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Abstract

Given a positive integer k, we associate a family of numerical semigroups (Sn)n
with the sequence of k-th powers xn = nk, by setting Sn = ⟨{xn+j : j ∈ N}⟩. We
prove that if k = 2, then the embedding dimension of Sn satisfies e(Sn) = O(n).
For k ≥ 2, we prove that the Frobenius number of Sn satisfies F(Sn) = O(nk+ϵ) for
all ϵ > 0.

1. Introduction

We shall denote by N the set of natural numbers 0, 1, 2, . . ., and denote by Z+ the set

of positive integers. Throughout this paper, all linear combinations are supposed

to have natural coefficients.

A subset S of N is a numerical semigroup if S is closed under addition, contains

0 and N\S is a finite set. If A is a subset of N, we let ⟨A⟩ denote the set of all linear
combinations of elements in A. This set ⟨A⟩ is a submonoid of N. It is known that

⟨A⟩ is a numerical semigroup (that is, N \ ⟨A⟩ is finite) if and only if gcd(A) = 1.

If S is a numerical semigroup and A is a subset of S such that S = ⟨A⟩, we say

that A is a generating set of S. It is well known that every numerical semigroup S

has a subset β(S) satisfying the following properties:

1. The set β(S) is a generating set of S.
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2. If A is a generating set of S, then β(S) ⊆ A.

Because of these properties, the set β(S) is called the minimal generating set of S.

It can be proved that β(S) is a finite set, and it consists of all nonzero elements in

S that cannot be written as a sum of two nonzero elements of S. The cardinality

of β(S) is called the embedding dimension e(S) of S.

For a numerical semigroup S, the largest integer that does not belong to S is

called the Frobenius number of S, which is denoted by F(S). When S ̸= N, we
have F(S) = max(N \ S), which is a positive integer. A well known formula for

the Frobenius number of a numerical semigroup generated by two relatively prime

positive integers a and b is given by Sylvester’s formula:

F(⟨a, b⟩) = ab− a− b. (1)

More concepts and properties about numerical semigroups can be consulted in [11].

Now, we consider a strictly increasing sequence of positive integers (xn)n, indexed

by the set of positive integers. For each n ∈ Z+, we define a submonoid Sn of N by

Sn =
〈
{xn+j : j ∈ N}

〉
.

Clearly, Sn is a numerical semigroup if and only if gcd(xn, xn+1, . . .) = 1.

Recent works have dealt with the family (Sn)n of numerical semigroups associ-

ated with a sequence (xn)n of a special form, and they have studied the minimal

generating set, the embedding dimension, the Frobenius number, among other prop-

erties of the family (Sn)n. Some of these works [1, 2, 4, 5, 8, 9, 10, 12, 13, 14]

have considered sequences that satisfy a linear recurrence relation of the form

xn+1 = axn + b, where a and b are fixed integer numbers. Some other works

[3, 6, 7] have treated quadratic sequences.

In this work, we specialize to sequences of k-th powers, that is, xn = nk, where

k ≥ 2, and we study upper bounds for the embedding dimension and the Frobenius

number of the numerical semigroups Sn, n ∈ Z+.

We prove some properties of the minimal generators of the family (Sn)n associ-

ated with a general sequence (xn)n. Then, we apply these results to the sequence

of squares xn = n2 to obtain that

e(Sn) = O(n).

Finally, by making slight modifications to the ideas of Ducth and Rickett [3], we

prove that

F(Sn) = O(nk+ϵ),

for all ϵ > 0, where (Sn)n is the family of numerical semigroups associated with the

sequence xn = nk, where k ≥ 2.
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n β(Sn)

1 {12}
2 {22, 32}
3 {32, 42, 72}
4 {42, 52, 62, 72}
5 {52, 62, 72, 82, 92}
6 {62, 72, 82, 92, 132}
7 {72, 82, 92, 102, 112, 122, 132}
8 {82, 92, 102, 112, 122, 132, 142}
9 {92, 102, 112, 122, 132, 142, 162, 172, 192, 212, 232}
10 {102, 112, 122, 132, 142, 152, 162, 172, 182, 192, 212, 232}
11 {112, 122, 132, 142, 152, 162, 172, 182, 192, 212, 232}
12 {122, 132, 142, 152, 162, 172, 182, 192, 212, 232}
13 {132, 142, 152, 162, 172, 182, 192, 202, 212, 222, 232, 242, 272}
14 {142, 152, 162, 172, 182, 192, 202, 212, 222, 232, 242, 262, 272}

Table 1: Minimal generating sets associated with squares.

2. Upper Bounds for the Embedding Dimension of Numerical Semi-
groups Generated by Sequences of Positive Integers

Suppose (xn)n is a strictly increasing sequence of positive integers. For each positive

integer n, we define Sn =
〈
{xn+j : j ∈ N}

〉
, and we assume gcd(xn, xn+1, . . .) = 1

for all n ∈ Z+, so Sn is a numerical semigroup. We are interested in studying the

minimal generators and the embedding dimension of Sn.

Example 1. Consider the sequence of squares xn = n2. Because n2 and (n+1)2 are

relatively prime, the submonoid Sn associated with (xn)n is a numerical semigroup.

In Table 1, we compute the minimal generating set of Sn, for 1 ≤ n ≤ 14.

To have a better visualization of these minimal generating sets, in Figure 1 we

have plotted lattice points (k, n) satisfying the condition xk = k2 ∈ β(Sn). So, we

can identify the elements of β(Sn) on the horizontal line passing through the point

(0, n). For instance, if n = 6, we see that the elements of β(S6) corresponds to the

following values of k: 6, 7, 8, 9, 13.

Now, for k in the x-axis, we note that the points above k correspond to the

integers n for which xk ∈ β(Sn). We observe that each xk has a first appearance as

a minimal generator element of some Sn. For instance, if k = 13, then x13 ∈ β(Sn)

if and only if 6 ≤ n ≤ 13, so the first time x13 = 132 appears in some Sn occurs

when n = 6.

Motivated by the above example, for a given strictly increasing sequence of pos-

itive integers (xn)n, we define, for every k ∈ Z+ an integer rk to be the smallest n

such that xk ∈ β(Sn).
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Figure 1: Diagram of minimal generating sets associated with xn = n2.

Lemma 1. Let k and n be positive integers. Then, xk ∈ β(Sn) if and only if

rk ≤ n ≤ k. Thus,

e(Sn) = |{k : rk ≤ n ≤ k}| .

Proof. It is clear that if rk ≤ n ≤ k, then xk ∈ β(Sn). Now, by the definition of rk,

we have xk /∈ β(Sn) whenever n < rk. On the other hand, since (xn)n is strictly

increasing, it follows that if n > k, then xk /∈ Sn, so xk /∈ β(Sn). This proves that

if xk ∈ β(Sn), then rk ≤ n ≤ k.

We can determine information about β(Sn) and e(Sn) with the aid of the numbers

rk, as we show in the next example and proposition.

Example 2. Let us suppose that rk = k− k0 for all k > k0, where k0 ∈ Z+. Then,

xk ∈ β(Sn) if and only if k − k0 ≤ n ≤ k, which is equivalent to n ≤ k ≤ n + k0.

Therefore, β(Sn) ⊆ {xn, xn+1, . . . , xn+k0
} and e(Sn) ≤ k0 + 1.

In general, if we define r∗n to be the greatest integer k such that rk ≤ n, then we

have β(Sn) ⊆ {xk : n ≤ k ≤ r∗n} and e(Sn) ≤ r∗n − n+ 1 for all n ≥ 1.

Proposition 1. Assume rk ≥ αk for all k, where α is a positive (real) constant

that does not depend on k. Then

e(Sn) ≤
⌊
1

α
n

⌋
− n+ 1,

for all n.

Proof. The inequality αk ≤ n is equivalent to k ≤ (1/α)n, so the greatest k for

which rk ≤ n is at most ⌊(1/α)n⌋, that is, r∗n ≤ ⌊(1/α)n⌋.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
e(Sn) 1 2 3 4 5 5 7 7 11 12 11 10 13 13

Table 2: Embedding dimensions associated with xn = n2, 1 ≤ n ≤ 14.

Now, we apply the previous results to the sequence xn = n2. In Table 2, we

show the values of e(Sn), for 1 ≤ n ≤ 14. This table suggests that e(Sn) = O(n).

We will prove this assertion, for which we need the following result.

Lemma 2 ([7]). There is a positive constant C such that for every positive integer

n there are integers a1, a2, a3 and a4 such that

n = a21 + a22 + a23 + a24,

and for each i ∈ {1, 2, 3, 4}, ai = 0 or ai ≥
√
n

C
.

Remark 1. The proof of Lemma 2 in [7] relies on properties of the distribution of

integral points in a 3-dimensional sphere of radius
√
n, as well as properties of the

sum of divisors function σ(n). It is also pointed out in [7] that the constant C is

bounded below by 8.

Theorem 1. For the family of numerical semigroups (Sn)n associated with the

sequence of square numbers xn = n2, we have e (Sn) = O (n).

Proof. We prove that if C is the constant of Lemma 2, then rk ≥ k

C
for all k.

In fact, by Lemma 2, there is a representation k2 = a21 + a22 + a23 + a24, where

aj ≥
√
k2/C = k/C whenever aj > 0. If aj0 is the least positive integer among the

aj ’s, then

rk ≥ aj0 ≥ k

C
,

so by Proposition 1, we get

e(Sn) ≤ ⌊Cn⌋ − n+ 1 ≤ (C − 1)n+ 1.

This proves that e(Sn) = O(n).

3. The Frobenius Number of Sn Associated with xn = nk, k ≥ 2

Dutch and Rickett [3] dealt with the sequence xn = n2 and proved that F(Sn) =

O(n2+ϵ) for all ϵ > 0. Moscariello [7] proved that the ϵ can be dropped out, so

F(Sn) = O(n2) (his proof makes essential use of Lemma 2).
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In this section, we make slight modifications to the ideas of Dutch and Rickett

to prove that F (Sn) = O(nk+ϵ) for all ϵ > 0, where (Sn)n is the family of numerical

semigroups associated with the sequence xn = nk, where k ≥ 2. Since nk and

(n+1)k are relatively prime, we see that the monoids Sn are numerical semigroups.

For an arbitrary numerical semigroup S, let τ(S) be the conductor of S, namely,

the smallest integer m such that all integers n ≥ m are in S. Clearly, τ(S) =

F(S) + 1. From this equality and Sylvester’s formula (Equation (1)), we see that if

a and b are relatively prime positive integers, then

τ(⟨a, b⟩) = (a− 1)(b− 1). (2)

For simplicity, if A is a subset of N such that gcd(A) = 1, we write τ(A) instead of

τ(⟨A⟩).

Lemma 3 ([3]). Let A and B be nonempty subsets of N such that gcd(A∪B) = 1,

and let t be a divisor of all elements of A. If C = {a/t : a ∈ A}, then

τ(A ∪B) ≤ t · τ(C ∪B) + τ(B ∪ {t}).

Now, we consider the sequence xn = nk, where k ≥ 2 is fixed, and the associated

family of numerical semigroups (Sn)n.

Proposition 2 ([3]). For positive integers n and k we have

τ(Sn) ≤ 2kτ
(
S⌈n

2 ⌉
)
+ (2k − 1)(2n)k. (3)

Proof. In Lemma 3, let A = {mk : m ≥ n,m is even}, B = {mk : m ≥ n,m is odd}
and t = 2k. If C = {mk/2k : m ≥ n m is even}, we observe that B ⊆ C. It is easily

seen that C =
{
mk : m ≥

⌈
n
2

⌉}
, so

τ(B ∪ C) = τ(C) = τ
(
S⌈n

2 ⌉
)
.

On the other hand, the minimum element of B, say β, is either equal to nk or

(n+ 1)k. By using Equation (2), we have

τ
(
B ∪ {2k}

)
≤ τ({2k, β}) = (2k − 1)(β − 1) ≤ (2k − 1)(n+ 1)k ≤ (2k − 1)(2n)k.

The result follows by applying Lemma 3.

Theorem 2. For the family of numerical semigroups (Sn)n associated with the

sequence of k-th powers xn = nk, where k ≥ 2, we have F(Sn) = O
(
nk+ϵ

)
for all

ϵ > 0.
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Proof. Let ϵ > 0. We are going to prove that there is a positive constant K such

that τ(Sn) ≤ Knλ for all n, where λ = k + ϵ. First of all, choose a positive integer

N such that

N >
1

2(1−k/λ) − 1
.

The reason for this choice will appear later. For all real x ≥ N , we have
1

x
<

2(1−k/λ) − 1, which is equivalent to

xλ − 2k [(x+ 1)/2]
λ
> 0.

By setting

K1 = max

(
τ(S1),

τ(S2)

2λ
, . . . ,

τ(SN )

Nλ

)
,

we immediately see that τ(Sn) ≤ K1n
λ for all n ∈ {1, . . . , N}. Next, as cited above,

we shall prove the existence of K that satisfies τ(Sn) ≤ Knλ for all n. To do this,

we shall introduce the real function

f (x) =

(
2k − 1

)
(2x)

k

xλ − 2k [(x+ 1) /2]
λ
,

defined on [N,+∞). Clearly, f is continuous and tends to 0 as x tends to +∞. In

particular, there exists M ∈ R such that f(x) ≤ M for all x ∈ [N,+∞). Let

K = max (K1,M) .

We shall prove thatK satisfies the inequality above. This is clear for n ∈ {1, . . . , N},
and we shall prove by induction that it is also true for n > N . Let n > N and

assume that τ(Sm) ≤ Kmλ for all m < n. In particular, for m =
⌈
n
2

⌉
, we have

τ
(
S⌈n

2 ⌉
)
≤ K

(⌈n
2

⌉)λ
≤ K

(
n+ 1

2

)λ

.

Then, by Proposition 2, we obtain

τ(Sn) ≤ 2kτ
(
S⌈n

2 ⌉
)
+ (2k − 1)(2n)k

≤ 2kK

(
n+ 1

2

)λ

+ (2k − 1)(2n)k

= Knλ

[
2k
(
n+ 1

2n

)λ

+
(2k − 1)(2n)k

Knλ

]

≤ Knλ

[
2k
(
n+ 1

2n

)λ

+
(2k − 1)(2n)k

f(n)nλ

]
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= Knλ

[
2k
(
n+ 1

2n

)λ

+
1

nλ

(
nλ − 2k

(
n+ 1

2

)λ
)]

= Knλ.

This ends the proof.

4. Final Remarks

We have proved the following two results related to the family of numerical semi-

groups (Sn)n associated with a sequence of the form xn = nk, where k ≥ 2:

1. For the sequence xn = n2, we have e(Sn) = O(n);

2. For the sequence xn = nk, where k ≥ 2, we have F(Sn) = O(nk+ϵ) for all

ϵ > 0.

We have the following two questions, concerning the case k ≥ 3:

1. Is it true that e(Sn) = O(n)?

2. Is it true that F(Sn) = O(nk)?

Moscariello’s proof of the relation F(Sn) = O(n2), for xn = n2, strongly relies on

Lemma 2. As we mentioned above, the proof of this lemma is based on properties

of the distribution of integral points in a 3-dimensional sphere of radius
√
n and

the function σ(n). Our proof of Theorem 2 also makes use of this lemma. We do

not see a straightforward generalization of the proof of Lemma 2, for k-th powers,

where k ≥ 3.

We know, by the Hilbert-Waring theorem on the Waring problem, that for every

k ≥ 2, there exists a positive integer g(k) such that every n ∈ Z+ can be expressed

as a sum of g(k) non-negative k-th powers. We ask the following question: Is there

a positive constant Ck such that for every n ∈ Z+, there is a representation

n =

g(k)∑
j=1

aki ,

where aj = 0 or aj ≥
k
√
n

Ck
for all j ∈ {1, . . . , g(k)}? A positive answer to this

question would settle our questions about e(Sn) and F(Sn), for k ≥ 3.
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