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Abstract

The Frobenius coin problem involves computing the largest integer, known as the
Frobenius number, that cannot be expressed as a non-negative integral linear com-
bination of given relatively prime positive integers. A more generalized version of
this problem, termed as the p-Frobenius number, aims to find the largest integer
that has at most p representations in terms of linear combinations, where p is any
non-negative integer. In this article, we give the closed-form expressions of the p-
Frobenius numbers for the numerical semigroups generated by the triplets of the
consecutive star numbers for the cases p = 0,1, and 2. Also, we present explicit
formulas for their p-Sylvester numbers (which count the positive integers having no
more than p representations) where p = 0,1, and 2.

1. Introduction

The Star numbers, denoted by S,,, are commonly referred to as the centered 12-
gonal numbers or centered dodecagonal numbers. The formula expressing the nt”
star number is given by S,, = 6n(n—1)+1, where n > 1. The first few star numbers
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[21, A.131] are as follows

{SnYtn>1 = 1,13,37,73,121,181, 253, 337, 433,541, 661, 793,937, 1093,
1261, 1441, 1633, 1837, 2053, . . ...

These numbers appear in many number theoretic problems. Some well-known for-
mulas include [27, OEIS A306980]

=1 7rtan(7r/2\/§) =S, =S,
— S —_— = -_— = 2 .
nZ: <5, 23 D i =Te and nzzl on = 2

n=0
One can also easily prove the first identity above using the Cauchy’s residue theorem.

Geometrically, the n*" star number consists of a central point along with 12 copies
of the (n—1)*" triangular number ¢,,_1. A notable observation is that infinitely many
star numbers are also triangular numbers and among the initial instances, we have
Sl =1= tl, S7 = 253 = t22, 591 = 49141 = t313, and 51261 = 9533161 = t4366 on
the OEIS entry A156712. The star numbers are used for a new set of vector-valued
Teichmiiller modular forms, defined on the Teichmiiller space, strictly related to the
Mumford forms, which are holomorphic global sections of the vector bundle [19].

Let A = {a1,a2,...,ar} be a set of relatively prime positive integers, where
k > 2, and let p be any non-negative integer. The p- numerical semigroup S,(A)
is defined as the set of integers whose non-negative integral linear combinations
in terms of given positive integers ai,as,...,a; can be expressed in more than
p ways [18]. For some background on the number of representations, refer, e.g.,
[4, 6, 10, 28]. For the set of non-negative integers Ny, the set G,,(A4) := No\:S,(A)
is finite if and only if ged (a1, aq,...,ar) = 1. Then, the maximum element of the
set Gp(A), denoted by g,(A) is called the p-Frobenius number. The cardinality of
the set Gp(A) is called the p-Sylvester number (or the p-genus) and is denoted by
n,(A). This kind of concept is a generalization of the famous Diophantine problem
of Frobenius [2, 25], since p = 0 is the classical case, where the original Frobenius
number is denoted by g(A4) = go(A4) and the genus as n(A) = ng(A). Here, the set
A is called the system of generators of the p-numerical semigroup S,(A).

When k = 2, there exists an explicit closed formula of the p-Frobenius number
for any non-negative integer p [3]. However, for k = 3, the p-Frobenius number
cannot be given by any set of closed formulas that can be reduced to a finite set of
certain polynomials [9]. Since it is very difficult to give a closed explicit formula of
any general sequence for three or more variables, many researchers have tried to find
the Frobenius numbers for some special cases (see, e.g., [14, 22, 23, 24] for more
details). Recently, in [7, 8], the Frobenius numbers for the triplets of successive
centered triangular, centered square, centered pentagonal, and centered hexagonal
numbers were studied. Though it is even more difficult when p > 0 (see, e.g., [12, 15,
16, 17]), in [11], the p-Frobenius numbers of three consecutive triangular numbers
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were studied. In this paper, the p-Frobenius numbers of the three consecutive star
numbers are examined. Initially, the focus is on understanding the structure of
the p-Apéry set for the classical case, followed by other positive integral values of
p = 1,2. Additionally, we present explicit formulas for their p-Sylvester numbers
forp=0,1,2.

2. Preliminaries

In this section, we recall the notion of the p-Apéry set [1] and some results to
compute the p-Frobenius number and p-Sylvester number which will play a crucial
role in proving the main theorem. Let us define the p-Apéry set.

Definition 1. Consider a set of positive integers A = {aq,as,...,ax} (k > 2) with

ged(A) = 1. Without loss of generality, assume that a; = min(A) and let p be any

non-negative integer. Then, the p-Apéry set of A, denoted by Ap,(A), is defined as
Ap,(A) = Ap(ai,az,...,ax) = {mép),mgp), .,m® +,

s Pap—1

() i the least positive integer of S,(A), and satisfies the congruence ml(-p ) =

i (mod aq), for 0 < ¢ < ay — 1. This definition is equivalent to saying that mgp) S
Sp(A), ml(»p) — a1 € Sp(A), and mgp) =4 (mod a;). Note that m(()o) is defined to be

0. It follows that for given p,

where m

Ap,(A) ={0,1,...,a1 — 1} (mod ay).
In other words, Ap,(A) forms a complete residue system modulo a;.

One of the convenient formulas to obtain the p-Frobenius number and the p-
Sylvester number (or p-genus) is via the elements in the corresponding p-Apéry set.
The lemma given below describes the relationship between the Frobenius number
and the Sylvester number with the associated Apéry set [13].

Lemma 1. Let ged(ay,...,a;) = 1 with ay = min{ay,...,ar}. Then, we have

gp(al,...,ak):< max m;p))—al,

0<j<a;—1
alfl

np(a1 ak):i E:m(}’) St

14 ) ) a 4 j 2
Jj=0

Remark 1. When p = 0 (classical case), the Frobenius number is essentially due
to Brauer and Shockley [5], and the classical Sylvester number is due to Selmer
[26]. More general formulas, including the p-power sum and the p-weighted sum,
can also be seen in [13].
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In order to discuss the Frobenius number for triples of successive star numbers, we
must ensure that they are relatively prime. Here, we give a lemma that articulates
this requirement.

Lemma 2. For any three consecutive star numbers Sy, Sp41, and Spy2,
ged(Sn, Snt1,Snt2) = 1.
Proof. We know that
ged(Sp, Snt1, Snt2) = ged(ged(Sn, Snt1), 86d(Snt1, Snt2))-

Let d,, = ged(Sy, Sne1) and observe that (n + 1)S, — (n — 1)S,+1 = 2. This
implies d,, | 2 and since star numbers are odd, we conclude that d,, = 1. Thus,
gcd(Sy, Spe1) = 1 and hence, ged(Sy, Snt1, Snt2) = 1. O

In addition, in a later section we use a classical identity known as Bézout’s
Lemma, which is stated as follows.

Lemma 3 ([20]). Let a and b be integers with greatest common divisor d. Then
there exist integers x and y such that ax + by = d. Moreover, the integers of the
form az + bt are exactly the multiples of d.

3. Main Results

Now, we derive the explicit expressions for the p-Frobenius numbers and the p-
Sylvester numbers for the triples consisting of successive star numbers, discussed in
Section 3.1 and Section 3.2, respectively.

3.1. p-Frobenius Numbers

The p-Frobenius numbers of the numerical semigroups generated by three consecu-
tive star numbers are given as follows.

Theorem 1. For p=0,1,2, we have

2n5n+1 + (p + 2>nSn+2 - S’I’L? Zf6 <n< 97

Sn, Sn 7Sn = .
9 +1, Sn2) {(Qn —11)Sp41 + (p+ 3)nSpt2 — Sn, if n > 10.

Remark 2. More explicitly, we can write

24n3 +42n% + 34n — 1 + (60> + 18n2 + 13)p, if6<n <9;

Sna‘gn ;Sn =
9 +15n+2) {30n3 —6n% — 19n — 12 + (6n3 + 18n2 + 13)p, if n > 10.

When p > 3, the situation becomes complex, and no explicit formula has been
derived so far. The cases where n = 2,3,4,5 are discussed later.
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Proof. Our main goal is to find the p-Apéry set and establish the validity of the

theorem case by case for n > 6.

Case 1: p = 0. For convenience, substitute ¢, . := yS,4+1 + 25,42 for non-negative
integers y and z. Then, we can show that the elements of the 0-Apéry set are given

as in Table 1.

to,0 e ton—11,0 ton—100 - 0 lono

to,2n e ton—112n  ton—102n - " tonon
toont1 0 ton—11,2n41

to,3n E ton—11,3n

Table 1: ApO(Sn, Sn+1, Sn+2)

Firstly, we prove that the elements ¢, , in Table 1 form a complete residue system
modulo S,,. To prove this we show that any such two elements in the table are
incongruent modulo S,,. Assume for a contradiction that there exist ordered pairs

(y1,21) and (y2, 22) such that t,, ., #t,, ., in Table 1 with
tyizn = ty,2, (mod Sy).
Substituting the values of ¢, , in Equation (1), we have
Y15n+1 + 21Sn42 = Y2Sn41 + 20542 (mod Sy).
Re-arranging the above equation, we get
(y1 = Y2)Snt1 + (21 — 22)Sp2 = 0 (mod S,,).

This implies

(1 — y2)(Snt1 — Sn) + (21 — 22)(Snt2 — Sp) = 0 (mod S,,).

Consequently,
12n(y; —y2) +12(2n 4+ 1)(21 —22) = 0 (mod S,,).
Furthermore, ged(12,.5,) = 1, and hence
n(y1 —y2) + (2n+1)(21 — 22) = 0 (mod S,,).
For y1, 42, 21, 22 as in Table 1, we have

ly1 —y2| <2n and |z — 22| < 3n.

(1)
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From Equation (2), n(y1 — y2) + (2n + 1)(21 — 22) is a multiple of S,,, and under
the constraints of Equation (3), the only possible values are 0, S,, or — S,. If
n(y1 —y2) + (2n 4+ 1)(z1 — 22) = 0, it follows that t,, ., = t,, ., which contradicts
our initial assumption. Now, consider the case when

n(yr —y2) + (2n +1)(21 — 22) = S, = 6n% — 60 + 1. (4)

Using Bézout’s lemma, the extended Euclidean algorithm, and the inequalities in
Equation (3), the only integral solution to Equation (4) is

(y1 —y2,21 — 22) = (2n —10,2n + 1).
As a result,

y1 = 2n — 10 + y2,
z1=2n+ 1+ 2o.

Since yo and 22 are non-negative integers, it follows that t,, ., lies outside Table
1. Hence, our initial assumption was wrong. On a similar line of reasoning, we
can argue that n(y1 — y2) + (2n + 1)(z1 — 22) # —S,. Thus, no two elements in
Table 1 are congruent modulo S,,. Additionally, note that the count of elements in
Table 1 is equal to (2n + 1)? 4+ n(2n — 10) = S,,. Therefore, we obtain that the set
{ty,> : ¥,z € Table 1} constitutes a complete residue system modulo S,. In other
words, we show that for each ¢ € {0,1,...,5,-1}, there exists a unique element ¢, ,
in Table 1 such that ¢, , = ¢ (mod S,).

We now proceed to prove that the elements in Table 1 are indeed the smallest
ones in their corresponding residue classes. Observe that

(2n+1)Sp41 — nSpt2 = (n+1)S,,
(31 +1)Snso — 11541 = (3n 4 2)S,.

—~~
N O O
—_ — T

Consequently,

t2n710+y,z = ty,zf2n71 (mOd Sn) and t2n710+y,z > ty,zf2n71
(2n+1<2z<3n,0<y<10),

tont1+y,e = tymts (mod Sp) and tonii14yz > tyne
(0<y<2n—11,0< 2 < 2n),

tan—91y,z = ton—104yn+= (mod Sy) and tun_94y,2 > tan—104y,nte
(0<y<10,0<z<n),

ty» =ty—11,2+3n+1 (mOd Sn) and tyz > ty—11,243n+1

(0<z2<n—1,11 <y <2n).
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Therefore, the elements in Table 1 form the 0-Apéry set Apy(Sn, Sn+1, Snt2)-

Now, from Table 1, there are two possibilities for the largest value of the set
Ap0(5n7sn+1,sn+2)2 tgn}gn or t2n711,3n- Note that, tgnygn < t2n711,3n if and only
if nSy+2 > 115,41, which is equivalent to 6n3 — 48n2% — 53n — 11 > 0. Observe that
the roots of the equation 6n — 48n? — 53n — 11 = 0 are —0.7214, —0.2822, and
9.0036. Therefore, for 6 < n <9, tg, 2y is the largest element of the Apéry set, so
by Lemma 1, we have that

gO(Sna S’I’L+1, Sn+2) = 2nsn+1 + 2nSn+2 - Sn

While for n > 10, we have t9,—11,3, is the maximum among all the elements, so
using Lemma 1

go(Sn, Sn+1, Sn+2) = (2n — 11)Sn+1 + 3nSp42 — Sh.

Case 2: p = 1. The elements of the 1-Apéry set can be determined from those of
the 0-Apéry set as follows.

tont10 o s lang0
tontin  tc o tandan
tontim+1 cc0 tan—10,n+1
tont1,2n 0 tan—10,2n

ton—102n+1 00 0 ton2n

ton—10,3n  "cr -t ton,3n

tognt1 0 lon—113n41

toan -t ton—11,4n

Table 2: Ap; (S, Sn+1,Sn+2)

From the set of Equations (5), (6), and (7) and the relation
(2n+12)S,41 + (2n+1)S, = (4n + 1)S, 42,

we have the following one-to-one correspondence between the elements of the 0-
Apéry set (on the left-hand side of congruences) and that of the 1-Apéry set (on
the right-hand side of congruences):
tyz =ty+ant1,.—n (mod Sp)
0<y<2n,n<z<2n; 0<y<2n—11,2n+1<2<3n),
ty,z = ty+2n—10,z+2n+1 (mOd Sn) (O <y< 10,0<2z<n— 1),
tyz =ty—11,243n+1 (mod Sp) (11<y<2n,0<z<n-1).
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The elements in the first n rows of Table 1 are divided into two parts. One part is
simply moved below the 0-Apéry set to fill in the gap as shown in Table 2. However,
the remaining portion is moved to the lower left of the 0-Apéry set. Elements other
than the first n rows of Table 1 are shifted to the right side of the 0-Apéry set by
shifting up by n rows.

Set Tp.y,» = Sp + YSnt1 + 2Sn42. We show that all the elements of Table 2
have at least two different representations. In fact, for 0 < y < 2n, n < z < 2n and
0<y<2n-—11,2n+1 < 2z < 3n, we have

Tn+1,y,2 — T0,y+2n+1,2—n-
Similarly, we get

Tan+3,y,2 — T0,y+2n—10,z+2n+1 (for 0<y<10,0<z<n- 1);

T3n+2,y,2 — T0,y—11,2+3n+1 (fOI' 11 < y < 2n,0<z<n-— 1)

From Table 2, there are four possible choices for the largest value of Ap; (Sy, Snt1, Snt2):

tan+1,n> tan—10,2ns t2n,3n, and tan_11,4n -

Since 18n2 4+ 18n — 1 > 0, we have tanti,n < ton3n and tan—102n < ton—11,4n-
Analogous to the case p = 0, we obtain t9, 3, < ton_11.4n if and only if n > 9.
Therefore, for 6 < n < 9, the maximum element is ¢2y, 3,, and by Lemma 1,

gl(Sna Sn—i-l) Sn+2) = 2nsn+1 + 3nSn+2 - Sn

When n > 10, t2,,—11,4x is the largest of all the elements, and hence using Lemma
1,
g1 (Sn7 S7L+17 Sn+2) = (27”& - 11)Sn+1 + 4nSn+2 — Sn.

Case 3: p = 2. The elements of the 2-Apéry set can be derived from those of the
1-Apéry set in the following manner (see Table 3).

© len—90
© ten-91

ton-s0 - tont20

tan—9nt1 -

lan—92n -

tant1nt1

Lany1.2n

Lans12ntr o

tont1,3n

tan—1020+1

t4n—-10.3n

ton—103n41 -

tan-104n

ton.3nt1

Lon.an

to,5n

loans1 =+

an-11,4n+1

ton—115n

Table 3: Apy(Sn, Sni1s Sni2)
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Similar to the case when p = 1, the elements in the first n rows of the main part of
the 1-Apéry set are subdivided into two parts and then relocated beneath the two
staircase sections of the 1-Apéry set. Elements other than the first n rows of the
main portion undergo a shift to the right side of the 1-Apéry set which is achieved
by moving up by n rows. The other two staircase parts are shifted to the right by
(2n + 1) steps and upward by n steps. More precisely,

ty:. =tytont1,.—n (mod S,)

2n+1<y<dn+1l,z=n; 2n+1<y<4n-—-10,n+1 < z < 2n),
ty:=ty_11243n41 (mod S,) (Cn+1<y<2n+11,0<2z<n—-1),
ty> =ty—on—12,24an+1 (mod S,) (2n+12<y<4n+1,0<z<n—-1),
tyz =tytonti,z—n (mod Sy)

0<y<2n—-11,3n+1<z<4n; 2n—-10<y <2n,2n+1<z < 3n).

Using Equations (5), (6), and (7), we can demonstrate that the elements of the
2-Apéry set possess atleast three distinct representations. For 0 < y < 2n, z = 2n
and 0 <y <2n-—11,2n+1 < z < 3n, we have
Ton+2,y,2 = Tn+1l,y+2n+1,2—n — T0,y+4n+2,2—2n-
Similarly, we have
Tan+3,y,2 = T3n+2,y+2n+1,2—n — T0,y+2n—10,z+2n-+1
(0<y<10,n<z<2n-1),

T3n+2,y,2 = T2n+1,y+2n+1,2—n — T0,y—11,2+3n+1
(I1<y<2n,n<z<2n-1),

Tsn+4,y,2 = Tn+1,y+2n—10,24+2n+1 = T0,y+4n—9,z+n+1
(0<y<10,0<z<n—-1),

Tan+3,y,2 = Tn+1l,y—11,243n+1 = T0,y+2n—10,z4+2n+1
(11<y<2n,0<z<n-1).
In Table 3, by comparing the six candidates

12n—11,5ns t2n,4n;s t4n—10,3n, tan+1,2n, ten—9,n, and teni2.0,

we find that t2;, 45, is the largest element of the 2-Apéry set, when 6 <n <9, and
ton—11,5n is the largest element of the 2-Apéry set, when n > 10. Therefore,

2nSp+1 + 4nSp+2 — Sh, if6<n<9;

S’I’H‘S’n )STL = i
92( +155nt2) {(Qn —11)Sp41 + 5nSpi2 = Sy, if 0> 10.

This completes the proof. O
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Remark 3. For p > 3, the elements of the 3-Apéry set can also be computed from
that of the 2-Apéry set. However, the uniform pattern observed in previous cases
does not persist, as illustrated by Table 4.

I
@
© @

Table 4: ApB(Sru Snt1, Sn+2)

When n > 10, elements 0., @), and indicate the position of the largest
elements of the 0-, 1-, and 2-Apéry sets, respectively, and when 6 < n < 9, elements
0y, @), and @) represent the corresponding largest elements. We can see that no
element of the 3-Apéry set can exist at the expected location for the largest value.
Thus, for p > 3, the application of the same formula becomes impractical and the
situation becomes more and more complicated, though the p-Frobenius numbers
should exist.

Remark 4. For n = 2,3,4,5, the Frobenius number g¢,(Sy, Sn+1, Snt2) is com-
puted explicitly and the elements of the 0-Apéry set are given in Table 5, Table 6,
Table 7, and Table 8, respectively.

to,0

6,3

t3,2 to6

Table 5: Apy(Se, S3,S4) Table 6: Apy(Ss,S4,S5)
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to,0
3.4
10,0 10,0
te,s t10,10
Table 7: Apy(S4, S5, S6) Table 8: Ap,(Ss, Ss, S7)

In each case, comparing the possible two candidates, we can find that t3 2, t26, t6,s,
and 10,10 take the largest values of the 0-Apéry sets when n = 2, 3,4, 5, respectively.
Therefore, we have

90(S2, 53, 54) = 353 + 254 — Sy = 244,
90(Ss, 4, S5) = 254 + 655 — Sy = 835,
90(547 Ss, SG) =655 + 8Sg — Sy = 2101,
90(S5, S5, 57) = 105 + 1057 — S5 = 4219,

When p > 0, we can find that
{9,(S2, Ss, 54)}11;0:0 = 244,353, 426, 499, 538, 608, 647, 686, 725, 764, 801,

{95(S3, 54, 85)} 10, = 835, 1198, 1417, 1565, 1780, 1928, 2076, 2224, 2345, 2466, 2587,
{95(S4, S5, 86)} 12, = 2101, 2825, 3307, 3672, 4037, 4402, 4761, 5126, 5418, 5660, 5902 .

However, identifying any consistent pattern for the maximum element of the p-
Apéry set appears to be challenging. For example, the corresponding elements of
the p-Apéry set for {Sy, S5, Sg} are given by

te,8 — te,12 —> ta16 —> t13,12 —> toa,8 —> 31,4

—> ta2,12 —> t31,8 = t2,20 — t4,29 — g,29-

3.2. p-Sylvester Numbers

The p-Sylvester numbers for the numerical semigroups generated by the triplets of
successive star numbers are given below.

Theorem 2. Forn >6 and p=0,1,2, we have
n(15n2 + 8n + 7), ifp=0;

np(Sna SnJrl, Sn+2) = <{ 25n3 + 23n?2 + 14n + 1, ifp =1;
33n3 4+ 35n% +20n +2, ifp=2.
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Proof. We deal with each case separately.
Case 1: p = 0. By using Table 1, we have

Sp—1 10 n—1 2n n—1 2n 2n 2n—11 3n
0
Zm”*zzwﬁzzwﬁzz%ﬁ > D e
y=0 z2=0 y=11 2z=0 y=0z=n y=0 z=2n+1

224 1S + [n(n - 1)2(2n + 1)] Soe

b D)@+ 1)Supn + [3n(2n +21)(n—|— 1)} Sio

+ n(n—>5)(2n —11)Sp41 + n(dn+1)(n — 5)Sp12
= n(6n* — 170+ 56)S,11 + n(9In? —20n — 4)S,, 12
=n(15n% + 11n +4)S,,.

Using Lemma 1, the 0-Sylvester number is given as

S, —1
n(Sn, Sni1, Snia) = n(15n% + 11n +4) —

=n(15n® +8n + 7).

12

Case 2: p = 1. Summing up the elements of the 1-Apéry set (see Table 2), we

obtain
Sn—1 10 n—1 2n n—1
1
ORI 3) SIFTNIES o I
7=0 y=0 z=0 y=11 z2=0
2n  2n 2n—11  3n
+ Z Z ty+2n+1,z—n + Z Z ty+2n+1,z—n
y=0z=n y=0 z=2n+1
Sp—1
=Y m{” + 11n(4n + 3)S, + n(2n — 10)(3n + 2)S,
j=0

+(n+1)22n+1)S, + n(n+1)(2n — 10)S,
=n(15n* + 11n +4)S,, + (2n+1)(5n* +5n 4+ 1)S,
= (25m° 4 26n% + 11n + 1)S,.

Using Lemma 1, the 1-Sylvester number is given by

Sp—1

n1(Sn, Sni1, Snte) = (25m® 4+ 26n% + 11n + 1) —
=25n% + 2302 4 14n + 1.
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Case 3: p = 2. Using Table 3, we get

Sp—1

10 n—1 2n n—1

Z m§.2) = Z Z ty+2n—10,24+3n+1 + Z Z ly—11,2+4n+1
=0

y*O z=0 y=11 2=0
2n—11 3n

+ Z Z ty+2(27,+1) 2—on Z Z ty+2 (2n+1),2—2n

y=0z=2n y=0 z=2n+1
2n—112n—1 2n 2n—1

+ Z D tyronttetniit o Y. Y tyrontiai
z=n

y=2n—10 z=n

- [ 1n(4n +3) + n(2n — 10)(3n +2) +2(2n + 1)(n + 1)
+2n(n 4+ 1)(2n — 10)} S,
+ [n(zn +1)(n+ 1) + 4n(n — 5)(2n — 5) + 4dn(n — 1) ] St

nin—1)2n+1)

n2n+1)(n+2)+2n(Bn+1)(n—5) +

11n(3n +1)

2 Sn+2

= (10n® + 60> — n +2) S,, + (10n® — 13n® + 57n) S, 41

+ (13n3 — 27n? — 3n) Snqz

= (10n® + 6n* —n +2)S, + (23n> + 32n 4+ 18n) S,
= (33n® +38n% + 17n + 2)5,.

Therefore, by Lemma 1, the 2-Sylvester number is given as

n9(Sny Sni1, Snaz) = (330> 4+ 38n2 + 17n + 2) —

Sp—1

= 33n% 4+ 3502 4+ 20n + 2.
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