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Abstract

Natural numbers which are nontrivial multiples of some permutation of their base-b
digit representations are called permutiples. Specific cases include numbers which
are multiples of cyclic permutations (cyclic numbers) and reversals of their digits
(palintiples). Previous efforts have produced methods which construct new exam-
ples of permutiples with the same set of digits as a known example. Using simple
graph-theoretical and finite-state machine constructions, we advance previous work
by describing two methods for finding permutiples of a known base and multiplier
with no need for known examples or prior knowledge of digits.

1. Introduction

A permutiple is the result of a “digit-preserving” multiplication. A bit more formally,

a permutiple is a natural number whose representation in some base is an integer

multiple of some permutation of its digits [6]. Equivalently, a permutiple can be

described as a number which is divisible by a permutation of its digits.

The most well-known cases of permutiples are palintiple numbers [4, 5] and cyclic

numbers [1, 8]. Palintiples, also known as reverse multiples [9, 10, 12, 13], are

multiples of their digit reversals. Two base-10 examples include 87912 = 4 · 21978
and 98901 = 9 · 10989. Cyclic numbers are multiples of cyclic permutations of their

digits, such as 714285 = 5 · 142857. Cyclic numbers are relatively easy to describe

when compared to palintiple numbers, which have a great deal more variety and are

much more difficult to characterize. Using the work of Young [12, 13], Sloane [10]

developed a graph-theoretical construction, based upon the interactions between the

digits and carries, called Young graphs. Young graphs describe palintiples of any

length with a known base and multiplier, and they offer a way to classify palintiples

by graph isomorphism. A digit-specific collection of permutiples studied by Qu and

Curran [11] are base-b numbers which are multiples of (bb−1 − 1)/(b− 1)2. Base-10

examples include 987654312 = 8 · 123456789 and 493827156 = 4 · 123456789.
Using elementary techniques, the author [6, 7] develops methods for finding new

examples of general permutiples from known examples. For instance, these methods
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produce new examples, such as 79128 = 4 ·19782, from the palintiple example above

with the same digits. The results of [7] improve upon the work of [6] by describing

a method for finding all permutiples with the same set of digits, multiplier, and

length from a single known example.

This effort develops two methods for finding permutiples of a known base and

multiplier. The first method advances the work of [7] by finding all permutiples

of a given base, multiplier, and length, but without the requirement of having a

known example in advance. All of the above is accomplished by using a basic

graph-theoretical construction which will enable us to classify permutiples much

more broadly than we could with the notion of permutiple conjugacy, introduced in

[7]. Using a modification of the methods of Hoey [3] and Sloane [10], we describe a

finite-state machine which recognizes a language containing string representations

of permutiples. From there, we develop a method for finding permutiples of any

acceptable length for a base and multiplier of our choosing.

2. Basic Notation, Definitions, and Results

For the reader’s convenience, we summarize and state the basic definitions and

results from [6, 7], which we will be using extensively in the sections which follow.

Using (dk, dk−1, . . . , d0)b to denote the natural number
∑k

j=0 djb
j , where 0 ≤ dj < b

for all 0 ≤ j ≤ k, the following is our definition of a permutiple number.

Definition 1 ([6]). Let 1 < n < b be a natural number and σ be a permutation on

{0, 1, 2, . . . , k}. We say that (dk, dk−1, . . . , d0)b is an (n, b, σ)-permutiple provided

(dk, dk−1, . . . , d1, d0)b = n(dσ(k), dσ(k−1), . . . , dσ(1), dσ(0))b.

When the permutation, σ, is not pertinent to the discussion, we may also simply

refer to (dk, dk−1, . . . , d0)b as an (n, b)-permutiple. We shall refer to the collection

of all base-b permutiples having multiplier n as (n, b)-permutiples.

Coupling this definition with a description of single-digit multiplication gives us

the next result.

Theorem 1 ([6]). Let (dk, dk−1, . . . , d0)b be an (n, b, σ)-permutiple, and let cj be

the jth carry. Then, bcj+1 − cj = ndσ(j) − dj for all 0 ≤ j ≤ k.

The next result will also be central to the developments in the following sections.

Theorem 2 ([6]). Let (dk, dk−1, . . . , d0)b be an (n, b, σ)-permutiple, and let cj be

the jth carry. Then, cj ≤ n− 1 for all 0 ≤ j ≤ k.

If we suppose that (dk, dk−1, . . . , d0)b is an (n, b, σ)-permutiple, the central prob-

lem addressed by [6, 7] is to find all permutations, π, such that the number given by
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(dπ(k), dπ(k−1), . . . , dπ(0))b is also a permutiple. The notion of permutiple conjugacy

helps us to find and classify these new examples.

Definition 2 ([6]). Suppose (dk, dk−1, . . . , d0)b is an (n, b, σ)-permutiple. Then,

an (n, b, τ1)-permutiple, (dπ1(k), dπ1(k−1), . . . , dπ1(0))b, and an (n, b, τ2)-permutiple,

(dπ2(k), dπ2(k−1), . . . , dπ2(0))b, are said to be conjugate if π1τ1π
−1
1 = π2τ2π

−1
2 .

Note that this definition requires us to treat repeated digits as being distinct;

that is, we treat the collection of digits {dk, dk−1, . . . , d0} as a multiset.

To make the above definition more concrete, we present the results of the first

example of [7], which uses the digits of a known example, p = (d4, d3, d2, d1, d0)10 =

(8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10, to produce all (4, 10, τ)-permutiple examples,

(d̂4, d̂3, d̂2, d̂1, d̂0)10 = (dπ(4), dπ(3), dπ(2), dπ(1), dπ(0))10

= 4 · (d̂τ(4), d̂τ(3), d̂τ(2), d̂τ(1), d̂τ(0))10,

in the conjugacy class containing p. Letting ψ be the 5-cycle (0, 1, 2, 3, 4), ρ the

reversal permutation, and ε the identity permutation, the conjugacy class of p is

given in Table 1.

(4, 10, τ)-Example π τ
(8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10 ε ρ
(8, 7, 1, 9, 2)10 = 4 · (2, 1, 7, 9, 8)10 (1, 2) (1, 2)ρ(1, 2)
(7, 9, 1, 2, 8)10 = 4 · (1, 9, 7, 8, 2)10 ψ4 ψ−4ρψ4

(7, 1, 9, 2, 8)10 = 4 · (1, 7, 9, 8, 2)10 (1, 2)ψ4 ψ−4(1, 2)ρ(1, 2)ψ4

Table 1: The conjugacy class of p = (8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10.

Clearly, for every π and τ in the above collection, we have that πτπ−1 = ρ. That

is, all of these examples are conjugate permutiples. For details regarding how the

above permutiples were obtained, the reader is directed to Example 1 of [7].

3. A Graph-Theoretical Approach

To motivate our next definition, we shall consider the permutiples in the conjugacy

class given in Table 1. We notice that if we define a directed graph with all base-10

digits as vertices and
(
dj , dτ(j)

)
as edges, the result is the same for all of these

examples, which is shown in Figure 1.

These observations give us an organizing principle which forms one of the bases

of the methods of this effort.
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Figure 1: The directed graph which results from taking the collection of ordered
pairs

{(
dj , dσ(j)

)
| 0 ≤ j ≤ 4

}
from any example in Table 1 as directed edges.

Definition 3. Let p = (dk, dk−1, . . . , d0)b be an (n, b, σ)-permutiple. We de-

fine a directed graph, called the graph of p, denoted as Gp, to consist of the

collection of base-b digits as vertices, and the collection of directed edges Ep ={(
dj , dσ(j)

)
| 0 ≤ j ≤ k

}
. A graph, G, for which there is a permutiple, p, such that

G = Gp is called a permutiple graph.

At this point, we inform the reader that all graphs considered here will be directed

graphs, and so, for the remainder of this effort, we shall refer to a “directed graph”

as simply a “graph.”

We now develop a condition which narrows down the possible collection of edges

of a permutiple graph. Consider a generic (n, b, σ)-permutiple, (dk, dk−1, . . . , d0)b.

By Theorem 1, we have that dj +(b−n)dσ(j) ≡ cj (mod b) for all 0 ≤ j ≤ k, where

cj is the jth carry when multiplying by n. Since cj ≤ n− 1 by Theorem 2, we have

that λ(dj + (b − n)dσ(j)) ≤ n − 1 for all 0 ≤ j ≤ k, where λ gives the least non-

negative residue modulo b.We state this as a result in the present graph-theoretical

context.

Theorem 3. Let p = (dk, dk−1, . . . , d0)b be an (n, b, σ)-permutiple with graph Gp.

Then, for any edge, (dj , dσ(j)), of Gp, it must be that λ
(
dj + (b− n)dσ(j)

)
≤ n− 1

for all 0 ≤ j ≤ k, where λ gives the least non-negative residue modulo b.

The above gives a list of candidates for the edges of a permutiple graph. Addi-

tionally, we note that the above result also follows from Theorem 3 of [7], taking

τ = σ and π to be the identity permutation. These considerations motivate our

next definition.

Definition 4. The (n, b)-mother graph, denoted M, is the graph having all base-b

digits as its vertices and the collection of edges, (d1, d2), satisfying the inequality

λ (d1 + (b− n)d2) ≤ n− 1.
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Clearly, the graph of any (n, b)-permutiple is a subgraph of M. We also notice

that for a fixed d2, there is exactly one possibility for d1 which satisfies the equation

λ (d1 + (b− n)d2) = cj . (1)

In other words, there are b ordered-pair solutions, (d1, d2), to Equation (1). Since

0 ≤ cj ≤ n − 1, it follows that the inequality in Definition 4 has nb ordered-pair

solutions. This is to say that M has precisely nb edges. The above also shows that

the indegree of each vertex is n. Finally, since Equation (1) has b solutions, we have

that for a fixed value, d1, there is exactly one value of d2 which solves Equation (1).

Hence, for each d1, there are n values of d2 which solve the inequality in Definition

4. This shows that the outdegree of each vertex is also n.

As might be expected from our initial motivating example, permutiple conjugacy

is related to the above ideas; if two (n, b)-permutiples, p1 and p2, are conjugate, then

their corresponding graphs are identical. We state this formally as a theorem.

Theorem 4. Suppose (dk, dk−1, . . . , d0)b is an (n, b, σ)-permutiple. If an (n, b, τ1)-

permutiple, p1 = (dπ1(k), dπ1(k−1), . . . , dπ1(0))b, and an (n, b, τ2)-permutiple, p2 =

(dπ2(k), dπ2(k−1), . . . , dπ2(0))b, are in the same conjugacy class, then Gp1
= Gp2

.

Proof. It is sufficient to show that Ep1
= Ep2

. So,

Ep1=
{(

dπ1(j), dπ1τ1(j)

)
| 0 ≤ j ≤ k

}
=

{(
dj , dπ1τ1π

−1
1 (j)

)
| 0 ≤ j ≤ k

}
=

{(
dj , dπ2τ2π

−1
2 (j)

)
| 0 ≤ j ≤ k

}
(by conjugacy)

=
{(

dπ2(j), dπ2τ2(j)

)
| 0 ≤ j ≤ k

}
= Ep2 ,

and the proof is complete.

One of the limitations of classifying permutiples according to conjugacy, as it

is defined above, is that only examples of a specified length can be conjugates.

Another drawback, as mentioned earlier, is that repeated digits must be considered

distinct from one another in order to make the classification. Permutiple graphs

offer a way to sort and classify examples according to their most essential properties

in a way that is independent of their length or presence of repeated digits.

We now make clear how we intend to handle permutations involving repeated

digits. For any (n, b, σ)-permutiple, p = (dk, . . . , d0)b, with repeated digits, σ

may not be the only permutation on {0, 1, . . . , k} which gives the representation

(dσ(k), . . . , dσ(0))b. Taking the example

(d3, d2, d1, d0) = (3, 3, 1, 2)4 = 2 · (1, 3, 2, 3)4 = 2 · (dσ(3), dσ(2), dσ(1), dσ(0))4

as a case in point, we may take σ to be either

(
0 1 2 3
3 0 2 1

)
or

(
0 1 2 3
2 0 3 1

)
.

It is clear by mapping the indices to their corresponding digits, using the same



INTEGERS: 25 (2025) 6

tableau presentation as above, we obtain the same result,(
d0 d1 d2 d3
d3 d0 d2 d1

)
=

(
d0 d1 d2 d3
d2 d0 d3 d1

)
=

(
2 1 3 3
3 2 3 1

)
,

which is simply another representation of the collection of edges of this example’s

graph, {(2, 3), (1, 2), (3, 3), (3, 1)}.
The above example helps to underscore two elementary facts which hold in gen-

eral: 1) any permutiple, p, with repeated digits will have more than one permutation

which describes the rearrangement of its digits, and 2) the graph of p is unaffected

by our choice from this collection of permutations. That said, some of these permu-

tations are more advantageous than others in the sense that a permutiple’s graph

can convey information about the digit permutation itself provided that the per-

mutation has a certain property. We shall presently state this property, noting

that we use the notation (dj1 , dj2 , . . . , djm−1, djm) to mean the collection of edges

{(dj1 , dj2), (dj2 , dj3), . . . (djm−1, djm), (djm , dj1)} , regardless of whether the collec-

tion is a cycle or a circuit on Gp. We shall also refer to loops as 1-cycles.

Definition 5. Let p = (dk, . . . , d0)b be an (n, b, σ)-permutiple with graph Gp. Also,

suppose 0 ≤ j ≤ k, and let m be the smallest natural number such that j = σm(j).

We say that σ preserves the cycle (j, σ(j), . . . , σm−1(j)) if (dj , dσ(j), . . . , dσm−1(j))

is a cycle on Gp. If σ preserves every one of its disjoint cycles, then we say that σ

is cycle-preserving.

For the above example, p = (d3, d2, d1, d0) = (3, 3, 1, 2)4 = 2 · (1, 3, 2, 3)4, we

see that

(
0 1 2 3
3 0 2 1

)
= (0, 3, 1)(2) is cycle-preserving since (d0, d3, d1)(d2) =

(2, 3, 1)(3) is a union of cycles of Gp. On the other hand,

(
0 1 2 3
2 0 3 1

)
=

(0, 2, 3, 1) is not cycle-preserving since (d0, d2, d3, d1) = (2, 3, 3, 1) represents a cir-

cuit of Gp, but is not a cycle.

Theorem 5. For every (n, b, σ)-permutiple, p = (dk, . . . , d0)b, there is a cycle-

preserving permutation, σ̂, such that (dk, . . . , d0)b = n(dσ̂(k), . . . , dσ̂(0))b.

Proof. If σ is already cycle-preserving, then we are done. So, suppose that σ is not

cycle-preserving. Then, we can find a disjoint cycle, τ = (j, σ(j), . . . , σm−1(j)), of

σ such that (dj , dσ(j), . . . , dσm−1(j)) is not a cycle of Gp, but a circuit. Therefore,

there are at least two indices, σm1(j) and σm2(j), for which dσm1 (j) = dσm2 (j).

Rewriting τ as
(
j, σ(j), . . . , σm1−1(j), σm1(j), . . . , σm2−1(j), σm2(j), . . . , σm−1(j)

)
,

we construct a new permutation,

τ̂ =
(
j, σ(j), . . . , σm1−1(j), σm2(j), . . . , σm−1(j)

) (
σm1(j), . . . , σm2−1(j)

)
.

Both permutations, τ and τ̂ , define the same collection of edges of Gp. So, replacing

τ with τ̂ in the cycle decomposition of σ does not change the sequence of permuted

digits.
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Now, if τ contains indices for which there are multiple digits with repeats, the

above process can still be applied for each repeat until no disjoint cycle contains

indices corresponding to repeated digits. Applying this process to every disjoint

cycle of σ, and naming the resulting product of cycles σ̂, we see that σ̂ preserves

all of its disjoint cycles. Since σ̂ defines the same collection of edges of Gp, we have

that (dk, . . . , d0)b = n(dσ(k), . . . , dσ(0))b = n(dσ̂(k), . . . , dσ̂(0))b.

Remark 1. We note that the choice of cycle-preserving permutation is generally

not unique. Also, it is clear that for any cycle-preserving permutation, σ, we have

for any j such that dj = dσ(j) that σ(j) = j. That is, j is a fixed point of σ.

The above framework enables us to more broadly classify (n, b)-permutiples.

Definition 6. Let p be an (n, b)-permutiple with graph Gp. We define the class of

p to be the collection, C, of all (n, b)-permutiples, q, such that Gq is a subgraph of

Gp. We also define the graph of the class to be Gp, which we will denote as GC and

will call the graph of C.

The above definitions unify all of the (4, 10)-permutiple examples considered here

and in other works [3, 4, 5, 6, 7, 9, 10, 12, 13] into a single class. These include

(8, 7, 1, 2)10 = 4 · (2, 1, 7, 8)10, (8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10, (8, 7, 9, 9, 1, 2)10 =

4 · (2, 1, 9, 9, 7, 8)10, as well as (7, 1, 2, 8)10 = 4 · (1, 7, 8, 2)10, (7, 9, 1, 2, 8)10 = 4 ·
(1, 9, 7, 8, 2)10, (7, 9, 9, 1, 2, 8)10 = 4 · (1, 9, 9, 7, 8, 2)10, (8, 7, 1, 2, 8, 7, 1, 2)10 = 4 ·
(2, 1, 7, 8, 2, 1, 7, 8)10, and so forth.

Remark 2. Under the above definition, any two (n, b)-permutiples in the same

conjugacy class are also members of the same permutiple class.

Theorem 6. For C any (n, b)-permutiple class, GC is a union of cycles of M.

Proof. Since every edge of GC is also an edge ofM, it is sufficient to show that every

vertex of GC having positive outdegree lies on some cycle. Choose an (n, b, σ)-

permutiple, p = (dk, dk−1, . . . , d0)b, so that GC = Gp and σ is cycle-preserving.

Then, it is sufficient to show that any digit, dj , of p lies on a cycle of Gp. Find

the m-cycle, (j1, j2, . . . , j, . . . , jm), in the cycle decomposition of σ which contains

j. Since σ was chosen to be cycle-preserving, (dj1 , dj2 , . . . , dj , . . . , djm) is a graph

cycle which contains dj .

4. A Method for Finding All Permutiples up to a Known Length

Theorems 1 and 6 give us a method for finding all permutiples of a known base,

b, multiplier, n, and length, ℓ, without the requirement of a specific example to

start with. Theorem 6 tells us that once we identify all of the digit cycles of the
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easily-constructed (n, b)-mother graph,M, we may form combinations of these, with

1-cycles included, whose lengths add to ℓ. These, in turn, give candidate collections

of possible permutiple digits. We may narrow down these candidates by using a

corollary to Theorem 1; summing the equation in Theorem 1 over all 0 ≤ j ≤ k =

ℓ− 1 gives us the equation

(n− 1)

k∑
j=0

dj = (b− 1)

k∑
j=1

cj . (2)

The results of [7] may then be applied to the remaining digit collections.

We now put the above into practice with an example.

Example 1. Using the method described above, we shall find all (2, 6)-permutiples

up to length 5. The (2, 6)-mother graph is seen in Figure 2. The possible digit

cycles and their lengths are presented in Table 2.

0

12

3

4 5

Figure 2: The (2, 6)-mother graph.

1-cycles (0), (5)
2-cycles (1, 3), (2, 4)
3-cycles (0, 3, 1), (2, 4, 5)
4-cycles (1, 3, 4, 2)
5-cycles (0, 3, 4, 2, 1), (1, 3, 4, 5, 2)
6-cycles (0, 3, 4, 5, 2, 1)

Table 2: Cycles of the (2, 6)-mother graph.

We first find all combinations of digit-cycle representations whose lengths add

to 5. All cycle combinations which consist solely of 1-cycles will be ignored since

they either result in trivial examples or no examples. Also, representations with

leading or trailing zeros may be discarded at the discretion of any reader who

objects to them. However, we shall include them since, in doing so, finding all

5-digit examples amounts to finding all examples up to 5-digits since any 2, 3, and

4-digit examples will appear in our 5-digit list. For example, the 5-digit permutiple

(0, 4, 3, 1, 2)6 = 2·(0, 2, 1, 3, 4)6 reveals a 4-digit example, (4, 3, 1, 2)6 = 2·(2, 1, 3, 4)6.
Considering 5-digit (2, 6)-permutiples, there are several possibilities for digit-

cycle combinations whose lengths add to 5:

(0, 3, 4, 2, 1), (1, 3, 4, 5, 2), (1, 3, 4, 2)(0), (1, 3, 4, 2)(5), (0, 3, 1)(1, 3), (0, 3, 1)(2, 4),
(0, 3, 1)(0)(5), (2, 4, 5)(1, 3), (2, 4, 5)(2, 4), (2, 4, 5)(0)(5), (1, 3)(2, 4)(0),
(1, 3)(2, 4)(5), (1, 3)(1, 3)(0), (2, 4)(2, 4)(0), (1, 3)(1, 3)(5), and (2, 4)(2, 4)(5).

Now, in this case, Equation 2 becomes

4∑
j=0

dj = 5

4∑
j=1

cj . Thus, the sum of the
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digits of the union of cycles must be divisible by 5. This narrows down our list

even further: (0, 3, 4, 2, 1), (1, 3, 4, 5, 2), (1, 3, 4, 2)(0), (1, 3, 4, 2)(5), (0, 3, 1)(2, 4),

(2, 4, 5)(1, 3), (1, 3)(2, 4)(0), and (1, 3)(2, 4)(5). These candidates tell us which col-

lections of digits might yield examples. We shall express these collections as 5-tuples

whose entries contain the permuted digits: (0, 1, 2, 3, 4) and (1, 2, 3, 4, 5). We may

now apply the results of [7] to find permutations of these collections which yield

permutiples. The list of all 5-digit (2, 6)-permutiples in Table 3 is organized by

digit-cycle decomposition.

Digit Cycles Examples
(0, 3, 4, 2, 1) (4, 2, 1, 3, 0)6 = 2 · (2, 1, 0, 4, 3)6

(2, 4, 1, 3, 0)6 = 2 · (1, 2, 0, 4, 3)6
(4, 1, 3, 0, 2)6 = 2 · (2, 0, 4, 3, 1)6
(1, 3, 0, 4, 2)6 = 2 · (0, 4, 3, 2, 1)6
(2, 1, 3, 0, 4)6 = 2 · (1, 0, 4, 3, 2)6
(1, 3, 0, 2, 4)6 = 2 · (0, 4, 3, 1, 2)6

(1, 3, 4, 5, 2) (5, 3, 1, 4, 2)6 = 2 · (2, 4, 3, 5, 1)6
(5, 1, 3, 4, 2)6 = 2 · (2, 3, 4, 5, 1)6
(2, 5, 3, 1, 4)6 = 2 · (1, 2, 4, 3, 5)6
(2, 5, 1, 3, 4)6 = 2 · (1, 2, 3, 4, 5)6

(0, 3, 1)(2, 4) (4, 3, 2, 1, 0)6 = 2 · (2, 1, 4, 0, 3)6
(3, 2, 4, 1, 0)6 = 2 · (1, 4, 2, 0, 3)6
(4, 1, 2, 3, 0)6 = 2 · (2, 0, 4, 1, 3)6
(1, 2, 4, 3, 0)6 = 2 · (0, 4, 2, 1, 3)6
(4, 3, 0, 1, 2)6 = 2 · (2, 1, 3, 0, 4)6
(3, 0, 4, 1, 2)6 = 2 · (1, 3, 2, 0, 4)6
(4, 1, 0, 3, 2)6 = 2 · (2, 0, 3, 1, 4)6
(1, 0, 4, 3, 2)6 = 2 · (0, 3, 2, 1, 4)6
(3, 2, 1, 0, 4)6 = 2 · (1, 4, 0, 3, 2)6
(1, 2, 3, 0, 4)6 = 2 · (0, 4, 1, 3, 2)6
(3, 0, 1, 2, 4)6 = 2 · (1, 3, 0, 4, 2)6
(1, 0, 3, 2, 4)6 = 2 · (0, 3, 1, 4, 2)6

(2, 4, 5)(1, 3) (5, 4, 3, 1, 2)6 = 2 · (2, 5, 1, 3, 4)6
(3, 4, 5, 1, 2)6 = 2 · (1, 5, 2, 3, 4)6
(5, 1, 4, 3, 2)6 = 2 · (2, 3, 5, 1, 4)6
(3, 1, 4, 5, 2)6 = 2 · (1, 3, 5, 2, 4)6
(5, 2, 3, 1, 4)6 = 2 · (2, 4, 1, 3, 5)6
(3, 2, 5, 1, 4)6 = 2 · (1, 4, 2, 3, 5)6
(5, 1, 2, 3, 4)6 = 2 · (2, 3, 4, 1, 5)6
(3, 1, 2, 5, 4)6 = 2 · (1, 3, 4, 2, 5)6

(1, 3)(2, 4)(0) (4, 3, 1, 2, 0)6 = 2 · (2, 1, 3, 4, 0)6
(3, 1, 2, 4, 0)6 = 2 · (1, 3, 4, 2, 0)6
(4, 0, 3, 1, 2)6 = 2 · (2, 0, 1, 3, 4)6
(0, 4, 3, 1, 2)6 = 2 · (0, 2, 1, 3, 4)6
(3, 1, 2, 0, 4)6 = 2 · (1, 3, 4, 0, 2)6
(0, 3, 1, 2, 4)6 = 2 · (0, 1, 3, 4, 2)6

(1, 3)(2, 4)(5) (4, 3, 5, 1, 2)6 = 2 · (2, 1, 5, 3, 4)6
(4, 3, 1, 5, 2)6 = 2 · (2, 1, 3, 5, 4)6
(3, 5, 1, 2, 4)6 = 2 · (1, 5, 3, 4, 2)6
(3, 1, 5, 2, 4)6 = 2 · (1, 3, 5, 4, 2)6

Table 3: The collection of all 5-digit (2, 6)-permutiples.
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Remark 3. From Table 3, we may infer that there are no 2- or 3-digit examples.

Also, the reader may observe that the collections of permutiples corresponding to the

digit-cycle combinations (1, 3, 4, 5, 2), (2, 5, 4)(1, 3), and (1, 3)(2, 4)(5) are the (2, 6)-

permutiple conjugacy classes found in [6] from the single example (4, 3, 5, 1, 2)6 =

2 · (2, 1, 5, 3, 4)6.

5. Finite-State Machine Methods

The above results and methods make little mention of the carries in the process of

single-digit multiplication. However, in order to broaden our scope, we shall now

bring them into the analysis. Hoey [3] describes palintiples as a formal language

recognized by a finite-state machine, and Sloane’s [10] Young-graph construction

is essentially the state diagram for Hoey’s machines. More recent efforts applying

similar techniques to problems in number theory include the work of Faber and

Grantham [2] who use finite-state machines (deterministic finite automata) to find

integers whose sum is the reverse of their product in an arbitrary base. We now cast

the general permutiple problem into a similar light. We note that our construction

will be somewhat different from those found in [3, 10] since we are not working with

any particular digit permutation.

Before we begin, we note that for any permutiple carry, 0 ≤ cj ≤ n− 1, and any

base-b digits, d1 and d2, we have that −(b− 1) ≤ nd2 − d1 + cj ≤ n(b− 1) + n− 1,

so that −(b − 1) ≤ bcj+1 ≤ nb − 1, which guarantees that 0 ≤ cj+1 ≤ n − 1. We

may now describe a finite-state machine, which, among other numbers, recognizes

(n, b)-permutiples. Taking non-negative integers less than n as the collection of

states, and the edges of M as the input alphabet, the equation

c2 = [nd2 − d1 + c1]÷ b (3)

defines a state-transition function from state c1 to state c2 with (d1, d2) serving as

the input which induces the transition. This transition corresponds to a labeled

edge on the state diagram as seen in Figure 3.

c1 c2
(d1, d2)

Figure 3: An edge on the state diagram.

Since the first carry, c0, of any single-digit multiplication is defined to be zero, the

initial state must always be zero. Also, for an ℓ-digit (n, b)-permutiple, cℓ must also

be zero, otherwise, the result would be an (ℓ+ 1)-digit number. That is, zero must

be the only accepting state. We shall call the above construction the (n, b)-Hoey-

Sloane machine, and we shall call its state diagram the (n, b)-Hoey-Sloane graph,

which we will denote as Γ.
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Here, we point out that, rather than strings of base-b digits, the (n, b)-Hoey-

Sloane machine accepts strings of edges from M as inputs. Furthermore, since

multiple digit pairs, (d1, d2), can solve Equation (3) for particular values of c1 and

c2, there are generally multiple inputs which the machine will accept for a transition

to occur. Thus, a collection of inputs (a subset of the edges of M) is assigned to

each edge on Γ by the mapping (c1, c2) 7→ {(d1, d2) ∈ EM |c2 = [nd2 − d1 + c1]÷ b},
where EM is the collection of edges of M. For simpler figures, we will leave off the

set braces in figures depicting Γ and its subgraphs.

We shall denote the regular language of input strings accepted by the (n, b)-Hoey-

Sloane machine as L. We may describe L as finite sequences of edge-label inputs

which define walks on Γ whose initial and final states are zero. For simplicity, we

will call such walks L-walks. Members of L which produce permutiple numbers will

be called (n, b)-permutiple strings. When the context is clear, we may omit the

“(n, b)-” prefix for smoother exposition.

Example 2. We may describe the language of input strings, L, recognized by the

(2, 4)-Hoey-Sloane machine by the (2, 4)-Hoey-Sloane graph, Γ, seen in Figure 4.

0start 1

(0, 2), (2, 3)

(1, 0), (3, 1)(0, 0), (2, 1) (1, 2), (3, 3)

Figure 4: The (2, 4)-Hoey-Sloane graph.

Clearly, all (2, 4)-permutiple strings are members of L. For instance, the (2, 4)-

permutiple (3, 1, 2, 0)4 = 2 · (1, 2, 3, 0)4 corresponds to the (2, 4)-permutiple string

(0, 0)(2, 3)(1, 2)(3, 1), which is certainly a member of L. The corresponding L-walk

is visualized in Figure 5.

0 0 1 1 0
(0, 0) (2, 3) (1, 2) (3, 1)

Figure 5: The L-walk of the (2, 4)-permutiple string (0, 0)(2, 3)(1, 2)(3, 1).

Within this new framework, Theorem 6 gives us a corollary.

Corollary 1. Let s = (d0, d̂0)(d1, d̂1) · · · (dk, d̂k) be a member of L. If s is a permu-

tiple string, then the collection of ordered-pair inputs of s is a union of cycles of M.

Here, we underscore both that L also consists of input strings which are not

permutiple strings, and that the converse of the above is not generally true. As an

example, (2, 1)(0, 2)(1, 2)(1, 0) is a member of L corresponding to the multiplication

(1, 1, 0, 2)4 = 2 · (0, 2, 2, 1)4, yet this is not a (2, 4)-permutiple. Moreover, these
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inputs form a union of cycles on the (2, 4)-mother graph, showing that the converse

of Corollary 1 does not hold. With a simple modification, however, the above input

string can be extended to (2, 1)(0, 2)(1, 2)(1, 0)(2, 1), which yields a permutiple,

(2, 1, 1, 0, 2)4 = 2·(1, 0, 2, 2, 1)4. Another non-permutiple example, (2, 2, 1, 1, 0, 2)4 =

2 · (1, 1, 0, 2, 2, 1)4, bears strong resemblance to a (2, 4)-permutiple, and is generated

from the input string (2, 1)(0, 2)(1, 2)(1, 0)(2, 1)(2, 1).

Corollary 1 tells us that the cycles of M play a key role in our search for per-

mutiple strings, but the presence of cycles alone is not enough to guarantee that an

input string in L is a permutiple string. In general, we see that for an input string,

s = (d0, d̂0)(d1, d̂1) · · · (dk, d̂k), in L to be a permutiple string, it must be that the

two strings of base-b digits formed by the left and right components of the inputs

of s, that is, dk · · · d1d0 and d̂k · · · d̂1d̂0, are permutations of one another. That is,

members of L whose left and right components form the same multiset (allowing for

repeat digits to be considered distinct) will result in an (n, b)-permutiple. Now, col-

lections of inputs for which the left and right components form the same collection

of digits are precisely the cycles of M. It follows that any multiset union of cycles

of M which can be ordered into an input string, s, which belongs to L, must result

in a permutiple string. Since members of L can be visualized as L-walks on the

(n, b)-Hoey-Sloane graph, Γ, we see that the edges of Γ associated with the inputs

of s must define a strongly-connected subgraph of Γ containing the zero state.

With the above observations, we may now describe a method for identifying mul-

tiset unions of mother-graph cycles which may be ordered into permutiple strings.

We may examine the subgraphs of Γ associated with individual cycles of M. If a

union of these subgraphs forms a strongly-connected subgraph of Γ which contains

the zero state, then the multiset union of individual cycles may be ordered into a

permutiple string by forming L-walks with the aid of Γ.

More precisely, we list all the cycles, C = {C0, C1, . . . , Cm}, ofM. Each element,

Cj , of C defines a subgraph, Γj , of Γ where each edge of Γj is assigned the edge-label

collection by the mapping (c1, c2) 7→ {(d1, d2) ∈ Cj |c2 = [nd2 − d1 + c1]÷ b} . Any

edge, (c1, c2), for which this collection is empty will not be included as an edge on

Γj . With the above edges, any state for which both the indegree and outdegree are

zero will not be included as a vertex. Each Γj will be referred to as the image of Cj ,

or simply as a cycle image. Letting I be a multiset whose support is a subset, J, of

{0, 1, . . . ,m}, then, if the cycle-image union ΓJ =
⋃

j∈J Γj (edge labels included) is

a strongly-connected subgraph of Γ containing the zero state, then the associated

multiset union, CI =
⋃

j∈I Cj , may be ordered into permutiple strings by forming

L-walks on Γ. This is easily accomplished by using ΓJ .

When forming permutiple strings, we emphasize that every element of CI must

be used, repeats and all, otherwise, the multisets of left and right components will

not be equal. Also, cycles may be chosen more than once, resulting in a multiset

consisting of repeated values, each of which occurs with equal multiplicity.
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With the above, we have everything we need to easily generate examples of

(2, 4)-permutiples.

Example 3. The (2, 4)-mother graph, M, is given in Figure 6.

The cycles, C , written as multisets of
ordered-pair inputs, are listed below:

C0 = (0) = {(0, 0)}, C1 = (3) = {(3, 3)},
C2 = (1, 2) = {(1, 2), (2, 1)},
C3 = (0, 2, 1) = {(0, 2), (2, 1)(1, 0)},
C4 = (1, 2, 3) = {(1, 2), (2, 3), (3, 1)},
C5 = (0, 2, 3, 1) = {(0, 2), (2, 3), (3, 1), (1, 0)}.

0

1

2

3

Figure 6: The (2, 4)-mother graph.

We now map each cycle to its corresponding image as seen in Table 4.

Mother-Graph Cycle Cycle Image

C0
0 0start 1

(0, 0)

Γ0

C1
3 0start 1

(3, 3)

Γ1

C2

1

2 0start 1

(2, 1) (1, 2)

Γ2

C3
0

1

2

0start 1

(0, 2)

(1, 0)
(2, 1)

Γ3

C4

1

2

3

0start 1

(2, 3)

(3, 1)
(1, 2)

Γ4

C5

0

1

2

3

0start 1

(0, 2), (2, 3)

(1, 0), (3, 1)

Γ5

Table 4: Cycles of the (2, 4)-mother graph and their corresponding cycle images.
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Any union of the cycle images, Γj , in Table 4 which results in a strongly-connected

graph containing the zero state corresponds to a multiset union of cycles, Cj , from

which we may generate permutiple strings by ordering the inputs into L-walks on

Γ, seen in Figure 4. In this way, the above gives a complete description of how

(2, 4)-permutiple strings are constructed.

For example, it is plain to see that the images of each individual multiset, C0,

C3, C4, and C5, are strongly connected and contain the zero state. That is, these

cycles individually contain inputs which enable L-walks on Γ, allowing us to form

permutiple strings. Examples are included in Table 5.

Cycle Permutiple String Example
C0 (0, 0) (0)4 = 2 · (0)4
C3 (2, 1)(0, 2)(1, 0) (1, 0, 2)4 = 2 · (0, 2, 1)4

(0, 2)(1, 0)(2, 1) (2, 1, 0)4 = 2 · (1, 0, 2)4
C4 (2, 3)(1, 2)(3, 1) (3, 1, 2)4 = 2 · (1, 2, 3)4
C5 (0, 2)(1, 0)(2, 3)(3, 1) (3, 2, 1, 0)4 = 2 · (1, 3, 0, 2)4

(0, 2)(3, 1)(2, 3)(1, 0) (1, 2, 3, 0)4 = 2 · (0, 3, 1, 2)4
(2, 3)(1, 0)(0, 2)(3, 1) (3, 0, 1, 2)4 = 2 · (1, 2, 0, 3)4
(2, 3)(3, 1)(0, 2)(1, 0) (1, 0, 3, 2)4 = 2 · (0, 2, 1, 3)4

Table 5: Examples of (2, 4)-permutiples corresponding to single mother-graph cy-
cles, C0, C3, C4, and C5.

It is also clear that unions involving only C1 or C2 are insufficient for this same

purpose; Γ1 is strongly connected, but does not contain the zero state, and Γ2 is

not strongly connected. We also see that any union involving the multisets C3, C4,

and C5 can be ordered to form L-walks on Γ since the associated cycle-image union

is strongly connected and contains the zero state. For example, the multiset union

C2 ∪ C3 = {(1, 2), (2, 1), (0, 2), (2, 1), (1, 0)} gives a collection of inputs with which

we may form permutiple strings. Examples are included in Table 6

Cycle Permutiple String Example
C2 ∪ C3 (2, 1)(0, 2)(1, 2)(1, 0)(2, 1) (2, 1, 1, 0, 2)4 = 2 · (1, 0, 2, 2, 1)4

(2, 1)(2, 1)(0, 2)(1, 2)(1, 0) (1, 1, 0, 2, 2)4 = 2 · (0, 2, 2, 1, 1)4
(0, 2)(1, 2)(1, 0)(2, 1)(2, 1) (2, 2, 1, 1, 0)4 = 2 · (1, 1, 0, 2, 2)4

Table 6: Examples of (2, 4)-permutiples corresponding to the multiset union of
mother-graph cycles C2 ∪ C3.

As mentioned above, cycles may be used more than once. For example, the multiset

union C3 ∪ C3 = {(0, 2), (2, 1), (1, 0), (0, 2), (2, 1), (1, 0)} gives us several six-digit

examples, which are displayed in Table 7.
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Cycle Permutiple String Example

C3 ∪ C3 (2, 1)(0, 2)(1, 0)(2, 1)(0, 2)(1, 0) (1, 0, 2, 1, 0, 2)4 = 2 · (0, 2, 1, 0, 2, 1)4
(0, 2)(1, 0)(2, 1)(0, 2)(1, 0)(2, 1) (2, 1, 0, 2, 1, 0)4 = 2 · (1, 0, 2, 1, 0, 2)4
(2, 1)(0, 2)(1, 0)(0, 2)(1, 0)(2, 1) (2, 1, 0, 1, 0, 2)4 = 2 · (1, 0, 2, 0, 2, 1)4
(2, 1)(2, 1)(0, 2)(1, 0)(0, 2)(1, 0) (1, 0, 1, 0, 2, 2)4 = 2 · (0, 2, 0, 2, 1, 1)4
(0, 2)(1, 0)(0, 2)(1, 0)(2, 1)(2, 1) (2, 2, 1, 0, 1, 0)4 = 2 · (1, 1, 0, 2, 0, 2)4
(0, 2)(1, 0)(2, 1)(2, 1)(0, 2)(1, 0) (1, 0, 2, 2, 1, 0)4 = 2 · (0, 2, 1, 1, 0, 2)4

Table 7: Examples of (2, 4)-permutiples corresponding to the multiset union of
mother-graph cycles C3 ∪ C3.

In the above way, all nontrivial (2, 4)-permutiple strings can be formed from multiset

unions of cycles of M which contain at least one copy of C3, C4, or C5.

We now perform a similar analysis to find examples of (3, 4)-permutiples.

Example 4. We begin by examining the (3, 4)-mother graph, M, displayed in

Figure 7.

The collection of cycles, C , is listed below:
C0 = (0) = {(0, 0)}, C1 = (1) = {(1, 1)},
C2 = (2) = {(2, 2)}, C3 = (3) = {(3, 3)},
C4 = (0, 1) = {(0, 1), (1, 0)},
C5 = (0, 2) = {(0, 2), (2, 0)},
C6 = (1, 3) = {(1, 3), (3, 1)},
C7 = (2, 3) = {(2, 3), (3, 2)},
C8 = (0, 1, 3, 2) = {(0, 1), (1, 3), (3, 2), (2, 0)},
C9 = (0, 2, 3, 1) = {(0, 2), (2, 3), (3, 1), (1, 0)}.

0

1

2

3

Figure 7: The (3, 4)-mother graph.
.

We now look for multiset unions of the above cycles from which we may construct

members of L. The (3, 4)-Hoey-Sloane graph, Γ, is seen in Figure 8.

0start 1 2

(0, 0), (3, 1) (0, 1), (3, 2) (0, 2), (3, 3)

(2, 2)

(1, 0) (1, 1)

(2, 3)

(1, 3)

(2, 0)

Figure 8: The (3, 4)-Hoey-Sloane graph.

To accomplish the objective stated above, we compare individual mother-graph

cycles to their images as seen in Table 8.
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Mother-Graph Cycle Cycle Image

C0
0 0start 1 2

(0, 0)

Γ0

C1
1 0start 1 2

(1, 1)

Γ1

C2
2

0start 1 2

(2, 2)
Γ2

C3
3 0start 1 2

(3, 3)

Γ3

C4
0

1

0start 1 2

(0, 1)

(1, 0)

Γ4

C5
02 0start 1 2

(0, 2)(2, 0)

Γ5

C6

1

3

0start 1 2

(3, 1)

(1, 3)
Γ6

C7

2

3

0start 1 2

(3, 2)

(2, 3)
Γ7

C8

0

1

2

3

0start 1 2

(0, 1), (3, 2)

(1, 3)

(2, 0)

Γ8

C9

0

1

2

3

0start 1 2

(3, 1) (0, 2)

(1, 0)

(2, 3)
Γ9

Table 8: Cycles of the (3, 4)-mother graph and their corresponding cycle images.
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We may now consider multiset unions of mother-graph cycles whose corresponding

cycle-image union results in a strongly-connected graph containing the zero state.

In this way, Table 8 describes how to form any (3, 4)-permutiple string. For instance,

the cycle union C5 ∪ C6 = {(0, 2), (2, 0), (1, 3), (3, 1)} corresponds to the strongly-

connected cycle-image union Γ5 ∪ Γ6, which is shown in Figure 9.

0start 1 2

(3, 1) (0, 2)

(1, 3)

(2, 0)

Figure 9: The cycle-image union Γ5 ∪ Γ6 corresponding to the mother-graph cycle
union C5 ∪ C6.

From Figure 9, we may easily generate L-walks on Γ, two of which are displayed in

Figure 10.

0 2 2 0 0
(1, 3) (0, 2) (2, 0) (3, 1)

0 0 2 2 0
(3, 1) (1, 3) (0, 2) (2, 0)

Figure 10: Two L-walks whose input-sequence elements are the mother-graph union
C5 ∪ C6.

The L-walks displayed in Figure 10 correspond to two (3, 4)-permutiple strings,

(1, 3)(0, 2)(2, 0)(3, 1) and (1, 3)(0, 2)(2, 0)(3, 1), which, in turn, correspond to the

two (3, 4)-permutiple examples (3, 2, 0, 1)4 = 3 · (1, 0, 2, 3)4 and (2, 0, 1, 3)4 = 3 ·
(0, 2, 3, 1)4.We notice that certain cyclic permutations of the inputs in a permutiple

string result in another permutiple string. This will happen so long as the first input

transitions from the zero state and the last input transitions to the zero state. The

reader will also notice that, unlike the previous example, the trivial cycle, C0, is

the only individual cycle whose image is strongly connected and contains the zero

state.

Clearly, the permutiples in a class, C, can be generated from the subgraph of

Γ formed by the union of the images of the cycles of GC . The edge labels of this

subgraph are the cycles of GC . Our next example highlights this fact.

Example 5. We will now describe the permutiple class, C, of a familiar example,

p = (8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10, as a subcollection of all (4, 10)-permutiples.

The (4, 10)-mother graph, M, is seen in Figure 11, with the edges of GC = Gp
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highlighted in red. The cycles of GC are C0 = {(9, 9)}, C1 = {(2, 8), (2, 8)}, and
C2 = {(1, 7), (7, 1)}. The (4, 10)-Hoey-Sloane graph, Γ, is seen in Figure 12 with the

cycle-image union Γ0 ∪ Γ1 ∪ Γ2 also highlighted in red. We may describe C as all

permutiples which are generated from a permutiple string formed from a multiset

union involving at least one copy of {(2, 8), (2, 8), (1, 7), (7, 1)}.

0

1

23

4

5

6

7 8

9

Figure 11: The (4, 10)-mother graph.

0start 1 2 3

(0, 0), (4, 1), (8, 2) (3, 3), (4, 7) (2, 5), (6, 6) (1, 7), (5, 8),(9, 9)

(2, 3), (6, 4)

(1, 0), (5, 1), (9, 2) (0, 2), (4, 3), (8, 4)

(1, 5), (5, 6), (9, 7)

(3, 8), (7, 9)

(0, 7), (4, 8), (8, 9)

(3, 5), (7, 6)

(1, 2), (5, 3), (9, 4)

(0, 5), (4, 6), (8, 7)

(2, 8), (6, 9)

(2, 0), (6, 1)

(3, 0), (7, 1)

Figure 12: The (4, 10)-Hoey-Sloane graph.
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Here, we also note that Theorem 4, when viewed through the lens of the present

discussion, tells us that permutiple conjugates arise by either cyclically permuting

the sequence of states and inputs simultaneously, or by transposing inputs in a way

which preserves the sequence of states. Any combination of the above actions which

produces another L-walk will result in a conjugate permutiple string. For example,

consider the L-walk for p shown in Figure 13.

0 3 3 3 0 0
(2, 8) (1, 7) (9, 9) (7, 1) (8, 2)

Figure 13: The L-walk corresponding to p = (8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10.

One of the conjugates of p is (7, 1, 9, 2, 8)10 = 4 · (1, 7, 9, 8, 2)10, and its L-walk,

shown in Figure 14, is the result of both a cyclic permutation of the state-input

sequence and a transposition of the inputs (1, 7) and (9, 9) on the L-walk of p.

0 0 3 3 3 0
(8, 2) (2, 8) (9, 9) (1, 7) (7, 1)

Figure 14: The L-walk corresponding to (7, 1, 9, 2, 8)10 = 4 · (1, 7, 9, 8, 2)10.

Remark 4. For an (n, b)-permutiple class, C, mapping the cycles of GC to their

cycle-image union, as seen in the above example, gives us options for classifying

permutiples by graph isomorphism (including edge-label collections), which are in-

dependent of base, multiplier, and length.

Other examples of (4, 10)-permutiples not considered in the above example, but

worth mentioning, are (7, 8, 9, 1, 2)10 = 4 · (1, 9, 7, 2, 8)10, corresponding to the input

string (2, 8)(1, 2)(9, 7)(8, 9)(7, 1), produced by the results of [7], and an example

from the results of [11], (4, 9, 3, 8, 2, 7, 1, 5, 6)10 = 4 · (1, 2, 3, 4, 5, 6, 7, 8, 9)10, with
input string (6, 9)(5, 8)(1, 7)(7, 6)(2, 5)(8, 4)(3, 3)(9, 2)(4, 1).

As for describing all (4, 10)-permutiples using the above techniques, we note that,

using software, there are 986 cycles on the (4, 10)-mother graph. This means that

the type of analysis seen in the previous examples is hardly feasible. Without further

results, we would need to utilize software to continue our exploration. That said, it

is still not too difficult to use the Hoey-Sloane graph to find new examples by inspec-

tion. For instance, the example (8, 7, 1, 5, 2, 8, 2, 0)10 = 4 · (2, 1, 7, 8, 8, 2, 0, 5)10 was

found from the permutiple string (0, 5)(2, 0)(8, 2)(2, 8)(5, 8)(1, 7)(7, 1)(8, 2), which

was obtained by simply examining Γ.

5.1. Application to Palintiple Numbers

In [6], we find the remark, “studying the general [permutiple] problem may very well

offer insight into particular problems which study only one kind of permutation.”
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It is worth mentioning that the methods presented here do indeed bring a novel and

unifying perspective to more specific cases of digit permutation problems, namely,

palintiple numbers.

To find all (n, b)-palintiples, we may perform the same analysis as above, except

that we examine only unions of 1- and 2-cycles of M from which we may form

elements of L. It also stands out that for any input string which results in a palin-

tiple, (d0, dk)(d1, dk−1) · · · (dk−1, d1)(dk, d0), the digits, read from left to right, form

a palindromic sequence, d0, dk, d1, dk−1, . . . , dk−1, d1, dk, d0.

Example 6. As a simple example, we now describe all (2, 5)-palintiples. The (2, 5)-

mother graph and the (2, 5)-Hoey-Sloane graph are seen in Figures 15 and 16.

0

1

2

3

4

Figure 15: The (2, 5)-mother graph.

0start 1

(1, 3), (3, 4)

(1, 0), (3, 1)

(0, 0), (2, 1), (4, 2) (0, 2), (2, 3), (4, 4)

Figure 16: The (2, 5)-Hoey-Sloane graph.

The collection of 1- and 2-cycles are C0 = (0) = {(0, 0)}, C1 = (4) = {(4, 4)}, and
C2 = (1, 3) = {(1, 3), (3, 1)}, and their corresponding cycle images are displayed in

Table 9.
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Mother-Graph Cycle Cycle Images

C0
0 0start 1

(0, 0)

Γ0

C1
4 0start 1

(4, 4)

Γ1

C2

1

3

0start 1

(1, 3)

(3, 1)

Γ2

Table 9: The 1- and 2-cycles of the (2, 5)-mother graph and their corresponding
cycle images.

From Table 9, we see that any (2, 5)-palintiple string must involve at least one copy

of the multiset {(1, 3), (3, 1)}, and possibly copies of {(4, 4)} or {(0, 0)}. We may

now generate (2, 5)-palintiple examples. Some examples without leading or trailing

zeros include
(3, 1)5 = 2 · (1, 3)5,
(3, 1, 3, 1)5 = 2 · (1, 3, 1, 3)5,
(3, 4, 1)5 = 2 · (1, 4, 3)5,
(3, 4, 1, 3, 4, 1)5 = 2 · (1, 4, 3, 1, 4, 3)5,
(3, 4, 1, 0, 3, 4, 1)5 = 2 · (1, 4, 3, 0, 1, 4, 3)5,
(3, 1, 3, 4, 1)5 = 2 · (1, 3, 1, 4, 3)5,

and so forth.

Example 7. We may find all (4, 10)-palintiples of any possible length from the 1-

and 2-cycles of the (4, 10)-mother graph:

1-cycles: (0), (3), (6), (9)
2-cycles: (0, 2), (1, 5), (1, 7), (2, 8), (3, 5), (4, 6), (4, 8), (7, 9).

Examining the images of the above cycles in the same manner as in Examples 3,

4, and 6, any multiset union of cycles must involve at least one multiset copy of

{(2, 8), (8, 2), (1, 7), (7, 1)}, and possibly copies of {(9, 9)} or {(0, 0)}.

Remark 5. An equivalent approach to the above methods is to directly keep track

of the multiset unions of mother-graph cycles by using the cycle images themselves,

defining them as multigraphs; instead of assigning a collection of inputs to each

edge, we may define a distinct edge, (c1, c2), for each individual input, (d1, d2),

which satisfies Equation 3. Permutiple strings may then be found from any strongly-

connected multigraph union which contains the zero state.
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6. Summary, Conclusions, and Future Lines of Inquiry

The results and methods developed here produce all permutiples of a given base and

multiplier without need of any prior knowledge, such as a known example. The first

method uses the (n, b)-mother graph, M, to find cycle combinations whose lengths

add to a desired number of digits. These cycle combinations give candidates for

collections of digits which can be narrowed down by Equation (2). The methods

of [7] may then be applied to any remaining digit collections. The second method

compares the cycles of M to corresponding cycle images, which are subgraphs of

the (n, b)-Hoey-Sloane graph, Γ. Cycle-image unions which are strongly connected

and contain the zero state (allowing for L-walks) correspond to multiset unions

of cycles of M. These multisets may then be ordered into permutiple strings by

using the cycle-image union, which is a subgraph of Γ. While the first method

completes the work of [6, 7], the second method involves substantially less work.

It also provides a broader perspective on notions encountered in previous efforts,

such as permutiple conjugacy and palintiple numbers. Furthermore, the second

method touches upon a line of questioning brought up by [6] involving the prospect

of finding a generalization of Young graphs [10] which would describe permutiples.

Although the second method is not an obvious generalization of Young graphs,

it certainly springs from the same soil as previous efforts for describing palintiple

numbers [3, 9, 10, 12, 13].

Larger bases and multipliers present combinatorial challenges for both methods

since the number of cycles of the mother graph grows rapidly with both the base

and multiplier. In the case of (4, 10)-permutiples, we would need either to develop

more powerful methods, or develop software to find all possible strongly-connected

unions containing the zero state from the 986 cycle images. Generally speaking,

it is clear that there are plenty of ideas presented here which can be more fully

developed.

Although we could describe the regular language L by resorting to regular ex-

pressions, doing so for permutiple strings would be less straightforward since there

are constraints on the multiplicities of certain inputs. Using standard regular-

expression operations (Kleene star, alternation, etc.) would require that we write

a separate regular expression for each strongly-connected cycle-image union con-

taining the zero state, all while taking care to maintain the correct multiplicities

of inputs. Moreover, for larger bases and multipliers (more states on Γ), the task

of writing out a regular expression for L quickly becomes onerous. The language

which the (4, 10)-Hoey-Sloane machine recognizes1 is a case in point. Thus, “multi-

set unions of mother-graph cycles which are ordered to form L-walks on the Hoey-

Sloane graph” is the simplest description of permutiple strings we have been able to

produce. However, knowing that the collection of permutiple strings is closed under

1“...for which I invite masochists to write the regular expression.”[3]
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concatenation, it would not be surprising if there is a more elegant and compact

description of them.

Finally, the methods presented here may help us to more fully understand the

phenomenon of “derived permutiples” mentioned in the concluding remarks of [6, 7].

We say that a base-b permutiple, (dk, · · · , d0)b, is derived if its carries, excluding c0,

form a number, (ck, ck−1, . . . , c1)n, which is a base-n permutiple. As an example,

the (6, 12)-permutiple (10, 3, 5, 1, 8, 6)12 = 6 · (1, 8, 6, 10, 3, 5)12 has a carry sequence

which is the digit sequence of a (2, 6)-palintiple, (4, 3, 5, 1, 2)6 = 2 ·(2, 1, 5, 3, 4)6.We

suspect that broader classification schemes touched upon in Remark 4 may help us

to better understand these connections. We leave this, as well as unresolved matters

mentioned above, to future efforts.
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