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Abstract
We further explore the notion of Ulam words considered by Bade, Cui, Labelle,
and Li, giving some lower bounds on how many there are of a given length. Gaps
between words and words of special type also reveal remarkable structure. By
substantially increasing the number of computed terms, we are also able to sharpen
some of the conjectures made by Bade et al.

1. Introduction

In their 2020 paper, Bade, Cui, Labelle, and Li [1] introduced the notion of Ulam
words, defined as follows. Consider the free semigroup S[{0,1}] on two generators
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0 and 1. We say that 0 and 1 are Ulam and then define all other Ulam words
inductively: a word w # 0,1 is Ulam if and only if there exists exactly one pair of
Ulam words u; # ug such that w = u; " ug. (Here, ~ denotes concatenation.) We
shall denote the entire set of Ulam words as %, and Ulam words of length n by %,.
It is easy to check that:

U = {0,1} U; = {001,011, 100, 110}
U, = {01,10} U = {0001, 0010,0100,0111,1000,1011,1101, 1110}.

All Ulam words up to length 24 were computed in [1]; we were able to compute
up to length 30. While this might appear as a small improvement at first glance,
because the number of Ulam words of length n appears to (almost) double on each
iteration, in reality, this represents nearly 60 times as much data.

It is an open question whether |%,| (the size of %;,) grows exponentially. The
best lower bound that we can prove is linear, mainly using explicit constructions of
words from [1].

Theorem 1. For all n = 6, we have that |%,| = 2n + 4.

However, we are able to demonstrate that there is a subsequence of Ulam words
that grows exponentially, using a completely different argument.

Theorem 2. There exists 1 < ag < 2 such that for all 1 < a < ag, we have that

%]

lim sup = 0.
n—oo (0%
Concretely,
101847671\ '/
g = <) ~ 1.648996
31
suffices.

We give proofs of both of these theorems in Section 3. Unfortunately, both of
these results are still quite far from what is conjectured to hold. To wit, define the
density %)

It was conjectured in [1] that p(n) — r for some 0 < r < 1 (see Conjecture 3.10 in
[1]); with our enlarged data set, we instead posit something a little stranger.

Conjecture 1. The density of Ulam words p(n) = ©(n=%/19).

This conjecture is supported by the numerical evidence—see Figures 1 and 2 for
an example—but it also has ties to another conjecture involving the average gap
between Ulam words, which we shall describe below. In any case, observe that if
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Figure 1: A plot of the densities p(n) for 4 < n < 30, together with a plot of
f(n) = 0.526n=3/10,

4247|@%¢ 4@47|@%| n_ | |%)|
13 | 1916 19 | 114300 25 | 6720784
14 | 3812 20 | 225166 26 | 13303332
15 | 7772 21 | 441724 27 | 26273948
16 | 14822 22 | 876238 28 | 52010642
17| 29368 23 | 1717748 29 | 102933200
18 | 58478 24 | 3406884 30 | 203695342

Figure 2: The exact counts for |%,| for 13 < n < 30.

either conjecture is correct, the number of Ulam words grows only very slightly
slower than 2.

This notion of Ulam words was built on the earlier notion of Ulam sets due to
Kravitz and Steinerberger [8], which was itself a generalization of Ulam’s eponymous
integer sequence, also defined recursively [13]: the (classical) Ulam sequence begins
with 1,2, and then every subsequent term is the next smallest integer that can be
written as the sum of two distinct prior terms in exactly one way. Generalizations
of Ulam’s classic sequence have become an increasingly popular object of study:
in 1972, Queneau did some preliminary work studying generalizations where the
initial two terms of the integer sequence are varied [10]; in the 1990s, Cassaigne,
Finch, Shmerl, and Spiegel determined some of the families of such sequences such
that the consecutive differences are eventually periodic [2, 3, 4, 5, 11]; in 2017, [§]
considered generalizing the Ulam condition for abelian groups; in 2020, [1] gave
the aforementioned notion of Ulam words with some preliminary results; and in
2021, Sheydvasser showed that there is an analogous notion of Ulam sets for integer
polynomials [12] by building off earlier work of Hinman, Kuca, Schlesinger, and
Sheydvasser [6, 7).
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Figure 3: Visual of the first 4 steps of constructing the discrete Sierpiniski triangle.

Earlier work around Ulam words has largely centered around giving simple cri-
teria for when words of some special type are Ulam—for example, [1] showed that a
word of the form 0°10° is Ulam if and only if (¢}?) is odd. Similarly, Mandelshtam
[9] considered Ulam words of the form 0%10°10¢ and demonstrated a connection to
the Sierpinski gasket. We also prove a few such results, such as the following.

Theorem 3. Consider the set of points (z,y) € Z%, such that 1¥0°~Y € % . This
1s the discrete Sierpinski triangle, union a point.

We will discuss this construction more precisely in Section 4, but briefly, the
discrete Sierpinski triangle is an approximation to the standard Sierpinski triangle.
It can be constructed either iteratively (as in Figure 3) or by coloring Pascal’s
triangle by parity.

On the other hand, we also have a novel way of considering Ulam words by inter-
preting them as integers. Observe that there exists a natural map = : S[{0,1}] —
Z= via interpreting a word as the binary representation of an integer. In general,
this map is not injective—for example, 7(0) = 7(00) = 7(000) = 0. However, if
we restrict it to words of a fixed length, then it is. In particular, the restrictions
7T U — 7.0 [0,2771] are injective maps. This gives a natural ordering on %, and
allows us to ask questions about how Ulam words are distributed. For example,
we might ask about the distribution of the gaps—differences between consecutive
Ulam words, interpreted as integers.

Conjecture 2. Let uy < up < ... < ug, be the (ordered) elements of 7(%,).
Define
Pn t Zz1 — [0,0)

L |{ilui+1 —Uu; = 9}|
kn,—1 '
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This has a natural interpretation as a probability measure. As n — o0, the functions
pn converge pointwise to a probability measure p : Z>; — [0,0). Furthermore, let
f14(n) be the mean of the probability measure p,,. Then puy4(n) = ©(n*!%)—indeed,
it may be that there is a constant ¢ ~ 1.9 such that pu,(n) = en¥1° + o(1).

This conjecture is well-supported by our available data—see Section 5 for details,
illustrations, and further odd properties of the apparent distribution. What is
interesting about this statement about average gaps is that, if true, it immediately
implies Conjecture 1.

Theorem 4. Asn — o, we have that p(n)~* = pg(n). Consequently, Conjecture
2 implies Conjecture 1.

This is salient, since our numerical evidence for Conjecture 2 is arguably much
stronger than for Conjecture 1! Again, see Section 5 for details. Finally, in Section
6, we ask the question of how 7(%,) is distributed modulo N.

Conjecture 3. For any integer N > 1 and a € Z/NZ, define the relative density

[{w € %,|m(w) =a mod N}|
|| '

Pa,N(n) =

Then lim,,_,o po,n(n) = 1/N.

Remark 1. As we discuss in Section 6, while this conjecture is consistent with
the available data, it is somewhat surprising. For one thing, ps56(1) = p56(2) =
p5.6(3) = 0, and it takes some time before it appears to start to converge to 1/6.
For another, there is an apparent bias modulo 6 in the distribution of the gaps.

Our code and some of our data can be found on GitHub!, but it is far from
efficient—as was pointed out to us Tomads Oliveira e Silva, it is possible to use
bitmaps to make these computations much faster; a good implementation should
give a O(2"log(n)) running time. However, we leave this as material for future
work.

2. Definitions and Visualizations

We start with some basic definitions and constructions. Given a word w € S[{0, 1}],
we define its complement w to be the word with every instance of 0 replaced with
a 1, and vice versa. We also define the reverse w, which is the word obtained by
reversing the order of the letters. It was shown in [1] that w € % if and only if
we X, if and only if we %.

Thttps://github.com/asheydva/Ulam-Words.git
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Figure 4: All words of length 20 beginning with a zero.

To better visualize the set %, we made use of heat maps, which depict each Ulam
word as a colored bar and stacks all of the words vertically—that is, for a given
word, a 0 corresponds to a rectangle of one color, and a 1 corresponds to a rectangle
of a second color. An example is provided in Figure 4. In general, we abridge such
diagrams: we created figures only using all the Ulam words that started with zero,
since Ulam words are closed under complements. Moreover, we impose the ordering
discussed in the introduction, defining w < w’ if and only if m(w) < m(w’). Using
this way of visualizing Ulam words allows us to easily see that there is both a clear
binary tree structure that governs the existence of Ulam words, as well as a chaotic
element to the set where the binary tree breaks down.

We can be more specific about our meaning regarding this breakdown: since Ulam
words are preserved under the reverse map, this is equivalent to saying that for any
n there exists n > £,, > 0 such that all possible subwords of length ¢,, occur as the
final ¢,, characters of words in %,. In turn, that is equivalent to saying that the
quotient map 7(%,) — Z/2'7Z is surjective. Our observation is that ¢, appears
to increase as a function of n, albeit not very quickly—see Figure 5. Assuming
that Conjecture 3 is true, then it would follow immediately that ¢, — oo simply
by considering the case where N = 2 —indeed, the heat maps were the original
impetus for our equidistribution conjectures. On the other hand, the “chaotic”
latter half of the heat map is more of a mystery.
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n |4, n | 4, n | 4, n | n |
1)1 7|4 13| 5 19| 9 25 | 11
2|1 8 | 4 14| 5 20 9 26 | 11
3|11 9 | 4 15| 6 2119 27 | 12
411 10| 4 16 | 7 22110 28 | 12
5] 3 111 4 17| 7 23 | 10 29 | 13
6| 2 12| 5 18| 8 24 | 11 30 | 13

Figure 5: Tables of n versus £,, where £, is the largest integer such that %, —
7,/2* 7 is surjective.

3. Lower Bounds on Growth

Our goal in this section is to prove our lower bounds on |%,|; we begin with Theorem
1, for which we need some explicit examples of Ulam words. The first three are due
to [1].

Theorem 5 ([1]). There are G(n — 1) Ulam words of length n of the form 0210°,
where G(n) is the n-th entry in Gould’s sequence.

Remark 2. Gould’s sequence G(n) is the number of odd entries in the n-th row
of Pascal’s triangle; equivalently, G(n) = 2#1(") where #;(n) is the number of
non-zero bits in the binary representation of n.

Remark 3. Since w € % if and only if w € %, if and only if W € %, we get
analogous results with 1’s replaced with 0’s and the order of the letters reversed.
This is true for all the results that we prove here.

Theorem 6 ([1]). For any a,b € Z=, the word 0°120° is in % if and only if the
length of the word is odd (that is, a + b=1 (mod 2)).

Theorem 7 ([1]). For any a,b € Z=q such that a + b > 2, the word 0°1010° is in
U if and only if the length of the word is even (that is, a +b=1 mod 2).

Lemma 1. For any a,b € Z=q such that a +b > 1, the word 0°140° is in % if and
only ifa +b=1 (mod 4).

Proof. We will use proof by induction on the length of the word n, where the base
casesn = 5,6,7,8 can be verified directly. Assume the statement holds for all words
of length strictly less than n, and consider the word u = 0¥1%0" of length n, where,
since n > 9, at least one of k and [ is at least 3. By applying the reverse map to
switch k& and [ if necessary, we may assume that k& > 3.

Case 1: [ = 0. The only possible representations are 0~0¥~114 and 0¥13~1. By
the inductive hypothesis, the first is valid if and only if n = 2 (mod 4). By Lemma
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3, the second is valid if and only if n = 1,2 (mod 4). Thus, exactly one of these
representations is valid if and only if n =1 (mod 4).
Case 2: [ = 1. There are five potential representations:

1. 070k 1140,
2. 0F17130,

3. 012120,

4. 0F13710%, and
5. 0F1%0!=170.

Observe that by the inductive hypothesis, representations (1) and (5) are valid if
and only if n =2 (mod 4), which is to say that k + ! =2 (mod 4). By Theorem 8
and Lemma 3, representation (2) is valid if and only if I = 0,3 (mod 4); similarly,
representation (4) is valid if and only if X = 0,3 (mod 4). Finally, by Theorem 6,
representation (3) is valid if and only if k =1 =1 (mod 2). This allows us to count
the number of valid representations in terms of the congruence classes of k£ and [
modulo 4, as seen in Figure 6. In particular, there is a unique representation if and
only if n =1 (mod 4).

KNCJO 102 03
0121 3 2
1130 2
213001
312215

Figure 6: Table of number of representations for 0¥140' for values of n = k + 1
modulo 4.

With this, we are ready to give a proof of the general linear bound.

Proof of Theorem 1. We consider three cases.

Case 1: n is even. By Theorem 7, we know that 0°1010" %3 € %, for all 0 <
a < n — 3—this yields n — 2 Ulam words. By Theorem 5, we also know that there
are G(n — 1) Ulam words of length n of the form 0%10°. Note that these two sets of
Ulam words do not intersect (they have different numbers of ones), and since n — 1
is odd, G(n — 1) = 22 = 4. In total, this yields n + 2 Ulam words.
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Note that 0¢1010n—a—3 = 12010173 = 010" if and only if n = 3, so the

reverses of the constructed Ulam words are also distinct Ulam words. Therefore,
we have at least 2n + 4 Ulam words in this case.
Case 2: n = 3 (mod 4). By Theorem 6, we know that 09120"~*~2 ¢ %, for
all 0 < a < n — 2—this yields n — 1 Ulam words. Since n — 1 = 2 (mod 4),
G(n —1) = 22 = 4, and so we can again use Theorem 5 to conclude that there are
at least 4 words 0%10° of the right length. In total, this yields n + 3 Ulam words.

Note that 02120n—a—2 = 1902172 = 02110 if and only if @ = 0 and a; = 2.

Therefore, the reverses of our two families of constructed Ulam words intersect, but
only in two places; therefore, we have 2(n + 3) — 2 = 2n + 4 Ulam words.
Case 3: n=1 (mod 4). As in the previous case, we have n — 1 words of the form
09120"~2=2 but it is possible that G(n — 1) = 2, so we have to argue differently:
specifically, we use Lemma 1 to conclude that 021407 47% € % for all 0 < a < n—4,
which yields another/p; 3 Ulam words, for a total of at least 2n — 4.

Observe that 02120m—a~2 £ 12021"~272 = (@1 140" ~4~% ever, so we may simply
double our count of Ulam words. In total, we have 4n — 8, which is at least 2n + 4
if n > 6.

In each case, we have identified at least 2n + 4 distinct Ulam words. O

Next, we tackle the exponential bound, which we approach in a completely dif-
ferent fashion using the following lemma.

Lemma 2. For any n € Zx1,
U\ < \Up| + |Uns1| + - .. + | Yoy
Proof. Consider the set
X = {(wl,wg) € %ﬁ|w1 # wg}.

For any (w1, ws) € X, either wy "~ ws € %y, or there exists vy € %, vo € WUon—_k such
that w1 " wg = v1 " vy, where k € [I,n—1]u[n+1,2n—1]; of course, if k € [1,n—1],
then 2n — k € [n + 1,2n — 1], and so we may conclude that

| X| < |%psr| + - .. + |Yon]-
On the other hand,
X| = |%|” — ).
O
As a consequence of Lemma 2, we get the following very weak lower bound: for
any n € Zx1,

2
max |%| = %] . (1)

n<i<2n n +

—_

This is sufficient for our purposes.
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Proof of Theorem 2. Choose any nj € Z>¢ and let

ap = |%ﬂ1| 1/711
O\ 2(m + 1) '

Then |%,,| = 2(n1 + 1)ag'. By Theorem 1, we know that |%,,| > 2ni + 2,
hence 1 < ap < 2. Ergo, for any 1 < a < ag, |%n,| = 2C(n1 + 1)a™ for some
C > 1. Recursively define a sequence ni,ns,... such that n; is the unique integer
ni—1 < n; < 2n;_1 such that |%,,| is as large as possible. We will prove by induction
that |%,,| = 202" (ny, + 1)a™=. The base case k = 1 is clear; for the induction step,
we can apply our bound (Equation 1) to see that

, = max |%|>= %,
TR p<i<eng T g+ 1
k+1
402 (nk + 1)2a2nk

ng + 1
> 202" (2ny, + 1)a2™

> 202k+1 (nk+1 + 1)ank+1.

Since C2° — o0, we can conclude that for all ¢ > 0, there exist infinitely many n
such that |%,| = ca™. Therefore,

%]

lim sup =

)
n a”

as was claimed. All that remains is to find a value of ag that works. In our case,
we used n; = 30, which gives the ag in the statement of the theorem. O

As can be seen from the proof of this theorem, if it is true that |%,| = ©(n=3/1027)
as we conjecture, then it will be possible to improve the constant g arbitrarily close
to 2 simply by computing |%;,| for larger and larger n. Unfortunately, this rapidly
becomes impractical and in any case will never suffice to prove the theorem with
ap = 2, as we suspect must be true.

4. Patterns in Ulam Words

Various results regarding Ulam words containing certain patterns were proven in
[1]. We offer a similar collection of results. We begin with a couple of intermediate
results that allow us to prove Theorem 3.

Theorem 8 ([1]). A word of the form 0°10° is Ulam if and only if

(e+b)=1 mod 2.
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Lemma 3. For any n > 3, the word 130"=3 is in % if and only if n =0 (mod 4)
orn=1 (mod 4).

Proof. We will use proof by induction, where the base cases n = 3,4,5,6 can all be
verified by direct computation. Assume the statement holds for all words of length
strictly less than n, and consider the word u = 130"~3. The only two possible
representations for u are

1. 1712073 and
2. 130"—470,

since neither 1¢ nor 0% are Ulam words for any a > 1. By Theorem 6, 120"~3 € %
if and only if n =0 (mod 2); thus, representation (1) is valid if and only if n = 0,2
(mod 4). On the other hand, by the inductive hypothesis, representation (2) is valid
if and only if n = 1,2 (mod 4). Ergo, exactly one of the representations is valid if
and only if n =0,1 (mod 4). O

The proof of Lemma 3 illustrates how the modular length restrictions for 1¢+10°
can easily be found using the length restrictions for 10, which, in turn, means we
could generate countless additional theorems, providing length restrictions for 140°,
150%, and so forth. However, this would quickly prove tedious. Instead, we will

demonstrate the unifying pattern between all words of the form 1%0°. Recursively
define

So:=1(2,1)
Sn+1 =5, U (S, +(2",0)) u (S, + (27,2"))
0
S:= U Sh.
n=0

The set S is sometimes referred to as the discrete Sierpinski triangle. The reason
for this is that if one considers a suitable limit of the sets 278, the result is the
usual Sierpinski triangle. Remarkably, this is exactly the correct construction to
determine whether a word 1%0° is Ulam or not.

Theorem 9. Let S be defined as above. Then
{(x,y) e Z2,|1"0" Ve } = (1,1) US.
Remark 4. Observe that this is Theorem 3, but stated more precisely.

Proof of Theorem 9. It is easy to check that the only elements in both sets with
x < 2 are (1,1) and (2,1). Our goal is to show that the iterative process for
producing points in S with larger = values is the same as for the first set. To do so,
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Figure 7: Visual of steps to create modified Pascal’s triangle.

we will use a modified version of Pascal’s triangle, achieved by aligning all entries
to the left and then rotating the resulting image counterclockwise 90 degrees, as
illustrated in Figure 7. In the modified version, if we let p(z,y) be the entry in row
y and column z, then

p(z,y) = plz —1,y) + plz — 1,y — 1).
We make two additional modifications:
1. we align Pascal’s triangle such that the bottom left entry occurs at (2,1) and
2. we shade all odd entries.

On the one hand, this is well-known to be the discrete Sierpinski triangle S. On the
other hand, because only odd entries are shaded, an entry (z,y) is shaded if and
only if exactly one of (x — 1,y) or (x — 1,y — 1) is shaded.

Now, observe that there are only two potential representations for 1*0*~¥, those
being

1. 1¥0*~¥=170 and
2. 17 1v-1p=—v,

Thus, (x,y) is in the desired set if and only if exactly one of (z —1,y), (x—1,y—1)
is in the set. O

Remark 5. This is not the first time that Pascal’s triangle and the Sierpinski
triangle have shown up in the study of Ulam words. As mentioned previously,
there was already an analogous pattern for words 0710¥1% [9]; even before that, [1]
proved that the number of words of length n with one 1 is the n-th term in Gould’s
sequence—that is, the number of elements in the (n — 1)-th row of Pascal’s triangle.
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There are many consequences of this result. First, it means that determining
the set of Ulam words of the form 1?0° is quite simple: it is a straightforward
iterative procedure. Counting the number of elements of such form is also simple.
For example, consider the following simple corollary.

Corollary 1. Fizx n € Zso; let Ly, be the set of a € Zs1 such that 0°1"~% € % .
Then |L,| = G(n).

Proof. The k-th term of Gould’s sequence is the number of odd entries in the k-th
row of Pascal’s triangle. After rotating and shifting, the k-th row corresponds to
Liya. O]

There are certainly more symmetries lurking within S that would lead to more
theorems and patterns. In particular, we believe that it might be possible to demon-
strate the following.

Conjecture 4. Let u be a word of length n of the form 0912" 0" for a,b,k € Z>1.
The word u is in % if and only if n =1 mod 2*.

We close by giving one more result, which is analogous to Theorem 7.

Theorem 10. For any a,b € Z such that a +b > 1, the word 0°101010° is in % if
and only if a,b € 2Z and one is zero.

Proof. We induct on a + b. The base cases a + b = 1,2 are easily established by
pure computation. First, assume that both a,b # 0. Then there are six possible

representations:
1. 07011010100, 4. 010170100,
2. 017010100, 5. 010107 10°, and
3. 0910710100, 6. 0¢101010°—10.

Applying the inductive hypothesis and Theorem 7, we find that in all cases either
none of these are valid representations, or multiple are simultaneously. This leaves
the case where either a = 0 or b = 0—without loss of generality, we assume that
a = 0, since we can always apply the reverse map if needed. We have three possible
representations:

1. 17010100,
2. 1071010°, and
3. 101010°—1~0.

If b is odd, then (2) and (3) are valid representations due to Theorem 7; therefore,
this word is not Ulam. If b is even, then (1) is a valid representation, but (2) and
(3) are not; therefore, this word is Ulam. O
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Figure 8: A plot of y14(n) for 11 <n < 30 and f(n) = 1.9n%/10.

5. Density and the Distribution of the Gaps

We begin by proving that there is a relationship between the size of the average gap
between consecutive Ulam words of length n, and the density of Ulam words.

Proof of Theorem 4. Let u; < ug < ... < uy, be the (ordered) elements of (%, )—
that is, the integers that are images of the Ulam words of length n. The gaps between
them are the consecutive differences g1 = us — u1, g2 = uz — ug, and so on. It is
easy to see that u; = w(0000...01) = 1 and uy, = w(1111...10) = 2™ — 2—this
follows from Theorem 5, for example. Ergo, the average gap between Ulam words
of length n is

frg(n) : -1 [ S
1 kn _ 3
pn)k,—1 k,+1’

_ 5 +g+ ...+ G, -1 U, — UL 2" —3

from which we conclude that p(n)~! = p,(n). (We already know from Theorem 1
that k, — 00 as n — 00.) In particular, if Conjecture 2 is true and p4(n) = n3/10,
then p(n) = n=319 which is Conjecture 1. O

Notice in particular that for p(n) to converge to a non-zero constant, it must
be that py(n) is bounded. But this does not appear to be the case, as evidenced
by Figures 8 and 9. Instead, as near as we can tell, the order of growth seems
3/10  'With this in mind, it is perhaps worthwhile to examine the
distribution of the gaps more closely.

to be around n

It is obvious that any gap is at least 1 (in fact, it is an easy exercise to show that
a gap of 1 is always attained); on the other hand, numerical evidence suggests that
the maximal gap grows exponentially—specifically, it is O(r™) for some constant
r ~ 1.35 (see Figure 10). This is a little strange, in that one would not immediately
guess this looking at the probability distributions, as in Figure 11.
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15

n Relative Error n Relative Error n Relative Error
13 | 4.08765% 19 | 0.196991% 25 | 0.0447467%
14 | 2.43579% 20 | 0.222403% 26 | 0.0981692%
15 | 1.54247% 21 | 0.24375% 27 | 0.028047%

16 | 1.27957% 22 | 0.332677% 28 | 0.0353147%
17 | 0.402629% 23 | 0.33529% 29 | 0.0365254%
18 | 0.87545% 24 | 0.104678% 30 | 0.00663021%

Figure 9: The relative error between the actual pi,(n) and the estimate 1.9n%/10.
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Figure 10: A logarithmic plot of the maximal gap between words of length n for
2 <n <30, and f(n) =1.35™.

Indeed, there are some curious details to this apparent distribution. The first is
that there is a clear bias against gaps that are congruent to either 2 or 4 modulo 6.
This is very odd, considering that we conjecture that Ulam words are equidistributed
modulo 6 in the limit (See Section 6 for more about this). The second is that just
as the average gap appears to grow without bound, so does the standard deviation.
However, the standard deviations are quite small, of order around n/3—here is a
table of the last few we were able to compute:

n | Standard Deviation
21 | 6.09043461
22 | 6.57391412
23 | 6.95198536
24 | 7.48652894
25 | 7.95451379

n | Standard Deviation
26 | 8.41026105
27 | 8.83842107
28 | 9.34566047
29 | 9.94055302
30 | 10.5007497

This means that the distribution is very tightly clustered toward the smaller side.
However, it has extreme outliers: the maximal gap between words of length 30 is
8030, which is more than 764 standard deviations away from the mean! Somehow,
this should be typical: as we noted already, the size of the maximal gap appears
to grow exponentially, but the same is not true of either the average gap or the
standard deviation.
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Figure 11: From left to right, top to bottom: bar graphs showing the frequency of
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6. Modular Distribution

Let us now consider the relative density of Ulam words. As we mentioned earlier, the
set of Ulam words is preserved under the complement map. This forces a symmetry
on congruence classes.

Theorem 11. If w € %, then n~! (2”‘H —1- w(w)) € %,. Consequently, for any
positive integer N and a € Z/NZ,

Pa,N(N) = pant1_1_q n(a).
Proof. Given w € %,, write x = w(w) = a,2™ + ... + ap in binary. Then
() =(1—-an)2"+...+(1—ag) =2"" -1 -z

But @ € %,. Now, observe that if 7(w) = a mod N, then 2"*! — 1 — 7(w)

Il

2"+l — 1 —qa mod N, which forces the equality of the relative densities.
For N = 2,3, this is particularly simple.

Corollary 2. For any positive integer n, we have that pg2(n) = p1,2(n). Further-
more, for any a € Z/37Z,

_a3(n) ifn=0 mod2
puan) = P1mest) U=
p—a3(n) ifn=1 mod 2.

Proof. Observe that 2" — 1 — 2z = 2z + 1 mod 2, from which pg2(n) = p12(n)
follows immediately. For the second part, observe that

l1—2 ifn=0 mod?2

2"l _ 1 —2 mod3= .
—x ifn=1 mod 2.

O

While there must always exist for any n two congruence classes a,b € Z/37 such
that pg s(n) = pp3(n), there is no reason why the last congruence class ¢ should be
roughly equal. Indeed, for n < 5, we see that p.3(n) = 0. However, for larger n,
it does appear to be the case that p.s(n) — pa3(n) = pp.3(n); as we will illustrate
presently. To help measure the extent to which words are equidistributing modulo
N, we define the modular discrepancy.

Definition 1. For any positive integers n, N, the modular discrepancy is

du(n) 1= mac |pu (1) = ()]
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Figure 12: A plot of the modular discrepancies for prime power moduli p* < 30.

Trivially, saying that Ulam words equidistribute modulo N is equivalent to saying
that dy(n) — 0 as n — oo. Moreover, by appealing to the Chinese remainder
theorem, proving that dy(n) — 0 for all N is reducible to proving that dx(n) — 0
for all prime powers p*. To investigate Conjecture 3, we computed dyr(n) for all
prime powers p* < 30—as near as we can tell, dyr(n) decays exponentially as a
function of n (see Figure 12).
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