β

d(α, β)4 − 2µ
∑
α,β

d(α, β)2 + µ2(2N + 1)2p−2.

By Lemmas 4 and 6, we have

R(p,N) =
4

9
p6N4 +O(p5N4 + p6N3)− 2 ·

(2
3
p3N2

)
·
(2
3
p3N2 +O(p2N2 + p3N)

)
+
(2
3
p3N2

)2

≪p5N4 + p6N3,

where the main terms cancel nicely, leaving us with only the big-O term.

6.4. Proof of Theorem 1

Our main result Theorem 1 now follows immediately from the following quantitative

estimate in Theorem 5. Note that, instead of normalizing the distance by a factor of

2Np
√
p− 1, we chose to normalize it by 2Np3/2 in Theorem 5. This choice makes

the computations much cleaner, and it will not at all affect the end result since

2Np
√
p− 1 and 2Np3/2 are asymptotic as p → ∞.

Theorem 5. For any ε > 0 and any positive positive integer N ,

1

#B(p,N)2
#

{
(α, β) ∈ B(p,N)2 :

∣∣∣∣ d(α, β)2Np3/2
− 1√

6

∣∣∣∣ > ε

}
≪ 1

ε2

(1
p
+

1

N

)
. (16)

Proof. Multiplying both sides of the required inequality in Equation (16) by 2Np3/2

gives us ∣∣∣∣∣d(α, β)−
√

2

3
Np3/2

∣∣∣∣∣ > ε · 2Np3/2,
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which may be rewritten as

|d(α, β)−√
µ| > ε

√
6µ.

Also, note that∣∣d(α, β)2 − µ
∣∣ = |d(α, β) +√

µ| |d(α, β)−√
µ| ≥ √

µ |d(α, β)−√
µ| .

Therefore, by Lemma 7,

p5N4 + p6N3 ≫ 1

#B(p,N)2

∑
α,β

(d(α, β)2 − µ)2

≫ 1

#B(p,N)2

∑
α,β

|d(α,β)−√
µ|>ε

√
6µ

(d(α, β)2 − µ)2

≫
#
{
(α, β) ∈ B(p,N)2 :

∣∣d(α, β)−√
µ
∣∣ > ε

√
6µ

}
#B(p,N)2

(ε
√

6µ · √µ)2

=
#
{
(α, β) ∈ B(p,N)2 :

∣∣d(α, β)/(2Np3/2)− 1/
√
6
∣∣}

#B(p,N)2
6ε2µ2.

Therefore, dividing both sides by 6ε2µ2, we have

1

#B(p,N)2
#

{
(α, β) ∈ B(p,N)2 :

∣∣∣∣ d(α, β)2Np3/2
− 1√

6

∣∣∣∣ > ε

}
≪ 1

6ε2
p5N4 + p6N3

µ2

≪ 1

ε2

(1
p
+

1

N

)
.
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