#A11 INTEGERS 25 (2025)

A NOTE ON NUMERICAL SEMIGROUPS GENERATED BY k-TH
POWERS

Fabidn Arias
Departamento de Matemdticas, Universidad del Atlantico, Barranquilla, Colombia
fabianarias@mail.uniatlantico.edu.co

Jerson Borja
Departamento de Matemdticas y FEstadistica, Monteria, Colombia
jersonborjas@correo.unicordoba.edu.co

Jaider Teran
Departamento de Matemdticas y Estadistica, Monteria, Colombia
jteranmelendez@correo.unicordoba.edu.co

Received: 4/18/24, Revised: 10/12/24, Accepted: 2/3/25, Published: 2/21/25

Abstract
Given a positive integer k, we associate a family of numerical semigroups (Sy).
with the sequence of k-th powers z,, = n¥, by setting S, = ({zn4; : j € N}). We
prove that if £ = 2, then the embedding dimension of S,, satisfies e(S,,) = O(n).
For k > 2, we prove that the Frobenius number of S,, satisfies F(S,,) = O(n**¢) for
all € > 0.

1. Introduction

We shall denote by N the set of natural numbers 0,1, 2, .. ., and denote by Z™ the set
of positive integers. Throughout this paper, all linear combinations are supposed
to have natural coeflicients.

A subset S of N is a numerical semigroup if S is closed under addition, contains
0 and N\ S is a finite set. If A is a subset of N, we let (A) denote the set of all linear
combinations of elements in A. This set (A) is a submonoid of N. It is known that
(A) is a numerical semigroup (that is, N\ (A) is finite) if and only if ged(A4) = 1.

If S is a numerical semigroup and A is a subset of S such that S = (A), we say
that A is a generating set of S. It is well known that every numerical semigroup S
has a subset 8(S) satisfying the following properties:

1. The set 3(S) is a generating set of S.
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2. If A is a generating set of S, then §(S) C A.

Because of these properties, the set 8(S) is called the minimal generating set of S.
It can be proved that 5(.5) is a finite set, and it consists of all nonzero elements in
S that cannot be written as a sum of two nonzero elements of S. The cardinality
of 3(5) is called the embedding dimension e(S) of S.

For a numerical semigroup S, the largest integer that does not belong to S is
called the Frobenius number of S, which is denoted by F(S). When S # N, we
have F(S) = max(N\ S), which is a positive integer. A well known formula for
the Frobenius number of a numerical semigroup generated by two relatively prime
positive integers a and b is given by Sylvester’s formula:

F({a,b)) =ab—a—0. (1)

More concepts and properties about numerical semigroups can be consulted in [11].
Now, we consider a strictly increasing sequence of positive integers (z, ), indexed
by the set of positive integers. For each n € Z™, we define a submonoid S,, of N by

Sn = <{xn+j ] < N}>

Clearly, S,, is a numerical semigroup if and only if ged(xy,, Zr41,...) = 1.

Recent works have dealt with the family (S,,),, of numerical semigroups associ-
ated with a sequence (z,), of a special form, and they have studied the minimal
generating set, the embedding dimension, the Frobenius number, among other prop-
erties of the family (S,),. Some of these works [1, 2, 4, 5, 8, 9, 10, 12, 13, 14]
have considered sequences that satisfy a linear recurrence relation of the form
Tpt1 = ax, + b, where a and b are fixed integer numbers. Some other works
[3, 6, 7] have treated quadratic sequences.

In this work, we specialize to sequences of k-th powers, that is, x,, = n*, where
k > 2, and we study upper bounds for the embedding dimension and the Frobenius
number of the numerical semigroups S,, n € Z*.

We prove some properties of the minimal generators of the family (S,,), associ-
ated with a general sequence (x,),. Then, we apply these results to the sequence
of squares z, = n? to obtain that

Finally, by making slight modifications to the ideas of Ducth and Rickett [3], we
prove that
F(S,) = O(n**e),

for all € > 0, where (S, ), is the family of numerical semigroups associated with the
sequence z,, = n*, where k > 2.
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B(Sn)

[

(27,37

{3°,4°, 7%}

{47 57,67, 7%}

{5%,6%,7%,8%,97}

{6%,7%,8%,97 13%}

{7%,8%,97,10%,11%,12% 137}

{8%,9%,10%, 117,127, 137, 147}

{97,107, 117,127, 13%,14% 167,177,197, 217, 237}
{10%,11%,122,13%, 142,152,162, 177,187,197, 217, 237}
{11%,127%,13%,14%,15%, 167, 177,187,197, 217, 23%}
{127,13%,14%, 157,162,177, 187,197,217, 237}
{13%,14%,15%,16%, 177,182,197, 207, 217, 227, 237, 247, 277}
{14%,157%,167, 177,187,197, 207, 217,227,237, 247 262, 277}
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Table 1: Minimal generating sets associated with squares.

2. Upper Bounds for the Embedding Dimension of Numerical Semi-
groups Generated by Sequences of Positive Integers

Suppose (), is a strictly increasing sequence of positive integers. For each positive
integer n, we define S,, = <{l’n+j 1€ N}>, and we assume ged(2y, Tpi1,...) = 1
for all n € Z*, so S,, is a numerical semigroup. We are interested in studying the
minimal generators and the embedding dimension of S,,.

Example 1. Consider the sequence of squares x,, = n?. Because n? and (n+1)? are
relatively prime, the submonoid S,, associated with (z,,), is a numerical semigroup.
In Table 1, we compute the minimal generating set of S,,, for 1 <n < 14.

To have a better visualization of these minimal generating sets, in Figure 1 we
have plotted lattice points (k,n) satisfying the condition x;, = k? € 3(S,). So, we
can identify the elements of 5(S,) on the horizontal line passing through the point
(0,n). For instance, if n = 6, we see that the elements of 5(Se) corresponds to the
following values of k: 6,7,8,9,13.

Now, for k in the x-axis, we note that the points above k correspond to the
integers n for which x € 8(S,). We observe that each x; has a first appearance as
a minimal generator element of some S,,. For instance, if k = 13, then z13 € 5(S,)
if and only if 6 < n < 13, so the first time z13 = 132 appears in some S,, occurs
when n = 6.

Motivated by the above example, for a given strictly increasing sequence of pos-
itive integers (), we define, for every k € Z* an integer ry to be the smallest n
such that x € 5(S,).
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Figure 1: Diagram of minimal generating sets associated with z,, = n?.

Lemma 1. Let k and n be positive integers. Then, z, € B(S,) if and only if
r. <n < k. Thus,
e(Sp)=Hk:rm <n<k}.

Proof. 1t is clear that if r, < n <k, then x, € 8(S,). Now, by the definition of 7y,
we have x ¢ 5(S,) whenever n < ri. On the other hand, since (zy,), is strictly
increasing, it follows that if n > k, then xy ¢ S, so x, ¢ 5(S,). This proves that
if 1, € B(Sp), then rp <n < k. O

We can determine information about 5(S,,) and e(.S,,) with the aid of the numbers
Tk, as we show in the next example and proposition.

Example 2. Let us suppose that rp = k — kg for all k£ > kg, where kg € Z™. Then,
xg € B(Sy) if and only if k — kg < n < k, which is equivalent to n < k < n + kq.
Therefore, 8(Sn) C {Zn, Tnt1,-- - Tntkyp and e(Sy) < ko + 1.

In general, if we define 7} to be the greatest integer k such that i < n, then we
have B(Sp) C{zr:n <k <r:}ande(S,) <r:—n+1foraln>1

Proposition 1. Assume ry > ak for all k, where « is a positive (real) constant
that does not depend on k. Then

for all n.

Proof. The inequality ak < n is equivalent to k < (1/a)n, so the greatest k for
which 7, < n is at most | (1/a)n], that is, v < [(1/a)n]. O
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n |1]2|3|4|5|6|7|8|9 |10|11]12 13|14
e(Sp) |1 1213|4557 |7 1112|1110 | 13 13

Table 2: Embedding dimensions associated with z,, = n?, 1 <n < 14.

Now, we apply the previous results to the sequence z, = n?. In Table 2, we
show the values of ¢(S,,), for 1 < n < 14. This table suggests that e(S,) = O(n).
We will prove this assertion, for which we need the following result.

Lemma 2 ([7]). There is a positive constant C' such that for every positive integer
n there are integers ai,as,az and ay such that

n=af+ a3+ a3 + af,

vn

-

Remark 1. The proof of Lemma 2 in [7] relies on properties of the distribution of
integral points in a 3-dimensional sphere of radius \/n, as well as properties of the

sum of divisors function o(n). It is also pointed out in [7] that the constant C' is
bounded below by 8.

and for each i € {1,2,3,4}, a; =0 or a; >

Theorem 1. For the family of numerical semigroups (Sp)n associated with the
sequence of square numbers x,, = n?, we have e (S,) = O (n).

k
Proof. We prove that if C is the constant of Lemma 2, then r; > ° for all k.

In fact, by Lemma 2, there is a representation k? = a? + a3 + a3 + a3, where
a; > Vk?/C = k/C whenever a; > 0. If a;, is the least positive integer among the
a;’s, then

Tk 2 Gy 2 ok
so by Proposition 1, we get

e(Sp) <|Cn|—n+1<(C—-1)n+1.

This proves that e(S,) = O(n). O

3. The Frobenius Number of S,, Associated with x,, = n*, k£ > 2

Dutch and Rickett [3] dealt with the sequence x, = n? and proved that F(S,) =
O(n?7¢) for all € > 0. Moscariello [7] proved that the € can be dropped out, so
F(S,) = O(n?) (his proof makes essential use of Lemma 2).
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In this section, we make slight modifications to the ideas of Dutch and Rickett
to prove that F(S,) = O(n**€) for all € > 0, where (S,,),, is the family of numerical
semigroups associated with the sequence x, = n*, where k > 2. Since n* and
(n+1)F are relatively prime, we see that the monoids S,, are numerical semigroups.

For an arbitrary numerical semigroup S, let 7(.5) be the conductor of S, namely,
the smallest integer m such that all integers n > m are in S. Clearly, 7(5) =
F(S) + 1. From this equality and Sylvester’s formula (Equation (1)), we see that if
a and b are relatively prime positive integers, then

7({a,0)) = (@ = 1)(b - 1). (2)

For simplicity, if A is a subset of N such that ged(A4) = 1, we write 7(A) instead of

T((4))-

Lemma 3 ([3]). Let A and B be nonempty subsets of N such that gcd(AUB) =1,
and let t be a divisor of all elements of A. If C = {a/t : a € A}, then

T(AUB) <t-7(CUB)+71(BU{t}).

Now, we consider the sequence z,, = n*, where k > 2 is fixed, and the associated
family of numerical semigroups (Sy,)n.

Proposition 2 ([3]). For positive integers n and k we have
7(Sn) <257 (Spa7) + (25 = D) (3)

Proof. In Lemma 3, let A = {m* : m > n,m is even}, B = {m* : m > n,m is odd}
and t = 2%, If C = {m* /2% : m > n m is even}, we observe that B C C. It is easily
seen that C' = {mk tm > [%W }, S0

F(BUC)=1(C) =1 (5[%1) .

On the other hand, the minimum element of B, say f3, is either equal to n* or
(n+ 1)%. By using Equation (2), we have

T (BU2"}) < r({25,8)) = (25 = )(B—1) < (2° = D(n+1)* < (25 — D)(2n)".
The result follows by applying Lemma 3. O

Theorem 2. For the family of numerical semigroups (Sy)n associated with the
sequence of k-th powers x, = n*, where k > 2, we have F(S,) = O (n’”‘e) for all
€ > 0.
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Proof. Let € > 0. We are going to prove that there is a positive constant K such
that 7(S,) < Kn?* for all n, where A = k + e. First of all, choose a positive integer

N such that 1

N > G-F N 1

1
The reason for this choice will appear later. For all real x > N, we have — <
x

2(=k/N) _ 1, which is equivalent to
ot =2 [(z 4+ 1)/2)* > 0.

By setting

K, = max (T(sl), 7(25;2) o Tfi”) :

we immediately see that 7(S,,) < Kyn* foralln € {1,..., N}. Next, as cited above,
we shall prove the existence of K that satisfies 7(S,,) < Kn* for all n. To do this,
we shall introduce the real function

(28 —1) (22)"

fz)= P @t )

defined on [N, +00). Clearly, f is continuous and tends to 0 as = tends to +oco. In
particular, there exists M € R such that f(x) < M for all x € [N, +00). Let

K = max (K;,M).

We shall prove that K satisfies the inequality above. This is clear forn € {1,..., N},
and we shall prove by induction that it is also true for n > N. Let n > N and
assume that 7(S,,) < Km* for all m < n. In particular, for m = [%], we have

~(Sra) SKU%DA <K (TL—Ql—l))‘.

Then, by Proposition 2, we obtain

7(Sp) < 2%7 (s[ﬂ) + (28— 1)(2n)"

Kn*

I
=
3
>
| B E——— |
o
ol
A~
l\D:
S|+
—
~ ~—
>
_|_
~
=
|
=
~
S
=
—_
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A A
+1 1 n+1
— K ok (T A _ ok
" [ <2n +n)‘ " 2
= Kn’.

This ends the proof. O

4. Final Remarks

We have proved the following two results related to the family of numerical semi-
groups (S,), associated with a sequence of the form x,, = n*, where k > 2:

1. For the sequence ,, = n?, we have e(S,) = O(n);

2. For the sequence z,, = n¥, where k > 2, we have F(S,) = O(n**) for all
e>0.

We have the following two questions, concerning the case k > 3:
1. Is it true that e(S,) = O(n)?
2. Is it true that F(S,) = O(n*)?

Moscariello’s proof of the relation F(S,) = O(n?), for x,, = n?, strongly relies on
Lemma 2. As we mentioned above, the proof of this lemma is based on properties
of the distribution of integral points in a 3-dimensional sphere of radius y/n and
the function o(n). Our proof of Theorem 2 also makes use of this lemma. We do
not see a straightforward generalization of the proof of Lemma 2, for k-th powers,
where k > 3.

We know, by the Hilbert-Waring theorem on the Waring problem, that for every
k > 2, there exists a positive integer g(k) such that every n € Z* can be expressed
as a sum of g(k) non-negative k-th powers. We ask the following question: Is there
a positive constant Cj, such that for every n € Z™, there is a representation

k
where a; = 0 or a; > ? for all j € {1,...,9(k)}? A positive answer to this
k

question would settle our questions about e(S,,) and F(S,), for k& > 3.
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