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Abstract

We further explore the notion of Ulam words considered by Bade, Cui, Labelle,
and Li, giving some lower bounds on how many there are of a given length. Gaps
between words and words of special type also reveal remarkable structure. By
substantially increasing the number of computed terms, we are also able to sharpen
some of the conjectures made by Bade et al.

1. Introduction

In their 2020 paper, Bade, Cui, Labelle, and Li [1] introduced the notion of Ulam

words, defined as follows. Consider the free semigroup Srt0, 1us on two generators

DOI: 10.5281/zenodo.17535327
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0 and 1. We say that 0 and 1 are Ulam and then define all other Ulam words

inductively: a word w ‰ 0, 1 is Ulam if and only if there exists exactly one pair of

Ulam words u1 ‰ u2 such that w “ u1
"u2. (Here, " denotes concatenation.) We

shall denote the entire set of Ulam words as U , and Ulam words of length n by Un.

It is easy to check that:

U1 “ t0, 1u U3 “ t001, 011, 100, 110u

U2 “ t01, 10u U4 “ t0001, 0010, 0100, 0111, 1000, 1011, 1101, 1110u.

All Ulam words up to length 24 were computed in [1]; we were able to compute

up to length 30. While this might appear as a small improvement at first glance,

because the number of Ulam words of length n appears to (almost) double on each

iteration, in reality, this represents nearly 60 times as much data.

It is an open question whether |Un| (the size of Un) grows exponentially. The

best lower bound that we can prove is linear, mainly using explicit constructions of

words from [1].

Theorem 1. For all n ě 6, we have that |Un| ě 2n ` 4.

However, we are able to demonstrate that there is a subsequence of Ulam words

that grows exponentially, using a completely different argument.

Theorem 2. There exists 1 ă α0 ď 2 such that for all 1 ă α ă α0, we have that

lim sup
nÑ8

|Un|

αn
“ 8.

Concretely,

α0 “

ˆ

101847671

31

˙1{5

« 1.648996

suffices.

We give proofs of both of these theorems in Section 3. Unfortunately, both of

these results are still quite far from what is conjectured to hold. To wit, define the

density

ρpnq :“
|Un|

2n
;

It was conjectured in [1] that ρpnq Ñ r for some 0 ă r ă 1 (see Conjecture 3.10 in

[1]); with our enlarged data set, we instead posit something a little stranger.

Conjecture 1. The density of Ulam words ρpnq “ Θpn´3{10q.

This conjecture is supported by the numerical evidence—see Figures 1 and 2 for

an example—but it also has ties to another conjecture involving the average gap

between Ulam words, which we shall describe below. In any case, observe that if
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Figure 1: A plot of the densities ρpnq for 4 ď n ď 30, together with a plot of
fpnq “ 0.526n´3{10.

n |Un|

13 1916
14 3812
15 7772
16 14822
17 29368
18 58478

n |Un|

19 114300
20 225166
21 441724
22 876238
23 1717748
24 3406884

n |Un|

25 6720784
26 13303332
27 26273948
28 52010642
29 102933200
30 203695342

Figure 2: The exact counts for |Un| for 13 ď n ď 30.

either conjecture is correct, the number of Ulam words grows only very slightly

slower than 2n.

This notion of Ulam words was built on the earlier notion of Ulam sets due to

Kravitz and Steinerberger [8], which was itself a generalization of Ulam’s eponymous

integer sequence, also defined recursively [13]: the (classical) Ulam sequence begins

with 1, 2, and then every subsequent term is the next smallest integer that can be

written as the sum of two distinct prior terms in exactly one way. Generalizations

of Ulam’s classic sequence have become an increasingly popular object of study:

in 1972, Queneau did some preliminary work studying generalizations where the

initial two terms of the integer sequence are varied [10]; in the 1990s, Cassaigne,

Finch, Shmerl, and Spiegel determined some of the families of such sequences such

that the consecutive differences are eventually periodic [2, 3, 4, 5, 11]; in 2017, [8]

considered generalizing the Ulam condition for abelian groups; in 2020, [1] gave

the aforementioned notion of Ulam words with some preliminary results; and in

2021, Sheydvasser showed that there is an analogous notion of Ulam sets for integer

polynomials [12] by building off earlier work of Hinman, Kuca, Schlesinger, and

Sheydvasser [6, 7].
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Figure 3: Visual of the first 4 steps of constructing the discrete Sierpiński triangle.

Earlier work around Ulam words has largely centered around giving simple cri-

teria for when words of some special type are Ulam—for example, [1] showed that a

word of the form 0a10b is Ulam if and only if p a`b
a q is odd. Similarly, Mandelshtam

[9] considered Ulam words of the form 0a10b10c and demonstrated a connection to

the Sierpiński gasket. We also prove a few such results, such as the following.

Theorem 3. Consider the set of points px, yq P Z2
ě1 such that 1y0x´y P U . This

is the discrete Sierpiński triangle, union a point.

We will discuss this construction more precisely in Section 4, but briefly, the

discrete Sierpiński triangle is an approximation to the standard Sierpiński triangle.

It can be constructed either iteratively (as in Figure 3) or by coloring Pascal’s

triangle by parity.

On the other hand, we also have a novel way of considering Ulam words by inter-

preting them as integers. Observe that there exists a natural map π : Srt0, 1us Ñ

Zě0 via interpreting a word as the binary representation of an integer. In general,

this map is not injective—for example, πp0q “ πp00q “ πp000q “ 0. However, if

we restrict it to words of a fixed length, then it is. In particular, the restrictions

π : Un Ñ ZX r0, 2n´1s are injective maps. This gives a natural ordering on Un and

allows us to ask questions about how Ulam words are distributed. For example,

we might ask about the distribution of the gaps—differences between consecutive

Ulam words, interpreted as integers.

Conjecture 2. Let u1 ă u2 ă . . . ă ukn
be the (ordered) elements of πpUnq.

Define

pn : Zě1 Ñ r0,8q

g ÞÑ

ˇ

ˇti|ui`1 ´ ui “ gu
ˇ

ˇ

kn ´ 1
.
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This has a natural interpretation as a probability measure. As n Ñ 8, the functions

pn converge pointwise to a probability measure p : Zě1 Ñ r0,8q. Furthermore, let

µgpnq be the mean of the probability measure pn. Then µgpnq “ Θpn3{10q—indeed,

it may be that there is a constant c « 1.9 such that µgpnq “ cn3{10 ` op1q.

This conjecture is well-supported by our available data—see Section 5 for details,

illustrations, and further odd properties of the apparent distribution. What is

interesting about this statement about average gaps is that, if true, it immediately

implies Conjecture 1.

Theorem 4. As n Ñ 8, we have that ρpnq´1 — µgpnq. Consequently, Conjecture

2 implies Conjecture 1.

This is salient, since our numerical evidence for Conjecture 2 is arguably much

stronger than for Conjecture 1! Again, see Section 5 for details. Finally, in Section

6, we ask the question of how πpUnq is distributed modulo N .

Conjecture 3. For any integer N ą 1 and a P Z{NZ, define the relative density

ρa,N pnq :“

ˇ

ˇtw P Un|πpwq ” a mod Nu
ˇ

ˇ

|Un|
.

Then limnÑ8 ρa,N pnq “ 1{N .

Remark 1. As we discuss in Section 6, while this conjecture is consistent with

the available data, it is somewhat surprising. For one thing, ρ5,6p1q “ ρ5,6p2q “

ρ5,6p3q “ 0, and it takes some time before it appears to start to converge to 1{6.

For another, there is an apparent bias modulo 6 in the distribution of the gaps.

Our code and some of our data can be found on GitHub1, but it is far from

efficient—as was pointed out to us Tomás Oliveira e Silva, it is possible to use

bitmaps to make these computations much faster; a good implementation should

give a Op2n logpnqq running time. However, we leave this as material for future

work.

2. Definitions and Visualizations

We start with some basic definitions and constructions. Given a word w P Srt0, 1us,

we define its complement ŵ to be the word with every instance of 0 replaced with

a 1, and vice versa. We also define the reverse w, which is the word obtained by

reversing the order of the letters. It was shown in [1] that w P U if and only if

ŵ P U , if and only if w P U .

1https://github.com/asheydva/Ulam-Words.git
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Figure 4: All words of length 20 beginning with a zero.

To better visualize the set U , we made use of heat maps, which depict each Ulam

word as a colored bar and stacks all of the words vertically—that is, for a given

word, a 0 corresponds to a rectangle of one color, and a 1 corresponds to a rectangle

of a second color. An example is provided in Figure 4. In general, we abridge such

diagrams: we created figures only using all the Ulam words that started with zero,

since Ulam words are closed under complements. Moreover, we impose the ordering

discussed in the introduction, defining w ď w1 if and only if πpwq ď πpw1q. Using

this way of visualizing Ulam words allows us to easily see that there is both a clear

binary tree structure that governs the existence of Ulam words, as well as a chaotic

element to the set where the binary tree breaks down.

We can be more specific about our meaning regarding this breakdown: since Ulam

words are preserved under the reverse map, this is equivalent to saying that for any

n there exists n ą ℓn ą 0 such that all possible subwords of length ℓn occur as the

final ℓn characters of words in Un. In turn, that is equivalent to saying that the

quotient map πpUnq Ñ Z{2ℓnZ is surjective. Our observation is that ℓn appears

to increase as a function of n, albeit not very quickly—see Figure 5. Assuming

that Conjecture 3 is true, then it would follow immediately that ℓn Ñ 8 simply

by considering the case where N “ 2ℓn—indeed, the heat maps were the original

impetus for our equidistribution conjectures. On the other hand, the “chaotic”

latter half of the heat map is more of a mystery.
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n ℓn
1 1
2 1
3 1
4 1
5 3
6 2

n ℓn
7 4
8 4
9 4
10 4
11 4
12 5

n ℓn
13 5
14 5
15 6
16 7
17 7
18 8

n ℓn
19 9
20 9
21 9
22 10
23 10
24 11

n ℓn
25 11
26 11
27 12
28 12
29 13
30 13

Figure 5: Tables of n versus ℓn, where ℓn is the largest integer such that Un Ñ

Z{2ℓnZ is surjective.

3. Lower Bounds on Growth

Our goal in this section is to prove our lower bounds on |Un|; we begin with Theorem

1, for which we need some explicit examples of Ulam words. The first three are due

to [1].

Theorem 5 ([1]). There are Gpn ´ 1q Ulam words of length n of the form 0a10b,

where Gpnq is the n-th entry in Gould’s sequence.

Remark 2. Gould’s sequence Gpnq is the number of odd entries in the n-th row

of Pascal’s triangle; equivalently, Gpnq “ 2#1pnq, where #1pnq is the number of

non-zero bits in the binary representation of n.

Remark 3. Since w P U if and only if w P U , if and only if ŵ P U , we get

analogous results with 1’s replaced with 0’s and the order of the letters reversed.

This is true for all the results that we prove here.

Theorem 6 ([1]). For any a, b P Zě0, the word 0a120b is in U if and only if the

length of the word is odd (that is, a ` b ” 1 pmod 2q).

Theorem 7 ([1]). For any a, b P Zě0 such that a ` b ě 2, the word 0a1010b is in

U if and only if the length of the word is even (that is, a ` b ” 1 mod 2).

Lemma 1. For any a, b P Zě0 such that a ` b ě 1, the word 0a140b is in U if and

only if a ` b ” 1 pmod 4q.

Proof. We will use proof by induction on the length of the word n, where the base

cases n “ 5, 6, 7, 8 can be verified directly. Assume the statement holds for all words

of length strictly less than n, and consider the word u “ 0k140l of length n, where,

since n ě 9, at least one of k and l is at least 3. By applying the reverse map to

switch k and l if necessary, we may assume that k ě 3.

Case 1: l “ 0. The only possible representations are 0"0k´114 and 0k13"1. By

the inductive hypothesis, the first is valid if and only if n ” 2 pmod 4q. By Lemma
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3, the second is valid if and only if n ” 1, 2 pmod 4q. Thus, exactly one of these

representations is valid if and only if n ” 1 pmod 4q.

Case 2: l ě 1. There are five potential representations:

1. 0"0k´1140l,

2. 0k1"130l,

3. 0k12"120l,

4. 0k13"10l, and

5. 0k140l´1"0.

Observe that by the inductive hypothesis, representations (1) and (5) are valid if

and only if n ” 2 pmod 4q, which is to say that k ` l ” 2 pmod 4q. By Theorem 8

and Lemma 3, representation (2) is valid if and only if l ” 0, 3 pmod 4q; similarly,

representation (4) is valid if and only if k ” 0, 3 pmod 4q. Finally, by Theorem 6,

representation (3) is valid if and only if k ” l ” 1 pmod 2q. This allows us to count

the number of valid representations in terms of the congruence classes of k and l

modulo 4, as seen in Figure 6. In particular, there is a unique representation if and

only if n ” 1 pmod 4q.

kzl 0 1 2 3
0 2 1 3 2
1 1 3 0 2
2 3 0 0 1
3 2 2 1 5

Figure 6: Table of number of representations for 0k140l for values of n “ k ` l
modulo 4.

With this, we are ready to give a proof of the general linear bound.

Proof of Theorem 1. We consider three cases.

Case 1: n is even. By Theorem 7, we know that 0a1010n´a´3 P Un for all 0 ď

a ď n ´ 3—this yields n ´ 2 Ulam words. By Theorem 5, we also know that there

are Gpn´ 1q Ulam words of length n of the form 0a10b. Note that these two sets of

Ulam words do not intersect (they have different numbers of ones), and since n´ 1

is odd, Gpn ´ 1q ě 22 “ 4. In total, this yields n ` 2 Ulam words.
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Note that {0a1010n´a´3 “ 1a0101n´a´3 “ 0a110b1 if and only if n “ 3, so the

reverses of the constructed Ulam words are also distinct Ulam words. Therefore,

we have at least 2n ` 4 Ulam words in this case.

Case 2: n ” 3 pmod 4q. By Theorem 6, we know that 0a120n´a´2 P Un for

all 0 ď a ď n ´ 2—this yields n ´ 1 Ulam words. Since n ´ 1 ” 2 pmod 4q,

Gpn ´ 1q ě 22 “ 4, and so we can again use Theorem 5 to conclude that there are

at least 4 words 0a10b of the right length. In total, this yields n ` 3 Ulam words.

Note that {0a120n´a´2 “ 1a021n´a´2 “ 0a110b1 if and only if a “ 0 and a1 “ 2.

Therefore, the reverses of our two families of constructed Ulam words intersect, but

only in two places; therefore, we have 2pn ` 3q ´ 2 “ 2n ` 4 Ulam words.

Case 3: n ” 1 pmod 4q. As in the previous case, we have n ´ 1 words of the form

0a120n´a´2, but it is possible that Gpn ´ 1q “ 2, so we have to argue differently:

specifically, we use Lemma 1 to conclude that 0a140n´4´a P U for all 0 ď a ď n´4,

which yields another n ´ 3 Ulam words, for a total of at least 2n ´ 4.

Observe that {0a120n´a´2 ‰ 1a021n´a´2 “ 0a1140n´4´a1 ever, so we may simply

double our count of Ulam words. In total, we have 4n ´ 8, which is at least 2n ` 4

if n ě 6.

In each case, we have identified at least 2n ` 4 distinct Ulam words.

Next, we tackle the exponential bound, which we approach in a completely dif-

ferent fashion using the following lemma.

Lemma 2. For any n P Zě1,

|Un|2 ď |Un| ` |Un`1| ` . . . ` |U2n|.

Proof. Consider the set

X :“
␣

pw1, w2q P U 2
n

ˇ

ˇw1 ‰ w2

(

.

For any pw1, w2q P X, either w1
"w2 P U2n or there exists v1 P Uk, v2 P U2n´k such

that w1
"w2 “ v1

"v2, where k P r1, n´1sYrn`1, 2n´1s; of course, if k P r1, n´1s,

then 2n ´ k P rn ` 1, 2n ´ 1s, and so we may conclude that

|X| ď |Un`1| ` . . . ` |U2n|.

On the other hand,

|X| “ |Un|2 ´ |Un|.

As a consequence of Lemma 2, we get the following very weak lower bound: for

any n P Zě1,

max
nďiď2n

|Ui| ě
|Un|2

n ` 1
. (1)

This is sufficient for our purposes.
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Proof of Theorem 2. Choose any n1 P Zě6 and let

α0 :“

ˆ

|Un1 |

2pn1 ` 1q

˙1{n1

.

Then |Un1
| “ 2pn1 ` 1qαn1

0 . By Theorem 1, we know that |Un1
| ą 2n1 ` 2,

hence 1 ă α0 ă 2. Ergo, for any 1 ă α ă α0, |Un1
| “ 2Cpn1 ` 1qαn1 for some

C ą 1. Recursively define a sequence n1, n2, . . . such that ni is the unique integer

ni´1 ď ni ď 2ni´1 such that |Uni
| is as large as possible. We will prove by induction

that |Unk
| ě 2C2kpnk ` 1qαnk . The base case k “ 1 is clear; for the induction step,

we can apply our bound (Equation 1) to see that

Unk`1
“ max

nkďiď2nk

|Ui| ě
|U 2

nk
|

nk ` 1

ą
4C2k`1

pnk ` 1q2

nk ` 1
α2nk

ą 2C2k`1

p2nk ` 1qα2nk

ě 2C2k`1

pnk`1 ` 1qαnk`1 .

Since C2k Ñ 8, we can conclude that for all c ą 0, there exist infinitely many n

such that |Un| ě cαn. Therefore,

lim sup
n

|Un|

αn
“ 8,

as was claimed. All that remains is to find a value of α0 that works. In our case,

we used n1 “ 30, which gives the α0 in the statement of the theorem.

As can be seen from the proof of this theorem, if it is true that |Un| “ Θpn´3{102nq

as we conjecture, then it will be possible to improve the constant α0 arbitrarily close

to 2 simply by computing |Un| for larger and larger n. Unfortunately, this rapidly

becomes impractical and in any case will never suffice to prove the theorem with

α0 “ 2, as we suspect must be true.

4. Patterns in Ulam Words

Various results regarding Ulam words containing certain patterns were proven in

[1]. We offer a similar collection of results. We begin with a couple of intermediate

results that allow us to prove Theorem 3.

Theorem 8 ([1]). A word of the form 0a10b is Ulam if and only if

p a`b
a q ” 1 mod 2.
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Lemma 3. For any n ě 3, the word 130n´3 is in U if and only if n ” 0 pmod 4q

or n ” 1 pmod 4q.

Proof. We will use proof by induction, where the base cases n “ 3, 4, 5, 6 can all be

verified by direct computation. Assume the statement holds for all words of length

strictly less than n, and consider the word u “ 130n´3. The only two possible

representations for u are

1. 1"120n´3 and

2. 130n´4"0,

since neither 1a nor 0a are Ulam words for any a ą 1. By Theorem 6, 120n´3 P U

if and only if n ” 0 pmod 2q; thus, representation (1) is valid if and only if n ” 0, 2

pmod 4q. On the other hand, by the inductive hypothesis, representation (2) is valid

if and only if n ” 1, 2 pmod 4q. Ergo, exactly one of the representations is valid if

and only if n ” 0, 1 pmod 4q.

The proof of Lemma 3 illustrates how the modular length restrictions for 1a`10b

can easily be found using the length restrictions for 1a0b, which, in turn, means we

could generate countless additional theorems, providing length restrictions for 140b,

150b, and so forth. However, this would quickly prove tedious. Instead, we will

demonstrate the unifying pattern between all words of the form 1a0b. Recursively

define

S0 : “ p2, 1q

Sn`1 : “ Sn Y pSn ` p2n, 0qq Y pSn ` p2n, 2nqq

S : “

8
ď

n“0

Sn.

The set S is sometimes referred to as the discrete Sierpiński triangle. The reason

for this is that if one considers a suitable limit of the sets 2´nS, the result is the

usual Sierpiński triangle. Remarkably, this is exactly the correct construction to

determine whether a word 1a0b is Ulam or not.

Theorem 9. Let S be defined as above. Then

␣

px, yq P Z2
ě1

ˇ

ˇ1y0x´y P U
(

“ p1, 1q Y S.

Remark 4. Observe that this is Theorem 3, but stated more precisely.

Proof of Theorem 9. It is easy to check that the only elements in both sets with

x ď 2 are p1, 1q and p2, 1q. Our goal is to show that the iterative process for

producing points in S with larger x values is the same as for the first set. To do so,
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Figure 7: Visual of steps to create modified Pascal’s triangle.

we will use a modified version of Pascal’s triangle, achieved by aligning all entries

to the left and then rotating the resulting image counterclockwise 90 degrees, as

illustrated in Figure 7. In the modified version, if we let ppx, yq be the entry in row

y and column x, then

ppx, yq “ ppx ´ 1, yq ` ppx ´ 1, y ´ 1q.

We make two additional modifications:

1. we align Pascal’s triangle such that the bottom left entry occurs at p2, 1q and

2. we shade all odd entries.

On the one hand, this is well-known to be the discrete Sierpiński triangle S. On the

other hand, because only odd entries are shaded, an entry px, yq is shaded if and

only if exactly one of px ´ 1, yq or px ´ 1, y ´ 1q is shaded.

Now, observe that there are only two potential representations for 1x0x´y, those

being

1. 1y0x´y´1"0 and

2. 1"1y´10x´y.

Thus, px, yq is in the desired set if and only if exactly one of px´1, yq, px´1, y´1q

is in the set.

Remark 5. This is not the first time that Pascal’s triangle and the Sierpiński

triangle have shown up in the study of Ulam words. As mentioned previously,

there was already an analogous pattern for words 0x10y1z [9]; even before that, [1]

proved that the number of words of length n with one 1 is the n-th term in Gould’s

sequence—that is, the number of elements in the pn´1q-th row of Pascal’s triangle.
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There are many consequences of this result. First, it means that determining

the set of Ulam words of the form 1a0b is quite simple: it is a straightforward

iterative procedure. Counting the number of elements of such form is also simple.

For example, consider the following simple corollary.

Corollary 1. Fix n P Zě2; let Ln be the set of a P Zě1 such that 0a1n´a P U .

Then |Ln| “ Gpnq.

Proof. The k-th term of Gould’s sequence is the number of odd entries in the k-th

row of Pascal’s triangle. After rotating and shifting, the k-th row corresponds to

Lk`1.

There are certainly more symmetries lurking within S that would lead to more

theorems and patterns. In particular, we believe that it might be possible to demon-

strate the following.

Conjecture 4. Let u be a word of length n of the form 0a12
k

0b for a, b, k P Zě1.

The word u is in U if and only if n ” 1 mod 2k.

We close by giving one more result, which is analogous to Theorem 7.

Theorem 10. For any a, b P Z such that a ` b ě 1, the word 0a101010b is in U if

and only if a, b P 2Z and one is zero.

Proof. We induct on a ` b. The base cases a ` b “ 1, 2 are easily established by

pure computation. First, assume that both a, b ‰ 0. Then there are six possible

representations:

1. 0"0a´1101010b,

2. 0a1"01010b,

3. 0a10"1010b,

4. 0a101"010b,

5. 0a1010"10b, and

6. 0a101010b´1"0.

Applying the inductive hypothesis and Theorem 7, we find that in all cases either

none of these are valid representations, or multiple are simultaneously. This leaves

the case where either a “ 0 or b “ 0—without loss of generality, we assume that

a “ 0, since we can always apply the reverse map if needed. We have three possible

representations:

1. 1"01010b,

2. 10"1010b, and

3. 101010b´1"0.

If b is odd, then (2) and (3) are valid representations due to Theorem 7; therefore,

this word is not Ulam. If b is even, then (1) is a valid representation, but (2) and

(3) are not; therefore, this word is Ulam.
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Figure 8: A plot of µgpnq for 11 ď n ď 30 and fpnq “ 1.9n3{10.

5. Density and the Distribution of the Gaps

We begin by proving that there is a relationship between the size of the average gap

between consecutive Ulam words of length n, and the density of Ulam words.

Proof of Theorem 4. Let u1 ă u2 ă . . . ă ukn
be the (ordered) elements of πpUnq—

that is, the integers that are images of the Ulam words of length n. The gaps between

them are the consecutive differences g1 “ u2 ´ u1, g2 “ u3 ´ u2, and so on. It is

easy to see that u1 “ πp0000 . . . 01q “ 1 and ukn
“ πp1111 . . . 10q “ 2n ´ 2—this

follows from Theorem 5, for example. Ergo, the average gap between Ulam words

of length n is

µgpnq :“
g1 ` g2 ` . . . ` gkn´1

kn ´ 1
“

ukn ´ u1

kn ´ 1
“

2n ´ 3

kn ´ 1

“
1

ρpnq

kn
kn ´ 1

´
3

kn ` 1
,

from which we conclude that ρpnq´1 — µgpnq. (We already know from Theorem 1

that kn Ñ 8 as n Ñ 8.) In particular, if Conjecture 2 is true and µgpnq — n3{10,

then ρpnq — n´3{10, which is Conjecture 1.

Notice in particular that for ρpnq to converge to a non-zero constant, it must

be that µgpnq is bounded. But this does not appear to be the case, as evidenced

by Figures 8 and 9. Instead, as near as we can tell, the order of growth seems

to be around n3{10. With this in mind, it is perhaps worthwhile to examine the

distribution of the gaps more closely.

It is obvious that any gap is at least 1 (in fact, it is an easy exercise to show that

a gap of 1 is always attained); on the other hand, numerical evidence suggests that

the maximal gap grows exponentially—specifically, it is Oprnq for some constant

r « 1.35 (see Figure 10). This is a little strange, in that one would not immediately

guess this looking at the probability distributions, as in Figure 11.
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n Relative Error
13 4.08765%
14 2.43579%
15 1.54247%
16 1.27957%
17 0.402629%
18 0.87545%

n Relative Error
19 0.196991%
20 0.222403%
21 0.24375%
22 0.332677%
23 0.33529%
24 0.104678%

n Relative Error
25 0.0447467%
26 0.0981692%
27 0.028047%
28 0.0353147%
29 0.0365254%
30 0.00663021%

Figure 9: The relative error between the actual µgpnq and the estimate 1.9n3{10.

5 10 15 20 25 30
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10

100

1000

104

Figure 10: A logarithmic plot of the maximal gap between words of length n for
2 ď n ď 30, and fpnq “ 1.35n.

Indeed, there are some curious details to this apparent distribution. The first is

that there is a clear bias against gaps that are congruent to either 2 or 4 modulo 6.

This is very odd, considering that we conjecture that Ulam words are equidistributed

modulo 6 in the limit (See Section 6 for more about this). The second is that just

as the average gap appears to grow without bound, so does the standard deviation.

However, the standard deviations are quite small, of order around n{3—here is a

table of the last few we were able to compute:

n Standard Deviation
21 6.09043461
22 6.57391412
23 6.95198536
24 7.48652894
25 7.95451379

n Standard Deviation
26 8.41026105
27 8.83842107
28 9.34566047
29 9.94055302
30 10.5007497

This means that the distribution is very tightly clustered toward the smaller side.

However, it has extreme outliers: the maximal gap between words of length 30 is

8030, which is more than 764 standard deviations away from the mean! Somehow,

this should be typical: as we noted already, the size of the maximal gap appears

to grow exponentially, but the same is not true of either the average gap or the

standard deviation.
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Figure 11: From left to right, top to bottom: bar graphs showing the frequency of
gaps of various sizes between consecutive words in Un for n “ 13, . . . , 30, shown
out to 4 standard deviations.



INTEGERS: 25 (2025) 17

6. Modular Distribution

Let us now consider the relative density of Ulam words. As we mentioned earlier, the

set of Ulam words is preserved under the complement map. This forces a symmetry

on congruence classes.

Theorem 11. If w P Un then π´1
`

2n`1 ´ 1 ´ πpwq
˘

P Un. Consequently, for any

positive integer N and a P Z{NZ,

ρa,N pnq “ ρ2n`1´1´a,N paq.

Proof. Given w P Un, write x “ πpwq “ an2
n ` . . . ` a0 in binary. Then

π pŵq “ p1 ´ anq2n ` . . . ` p1 ´ a0q “ 2n`1 ´ 1 ´ x.

But ŵ P Un. Now, observe that if πpwq ” a mod N , then 2n`1 ´ 1 ´ πpwq ”

2n`1 ´ 1 ´ a mod N , which forces the equality of the relative densities.

For N “ 2, 3, this is particularly simple.

Corollary 2. For any positive integer n, we have that ρ0,2pnq “ ρ1,2pnq. Further-

more, for any a P Z{3Z,

ρa,3pnq “

#

ρ1´a,3pnq if n ” 0 mod 2

ρ´a,3pnq if n ” 1 mod 2.

Proof. Observe that 2n`1 ´ 1 ´ x ” x ` 1 mod 2, from which ρ0,2pnq “ ρ1,2pnq

follows immediately. For the second part, observe that

2n`1 ´ 1 ´ x mod 3 ”

#

1 ´ x if n ” 0 mod 2

´x if n ” 1 mod 2.

While there must always exist for any n two congruence classes a, b P Z{3Z such

that ρa,3pnq “ ρb,3pnq, there is no reason why the last congruence class c should be

roughly equal. Indeed, for n ď 5, we see that ρc,3pnq “ 0. However, for larger n,

it does appear to be the case that ρc,3pnq Ñ ρa,3pnq “ ρb,3pnq; as we will illustrate

presently. To help measure the extent to which words are equidistributing modulo

N , we define the modular discrepancy.

Definition 1. For any positive integers n,N , the modular discrepancy is

dN pnq :“ max
a,bPZ{NZ

|ρa,N pnq ´ ρb,N pnq| .
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Figure 12: A plot of the modular discrepancies for prime power moduli pk ă 30.

Trivially, saying that Ulam words equidistribute modulo N is equivalent to saying

that dN pnq Ñ 0 as n Ñ 8. Moreover, by appealing to the Chinese remainder

theorem, proving that dN pnq Ñ 0 for all N is reducible to proving that dpkpnq Ñ 0

for all prime powers pk. To investigate Conjecture 3, we computed dpkpnq for all

prime powers pk ă 30—as near as we can tell, dpkpnq decays exponentially as a

function of n (see Figure 12).
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