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Abstract

The Frobenius coin problem involves computing the largest integer, known as the
Frobenius number, that cannot be expressed as a non-negative integral linear com-
bination of given relatively prime positive integers. A more generalized version of
this problem, termed as the p-Frobenius number, aims to find the largest integer
that has at most p representations in terms of linear combinations, where p is any
non-negative integer. In this article, we give the closed-form expressions of the p-
Frobenius numbers for the numerical semigroups generated by the triplets of the
consecutive star numbers for the cases p = 0, 1, and 2. Also, we present explicit
formulas for their p-Sylvester numbers (which count the positive integers having no
more than p representations) where p = 0, 1, and 2.

1. Introduction

The Star numbers, denoted by Sn, are commonly referred to as the centered 12-

gonal numbers or centered dodecagonal numbers. The formula expressing the nth

star number is given by Sn = 6n(n−1)+1, where n ≥ 1. The first few star numbers
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[21, A.131] are as follows

{Sn}n≥1 = 1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093,

1261, 1441, 1633, 1837, 2053, . . . .

These numbers appear in many number theoretic problems. Some well-known for-

mulas include [27, OEIS A306980]

∞∑
n=1

1

Sn
=

π tan(π/2
√
3)

2
√
3

,

∞∑
n=0

Sn

n!
= 7e, and

∞∑
n=1

Sn

2n
= 25.

One can also easily prove the first identity above using the Cauchy’s residue theorem.

Geometrically, the nth star number consists of a central point along with 12 copies

of the (n−1)th triangular number tn−1. A notable observation is that infinitely many

star numbers are also triangular numbers and among the initial instances, we have

S1 = 1 = t1, S7 = 253 = t22, S91 = 49141 = t313, and S1261 = 9533161 = t4366 on

the OEIS entry A156712. The star numbers are used for a new set of vector-valued

Teichmüller modular forms, defined on the Teichmüller space, strictly related to the

Mumford forms, which are holomorphic global sections of the vector bundle [19].

Let A = {a1, a2, . . . , ak} be a set of relatively prime positive integers, where

k ≥ 2, and let p be any non-negative integer. The p- numerical semigroup Sp(A)

is defined as the set of integers whose non-negative integral linear combinations

in terms of given positive integers a1, a2, . . . , ak can be expressed in more than

p ways [18]. For some background on the number of representations, refer, e.g.,

[4, 6, 10, 28]. For the set of non-negative integers N0, the set Gp(A) := N0\Sp(A)

is finite if and only if gcd (a1, a2, . . . , ak) = 1. Then, the maximum element of the

set Gp(A), denoted by gp(A) is called the p-Frobenius number. The cardinality of

the set Gp(A) is called the p-Sylvester number (or the p-genus) and is denoted by

np(A). This kind of concept is a generalization of the famous Diophantine problem

of Frobenius [2, 25], since p = 0 is the classical case, where the original Frobenius

number is denoted by g(A) = g0(A) and the genus as n(A) = n0(A). Here, the set

A is called the system of generators of the p-numerical semigroup Sp(A).

When k = 2, there exists an explicit closed formula of the p-Frobenius number

for any non-negative integer p [3]. However, for k = 3, the p-Frobenius number

cannot be given by any set of closed formulas that can be reduced to a finite set of

certain polynomials [9]. Since it is very difficult to give a closed explicit formula of

any general sequence for three or more variables, many researchers have tried to find

the Frobenius numbers for some special cases (see, e.g., [14, 22, 23, 24] for more

details). Recently, in [7, 8], the Frobenius numbers for the triplets of successive

centered triangular, centered square, centered pentagonal, and centered hexagonal

numbers were studied. Though it is even more difficult when p > 0 (see, e.g., [12, 15,

16, 17]), in [11], the p-Frobenius numbers of three consecutive triangular numbers
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were studied. In this paper, the p-Frobenius numbers of the three consecutive star

numbers are examined. Initially, the focus is on understanding the structure of

the p-Apéry set for the classical case, followed by other positive integral values of

p = 1, 2. Additionally, we present explicit formulas for their p-Sylvester numbers

for p = 0, 1, 2.

2. Preliminaries

In this section, we recall the notion of the p-Apéry set [1] and some results to

compute the p-Frobenius number and p-Sylvester number which will play a crucial

role in proving the main theorem. Let us define the p-Apéry set.

Definition 1. Consider a set of positive integers A = {a1, a2, . . . , ak} (k ≥ 2) with

gcd(A) = 1. Without loss of generality, assume that a1 = min(A) and let p be any

non-negative integer. Then, the p-Apéry set of A, denoted by App(A), is defined as

App(A) = Ap(a1, a2, . . . , ak) = {m(p)
0 ,m

(p)
1 , . . . ,m

(p)
a1−1} ,

where m
(p)
i is the least positive integer of Sp(A), and satisfies the congruence m

(p)
i ≡

i (mod a1), for 0 ≤ i ≤ a1 − 1. This definition is equivalent to saying that m
(p)
i ∈

Sp(A), m
(p)
i − a1 ̸∈ Sp(A), and m

(p)
i ≡ i (mod a1). Note that m

(0)
0 is defined to be

0. It follows that for given p,

App(A) ≡ {0, 1, . . . , a1 − 1} (mod a1).

In other words, App(A) forms a complete residue system modulo a1.

One of the convenient formulas to obtain the p-Frobenius number and the p-

Sylvester number (or p-genus) is via the elements in the corresponding p-Apéry set.

The lemma given below describes the relationship between the Frobenius number

and the Sylvester number with the associated Apéry set [13].

Lemma 1. Let gcd(a1, . . . , ak) = 1 with a1 = min{a1, . . . , ak}. Then, we have

gp(a1, . . . , ak) =

(
max

0≤j≤a1−1
m

(p)
j

)
− a1,

np(a1, . . . , ak) =
1

a1

a1−1∑
j=0

m
(p)
j

− a1 − 1

2
.

Remark 1. When p = 0 (classical case), the Frobenius number is essentially due

to Brauer and Shockley [5], and the classical Sylvester number is due to Selmer

[26]. More general formulas, including the p-power sum and the p-weighted sum,

can also be seen in [13].
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In order to discuss the Frobenius number for triples of successive star numbers, we

must ensure that they are relatively prime. Here, we give a lemma that articulates

this requirement.

Lemma 2. For any three consecutive star numbers Sn, Sn+1, and Sn+2,

gcd(Sn, Sn+1, Sn+2) = 1.

Proof. We know that

gcd(Sn, Sn+1, Sn+2) = gcd(gcd(Sn, Sn+1), gcd(Sn+1, Sn+2)).

Let dn = gcd(Sn, Sn+1) and observe that (n + 1)Sn − (n − 1)Sn+1 = 2. This

implies dn | 2 and since star numbers are odd, we conclude that dn = 1. Thus,

gcd(Sn, Sn+1) = 1 and hence, gcd(Sn, Sn+1, Sn+2) = 1.

In addition, in a later section we use a classical identity known as Bézout’s

Lemma, which is stated as follows.

Lemma 3 ([20]). Let a and b be integers with greatest common divisor d. Then

there exist integers x and y such that ax + by = d. Moreover, the integers of the

form az + bt are exactly the multiples of d.

3. Main Results

Now, we derive the explicit expressions for the p-Frobenius numbers and the p-

Sylvester numbers for the triples consisting of successive star numbers, discussed in

Section 3.1 and Section 3.2, respectively.

3.1. p-Frobenius Numbers

The p-Frobenius numbers of the numerical semigroups generated by three consecu-

tive star numbers are given as follows.

Theorem 1. For p = 0, 1, 2, we have

gp(Sn, Sn+1, Sn+2) =

{
2nSn+1 + (p+ 2)nSn+2 − Sn, if 6 ≤ n ≤ 9;

(2n− 11)Sn+1 + (p+ 3)nSn+2 − Sn, if n ≥ 10.

Remark 2. More explicitly, we can write

gp(Sn, Sn+1, Sn+2) =

{
24n3 + 42n2 + 34n− 1 + (6n3 + 18n2 + 13)p, if 6 ≤ n ≤ 9;

30n3 − 6n2 − 19n− 12 + (6n3 + 18n2 + 13)p, if n ≥ 10.

When p ≥ 3, the situation becomes complex, and no explicit formula has been

derived so far. The cases where n = 2, 3, 4, 5 are discussed later.
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Proof. Our main goal is to find the p-Apéry set and establish the validity of the

theorem case by case for n ≥ 6.

Case 1: p = 0. For convenience, substitute ty,z := ySn+1+zSn+2 for non-negative

integers y and z. Then, we can show that the elements of the 0-Apéry set are given

as in Table 1.

t0,0 · · · t2n−11,0 t2n−10,0 · · · · · · t2n,0
...

...
...

...
t0,2n · · · t2n−11,2n t2n−10,2n · · · · · · t2n,2n

t0,2n+1 · · · t2n−11,2n+1

...
...

...
...

t0,3n · · · t2n−11,3n

Table 1: Ap0(Sn, Sn+1, Sn+2)

Firstly, we prove that the elements ty,z in Table 1 form a complete residue system

modulo Sn. To prove this we show that any such two elements in the table are

incongruent modulo Sn. Assume for a contradiction that there exist ordered pairs

(y1, z1) and (y2, z2) such that ty1,z1 ̸= ty2,z2 in Table 1 with

ty1,z1 ≡ ty2,z2 (mod Sn). (1)

Substituting the values of ty,z in Equation (1), we have

y1Sn+1 + z1Sn+2 ≡ y2Sn+1 + z2Sn+2 (mod Sn).

Re-arranging the above equation, we get

(y1 − y2)Sn+1 + (z1 − z2)Sn+2 ≡ 0 (mod Sn).

This implies

(y1 − y2)(Sn+1 − Sn) + (z1 − z2)(Sn+2 − Sn) ≡ 0 (mod Sn).

Consequently,

12n(y1 − y2) + 12(2n+ 1)(z1 − z2) ≡ 0 (mod Sn).

Furthermore, gcd(12, Sn) = 1, and hence

n(y1 − y2) + (2n+ 1)(z1 − z2) ≡ 0 (mod Sn). (2)

For y1, y2, z1, z2 as in Table 1, we have

|y1 − y2| ≤ 2n and |z1 − z2| ≤ 3n. (3)
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From Equation (2), n(y1 − y2) + (2n + 1)(z1 − z2) is a multiple of Sn, and under

the constraints of Equation (3), the only possible values are 0, Sn, or − Sn. If

n(y1 − y2) + (2n+ 1)(z1 − z2) = 0, it follows that ty1,z1 = ty2,z2 which contradicts

our initial assumption. Now, consider the case when

n(y1 − y2) + (2n+ 1)(z1 − z2) = Sn = 6n2 − 6n+ 1. (4)

Using Bézout’s lemma, the extended Euclidean algorithm, and the inequalities in

Equation (3), the only integral solution to Equation (4) is

(y1 − y2, z1 − z2) = (2n− 10, 2n+ 1).

As a result,

y1 = 2n− 10 + y2,

z1 = 2n+ 1 + z2.

Since y2 and z2 are non-negative integers, it follows that ty1,z1 lies outside Table

1. Hence, our initial assumption was wrong. On a similar line of reasoning, we

can argue that n(y1 − y2) + (2n + 1)(z1 − z2) ̸= −Sn. Thus, no two elements in

Table 1 are congruent modulo Sn. Additionally, note that the count of elements in

Table 1 is equal to (2n+ 1)2 + n(2n− 10) = Sn. Therefore, we obtain that the set

{ty,z : y, z ∈ Table 1} constitutes a complete residue system modulo Sn. In other

words, we show that for each i ∈ {0, 1, . . . , Sn−1}, there exists a unique element ty,z
in Table 1 such that ty,z ≡ i (mod Sn).

We now proceed to prove that the elements in Table 1 are indeed the smallest

ones in their corresponding residue classes. Observe that

(2n− 10)Sn+1 + (2n+ 1)Sn+2 = (4n+ 3)Sn, (5)

(2n+ 1)Sn+1 − nSn+2 = (n+ 1)Sn, (6)

(3n+ 1)Sn+2 − 11Sn+1 = (3n+ 2)Sn. (7)

Consequently,

t2n−10+y,z ≡ ty,z−2n−1 (mod Sn) and t2n−10+y,z > ty,z−2n−1

(2n+ 1 ≤ z ≤ 3n, 0 ≤ y ≤ 10),

t2n+1+y,z ≡ ty,n+z (mod Sn) and t2n+1+y,z > ty,n+z

(0 ≤ y ≤ 2n− 11, 0 ≤ z ≤ 2n),

t4n−9+y,z ≡ t2n−10+y,n+z (mod Sn) and t4n−9+y,z > t2n−10+y,n+z

(0 ≤ y ≤ 10, 0 ≤ z ≤ n),

ty,z ≡ ty−11,z+3n+1 (mod Sn) and ty,z > ty−11,z+3n+1

(0 ≤ z ≤ n− 1, 11 ≤ y ≤ 2n).
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Therefore, the elements in Table 1 form the 0-Apéry set Ap0(Sn, Sn+1, Sn+2).

Now, from Table 1, there are two possibilities for the largest value of the set

Ap0(Sn, Sn+1, Sn+2): t2n,2n or t2n−11,3n. Note that, t2n,2n < t2n−11,3n if and only

if nSn+2 > 11Sn+1, which is equivalent to 6n3− 48n2− 53n− 11 > 0. Observe that

the roots of the equation 6n3 − 48n2 − 53n − 11 = 0 are −0.7214, −0.2822, and

9.0036. Therefore, for 6 ≤ n ≤ 9, t2n,2n is the largest element of the Apéry set, so

by Lemma 1, we have that

g0(Sn, Sn+1, Sn+2) = 2nSn+1 + 2nSn+2 − Sn.

While for n ≥ 10, we have t2n−11,3n is the maximum among all the elements, so

using Lemma 1

g0(Sn, Sn+1, Sn+2) = (2n− 11)Sn+1 + 3nSn+2 − Sn.

Case 2: p = 1. The elements of the 1-Apéry set can be determined from those of

the 0-Apéry set as follows.

t2n+1,0 · · · · · · t4n+1,0

...
...

...
...

t2n+1,n · · · · · · t4n+1,n

t2n+1,n+1 · · · t4n−10,n+1

...
...

t2n+1,2n · · · t4n−10,2n

t2n−10,2n+1 · · · · · · t2n,2n+1

...
...

t2n−10,3n · · · · · · t2n,3n
t0,3n+1 · · · t2n−11,3n+1

...
...

t0,4n · · · t2n−11,4n

Table 2: Ap1(Sn, Sn+1, Sn+2)

From the set of Equations (5), (6), and (7) and the relation

(2n+ 12)Sn+1 + (2n+ 1)Sn = (4n+ 1)Sn+2,

we have the following one-to-one correspondence between the elements of the 0-

Apéry set (on the left-hand side of congruences) and that of the 1-Apéry set (on

the right-hand side of congruences):

ty,z ≡ ty+2n+1,z−n (mod Sn)

(0 ≤ y ≤ 2n, n ≤ z ≤ 2n; 0 ≤ y ≤ 2n− 11, 2n+ 1 ≤ z ≤ 3n),

ty,z ≡ ty+2n−10,z+2n+1 (mod Sn) (0 ≤ y ≤ 10, 0 ≤ z ≤ n− 1),

ty,z ≡ ty−11,z+3n+1 (mod Sn) (11 ≤ y ≤ 2n, 0 ≤ z ≤ n− 1).
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The elements in the first n rows of Table 1 are divided into two parts. One part is

simply moved below the 0-Apéry set to fill in the gap as shown in Table 2. However,

the remaining portion is moved to the lower left of the 0-Apéry set. Elements other

than the first n rows of Table 1 are shifted to the right side of the 0-Apéry set by

shifting up by n rows.

Set τx,y,z := xSn + ySn+1 + zSn+2. We show that all the elements of Table 2

have at least two different representations. In fact, for 0 ≤ y ≤ 2n, n ≤ z ≤ 2n and

0 ≤ y ≤ 2n− 11, 2n+ 1 ≤ z ≤ 3n, we have

τn+1,y,z = τ0,y+2n+1,z−n.

Similarly, we get

τ4n+3,y,z = τ0,y+2n−10,z+2n+1 (for 0 ≤ y ≤ 10, 0 ≤ z ≤ n− 1),

τ3n+2,y,z = τ0,y−11,z+3n+1 (for 11 ≤ y ≤ 2n, 0 ≤ z ≤ n− 1).

From Table 2, there are four possible choices for the largest value of Ap1(Sn, Sn+1, Sn+2):

t4n+1,n, t4n−10,2n, t2n,3n, and t2n−11,4n .

Since 18n2 + 18n − 1 > 0, we have t4n+1,n < t2n,3n and t4n−10,2n < t2n−11,4n.

Analogous to the case p = 0, we obtain t2n,3n < t2n−11,4n if and only if n > 9.

Therefore, for 6 ≤ n ≤ 9, the maximum element is t2n,3n, and by Lemma 1,

g1(Sn, Sn+1, Sn+2) = 2nSn+1 + 3nSn+2 − Sn.

When n ≥ 10, t2n−11,4n is the largest of all the elements, and hence using Lemma

1,

g1(Sn, Sn+1, Sn+2) = (2n− 11)Sn+1 + 4nSn+2 − Sn.

Case 3: p = 2. The elements of the 2-Apéry set can be derived from those of the

1-Apéry set in the following manner (see Table 3).

t4n+2,0 · · · t6n−9,0 t6n−8,0 · · · t6n+2,0

t4n+2,1 · · · t6n−9,1

...
...

t4n+2,n · · · t6n−9,n

t4n−9,n+1 · · · t4n+1,n+1

...
...

t4n−9,2n · · · t4n+1,2n

t2n+1,2n+1 · · · t4n−10,2n+1

...
...

t2n+1,3n · · · t4n−10,3n

t2n−10,3n+1 · · · t2n,3n+1

...
...

t2n−10,4n · · · t2n,4n
t0,4n+1 · · · t2n−11,4n+1

...
...

t0,5n · · · t2n−11,5n

Table 3: Ap2(Sn, Sn+1, Sn+2)
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Similar to the case when p = 1, the elements in the first n rows of the main part of

the 1-Apéry set are subdivided into two parts and then relocated beneath the two

staircase sections of the 1-Apéry set. Elements other than the first n rows of the

main portion undergo a shift to the right side of the 1-Apéry set which is achieved

by moving up by n rows. The other two staircase parts are shifted to the right by

(2n+ 1) steps and upward by n steps. More precisely,

ty,z ≡ ty+2n+1,z−n (mod Sn)

(2n+ 1 ≤ y ≤ 4n+ 1, z = n; 2n+ 1 ≤ y ≤ 4n− 10, n+ 1 ≤ z ≤ 2n),

ty,z ≡ ty−11,z+3n+1 (mod Sn) (2n+ 1 ≤ y ≤ 2n+ 11, 0 ≤ z ≤ n− 1),

ty,z ≡ ty−2n−12,z+4n+1 (mod Sn) (2n+ 12 ≤ y ≤ 4n+ 1, 0 ≤ z ≤ n− 1),

ty,z ≡ ty+2n+1,z−n (mod Sn)

(0 ≤ y ≤ 2n− 11, 3n+ 1 ≤ z ≤ 4n; 2n− 10 ≤ y ≤ 2n, 2n+ 1 ≤ z ≤ 3n).

Using Equations (5), (6), and (7), we can demonstrate that the elements of the

2-Apéry set possess atleast three distinct representations. For 0 ≤ y ≤ 2n, z = 2n

and 0 ≤ y ≤ 2n− 11, 2n+ 1 ≤ z ≤ 3n, we have

τ2n+2,y,z = τn+1,y+2n+1,z−n = τ0,y+4n+2,z−2n.

Similarly, we have

τ4n+3,y,z = τ3n+2,y+2n+1,z−n = τ0,y+2n−10,z+2n+1

(0 ≤ y ≤ 10, n ≤ z ≤ 2n− 1),

τ3n+2,y,z = τ2n+1,y+2n+1,z−n = τ0,y−11,z+3n+1

(11 ≤ y ≤ 2n, n ≤ z ≤ 2n− 1),

τ5n+4,y,z = τn+1,y+2n−10,z+2n+1 = τ0,y+4n−9,z+n+1

(0 ≤ y ≤ 10, 0 ≤ z ≤ n− 1),

τ4n+3,y,z = τn+1,y−11,z+3n+1 = τ0,y+2n−10,z+2n+1

(11 ≤ y ≤ 2n, 0 ≤ z ≤ n− 1) .

In Table 3, by comparing the six candidates

t2n−11,5n, t2n,4n, t4n−10,3n, t4n+1,2n, t6n−9,n, and t6n+2,0,

we find that t2n,4n is the largest element of the 2-Apéry set, when 6 ≤ n ≤ 9, and

t2n−11,5n is the largest element of the 2-Apéry set, when n ≥ 10. Therefore,

g2(Sn, Sn+1, Sn+2) =

{
2nSn+1 + 4nSn+2 − Sn, if 6 ≤ n ≤ 9;

(2n− 11)Sn+1 + 5nSn+2 − Sn, if n ≥ 10.

This completes the proof.
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Remark 3. For p ≥ 3, the elements of the 3-Apéry set can also be computed from

that of the 2-Apéry set. However, the uniform pattern observed in previous cases

does not persist, as illustrated by Table 4.

0b○

0a○ 1b○

1a○ 2b○

2a○

Table 4: Ap3(Sn, Sn+1, Sn+2)

When n ≥ 10, elements 0a○, 1a○, and 2a○ indicate the position of the largest

elements of the 0-, 1-, and 2-Apéry sets, respectively, and when 6 ≤ n ≤ 9, elements
0b○, 1b○, and 2b○ represent the corresponding largest elements. We can see that no

element of the 3-Apéry set can exist at the expected location for the largest value.

Thus, for p ≥ 3, the application of the same formula becomes impractical and the

situation becomes more and more complicated, though the p-Frobenius numbers

should exist.

Remark 4. For n = 2, 3, 4, 5, the Frobenius number gp(Sn, Sn+1, Sn+2) is com-

puted explicitly and the elements of the 0-Apéry set are given in Table 5, Table 6,

Table 7, and Table 8, respectively.

t0,0 t4,0

t3,2

Table 5: Ap0(S2, S3, S4)

t0,0

t6,3

t2,6

Table 6: Ap0(S3, S4, S5)
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t0,0

t8,4

t6,8

Table 7: Ap0(S4, S5, S6)

t0,0 t10,0

t10,10

Table 8: Ap0(S5, S6, S7)

In each case, comparing the possible two candidates, we can find that t3,2, t2,6, t6,8,

and t10,10 take the largest values of the 0-Apéry sets when n = 2, 3, 4, 5, respectively.

Therefore, we have

g0(S2, S3, S4) = 3S3 + 2S4 − S2 = 244,

g0(S3, S4, S5) = 2S4 + 6S5 − S3 = 835,

g0(S4, S5, S6) = 6S5 + 8S6 − S4 = 2101,

g0(S5, S6, S7) = 10S6 + 10S7 − S5 = 4219.

When p ≥ 0, we can find that

{gp(S2, S3, S4)}10p=0 = 244, 353, 426, 499, 538, 608, 647, 686, 725, 764, 801,

{gp(S3, S4, S5)}10p=0 = 835, 1198, 1417, 1565, 1780, 1928, 2076, 2224, 2345, 2466, 2587,

{gp(S4, S5, S6)}10p=0 = 2101, 2825, 3307, 3672, 4037, 4402, 4761, 5126, 5418, 5660, 5902 .

However, identifying any consistent pattern for the maximum element of the p-

Apéry set appears to be challenging. For example, the corresponding elements of

the p-Apéry set for {S4, S5, S6} are given by

t6,8 → t6,12 → t4,16 → t13,12 → t22,8 → t31,4

→ t22,12 → t31,8 → t2,29 → t4,29 → t6,29.

3.2. p-Sylvester Numbers

The p-Sylvester numbers for the numerical semigroups generated by the triplets of

successive star numbers are given below.

Theorem 2. For n ≥ 6 and p = 0, 1, 2, we have

np(Sn, Sn+1, Sn+2) =


n(15n2 + 8n+ 7), if p = 0;

25n3 + 23n2 + 14n+ 1, if p = 1;

33n3 + 35n2 + 20n+ 2, if p = 2.
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Proof. We deal with each case separately.

Case 1: p = 0. By using Table 1, we have

Sn−1∑
j=0

m
(0)
j =

10∑
y=0

n−1∑
z=0

ty,z +

2n∑
y=11

n−1∑
z=0

ty,z +

2n∑
y=0

2n∑
z=n

ty,z +

2n−11∑
y=0

3n∑
z=2n+1

ty,z

= n2(2n+ 1)Sn+1 +

[
n(n− 1)(2n+ 1)

2

]
Sn+2

+ n(n+ 1)(2n+ 1)Sn+1 +

[
3n(2n+ 1)(n+ 1)

2

]
Sn+2

+ n(n− 5)(2n− 11)Sn+1 + n(5n+ 1)(n− 5)Sn+2

= n(6n2 − 17n+ 56)Sn+1 + n(9n2 − 20n− 4)Sn+2

= n(15n2 + 11n+ 4)Sn.

Using Lemma 1, the 0-Sylvester number is given as

n(Sn, Sn+1, Sn+2) = n(15n2 + 11n+ 4)− Sn − 1

2

= n(15n2 + 8n+ 7).

Case 2: p = 1. Summing up the elements of the 1-Apéry set (see Table 2), we

obtain

Sn−1∑
j=0

m
(1)
j =

10∑
y=0

n−1∑
z=0

ty+2n−10,z+2n+1 +

2n∑
y=11

n−1∑
z=0

ty−11,z+3n+1

+

2n∑
y=0

2n∑
z=n

ty+2n+1,z−n +

2n−11∑
y=0

3n∑
z=2n+1

ty+2n+1,z−n

=

Sn−1∑
j=0

m
(0)
j + 11n(4n+ 3)Sn + n(2n− 10)(3n+ 2)Sn

+ (n+ 1)2(2n+ 1)Sn + n(n+ 1)(2n− 10)Sn

= n(15n2 + 11n+ 4)Sn + (2n+ 1)(5n2 + 5n+ 1)Sn

= (25n3 + 26n2 + 11n+ 1)Sn.

Using Lemma 1, the 1-Sylvester number is given by

n1(Sn, Sn+1, Sn+2) = (25n3 + 26n2 + 11n+ 1)− Sn − 1

2

= 25n3 + 23n2 + 14n+ 1.
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Case 3: p = 2. Using Table 3, we get

Sn−1∑
j=0

m
(2)
j =

10∑
y=0

n−1∑
z=0

ty+2n−10,z+3n+1 +

2n∑
y=11

n−1∑
z=0

ty−11,z+4n+1

+

2n∑
y=0

∑
z=2n

ty+2(2n+1),z−2n +

2n−11∑
y=0

3n∑
z=2n+1

ty+2(2n+1),z−2n

+

2n−11∑
y=0

2n−1∑
z=n

ty+2n+1,z+n+1 +

2n∑
y=2n−10

2n−1∑
z=n

ty+2n+1,z+1

=
[

11n(4n+ 3) + n(2n− 10)(3n+ 2) + 2(2n+ 1)(n+ 1)

+ 2n(n+ 1)(2n− 10)
]
Sn

+
[
n(2n+ 1)(n+ 1) + 4n(n− 5)(2n− 5) + 44n(n− 1)

]
Sn+1

+

[
n(2n+ 1)(n+ 2) + 2n(5n+ 1)(n− 5) +

n(n− 1)(2n+ 1)

2

+
11n(3n+ 1)

2

]
Sn+2

=
(
10n3 + 6n2 − n+ 2

)
Sn + (10n3 − 13n2 + 57n)Sn+1

+ (13n3 − 27n2 − 3n)Sn+2

= (10n3 + 6n2 − n+ 2)Sn + (23n3 + 32n2 + 18n)Sn

= (33n3 + 38n2 + 17n+ 2)Sn.

Therefore, by Lemma 1, the 2-Sylvester number is given as

n2(Sn, Sn+1, Sn+2) = (33n3 + 38n2 + 17n+ 2)− Sn − 1

2

= 33n3 + 35n2 + 20n+ 2.
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set, Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat. RACSAM 118 (2024), Article 58,
17 pp.

[14] T. Komatsu and T. Chatterjee, Frobenius numbers associated with Diophantine triples of
x2 + 3y2 = z3, Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat. RACSAM 119 (2025),
Article 63, 17 pp.

[15] T. Komatsu and J. Mu, p-numerical semigroups of Pell triples, J. Ramanujan Math. Soc. 40
(1) (2025), 5-22.

[16] T. Komatsu and C. Pita-Ruiz, The Frobenius number for Jacobsthal triples associated with
number of solutions, Axioms 12(2) (2023), Article 98, 18 pp.

[17] T. Komatsu and H. Ying, The p-Frobenius and p-Sylvester numbers for Fibonacci and Lucas
triplets, Math. Biosci. Eng. 20(2) (2023), 3455–3481.

[18] T. Komatsu and H. Ying, p-numerical semigroups with p-symmetric properties, J. Algebra
Appl. 23(13) (2024), 24pp.

[19] M. Matone and R. Volpato, Vector-valued modular forms from the Mumford forms, Schottky-
Igusa form, product of Thetanullwerte and the amazing Klein formula, Proc. Amer. Math.
Soc. 141 (2013), 2575–2587.

[20] I. Niven, H. S. Zuckerman, and H. L. Montogomery, An Introduction to the Theory of Num-
bers, John Wiley and Sons, New York, 2000.



INTEGERS: 25 (2025) 15

[21] S. Plouffe, Approximations of Generating Functions and a Few Conjectures, Dissertation,
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