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Abstract

Given an arbitrary irreducible integral binary quadratic form, we show how to
construct, in parametric terms, arithmetic progressions of nine terms all of which
can be represented by the given binary quadratic form. For certain binary quadratic
forms, we can extend the length of the arithmetic progressions to 11 terms. As an
example, we construct infinitely many arithmetic progressions of length 11 which
can be represented by the binary quadratic form x2 + y2.

1. Introduction

This paper is concerned with constructing arithmetic progressions consisting of

integers that can all be represented by an integral binary quadratic form ax2 +

bxy+cy2, (a, b, c ∈ Z). It has been proved [1] that such a binary quadratic form can

represent an arithmetic progression of infinite length if and only if its discriminant

d = b2 − 4ac is a nonzero perfect square. We will therefore focus in this paper only

on those binary quadratic forms whose discriminant is not a perfect square, and so

the forms are irreducible.

In 1882 Weber [8] proved that the set of prime numbers represented by a prim-

itive irreducible positive-definite integral binary quadratic form, such as x2 + y2,

has positive relative density in the set of all primes. This theorem together with

the well-known Green-Tao theorem [6] implies that each such binary quadratic

form represents arithmetic progressions of arbitrary finite length, and therefore also

infinitely many such arithmetic progressions. As the length of an arithmetic pro-

gression represented by a binary quadratic form increases, the common difference

of the arithmetic progression tends to increase.

For arithmetic progressions with a given common difference, Dey and Thangadu-

rai [4] obtained an upper bound for the length of an arithmetic progression of in-

tegers that can be represented by an irreducible integral binary quadratic form.
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This upper bound for the length of an arithmetic progression, with a given common

difference, was improved significantly by Elsholtz and Frei [5].

There are a limited number of known examples of arithmetic progressions consist-

ing of integers that can be represented by an irreducible integral binary quadratic

form. For instance, it has been known for long that there exist infinitely many

arithmetic progressions consisting of three consecutive integers that can all be ex-

pressed by the binary quadratic form x2 + y2 [3]. Dey and Thangadurai [4] gave

a specific example to prove that every irreducible integral binary quadratic form

represents an arithmetic progression consisting of three terms. Recently, Choudhry

and Maji [2] obtained infinitely many arithmetic progressions of length five, with

common difference 4, such that all the five terms of the arithmetic progressions

can be represented by the quadratic form x2 + y2. A discussion on StackExchange

[7] gives a one-parameter solution of an arithmetic progression of five terms all of

which can be expressed as a sum of two squares. The same StackExchange web-

site mentions two explicit numerical examples, obtained by computer programs, of

arithmetic progressions of 16 and 27 terms which are all expressible as sums of two

squares. We, however, do not know any method of constructing long arithmetic

progressions of integers that can be represented by a given binary quadratic form.

In this paper we show how to construct, in parametric terms, arithmetic pro-

gressions of nine terms all of which can be represented by an arbitrary irreducible

integral binary quadratic form. We also show that, in certain cases, the 9-term

arithmetic progression can be extended to an arithmetic progression of 11 terms all

of which can be represented by the given binary quadratic form. As an example, we

obtain infinitely many arithmetic progressions of 11 terms that can be represented

by the quadratic form x2 + y2. The paper ends with some open problems regard-

ing the construction of arithmetic progressions that can be represented by a binary

quadratic form.

2. Some Preliminary Observations

If u1 and d are two coprime integers, and the arithmetic progression ui, i = 1, 2, . . .,

n, with common difference d, can be represented by the binary quadratic form

ϕ(x, y) = ax2 + bxy + cy2, then it is readily seen that for any positive integer

k, the arithmetic progression k2ui, i = 1, 2, . . . , n, can also be represented by the

quadratic form ϕ(x, y) = ax2 + bxy + cy2, and all such arithmetic progressions

obtained from the arithmetic progression ui, i = 1, 2, . . . , n, in this manner may

be considered equivalent with respect to the question of representation by binary

quadratic forms.

The terms of the arithmetic progression kui, i = 1, 2, . . . , n, where k is an integer

that is not a perfect square, cannot always be expressed by the binary quadratic
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form ϕ(x, y) = ax2 + bxy + cy2, and hence such an arithmetic progression cannot

be considered equivalent to the arithmetic progression ui, i = 1, 2, . . . , n.

We now prove a preliminary lemma concerning arithmetic progressions of rational

numbers whose terms are all expressible by a binary quadratic form ϕ(x, y) =

ax2 + bxy + cy2 using rational values of x and y.

Lemma 1. If there exists an arithmetic progression of rational numbers, ui, i =

1, 2, . . . , n, such that all the terms ui can be expressed by the integral binary quadratic

form ϕ(x, y) = ax2 + bxy + cy2 using rational values of the variables x and y, that

is, for each i, we have ϕ(xi, yi) = ui, i = 1, 2, . . . , n, where xi, yi are rational num-

bers, then, for a suitably chosen integer value of k, all the terms of the arithmetic

progression k2ui, i = 1, 2, . . . , n, are integers that can be represented by the form

ϕ(x, y) = ax2 + bxy + cy2 using integer values of the variables x and y.

Proof. Since ϕ(xi, yi) = ui, i = 1, 2, . . . , n, it follows that ϕ(kxi, kyi) = k2ui, i =

1, 2, . . . , n. Hence, taking k to be the least common multiple of the denominators of

all the numbers xi, yi, i = 1, 2, . . . , n, we obtain the arithmetic progression k2ui, i =

1, 2, . . . , n, all of whose terms can be represented by the form ϕ(x, y) = ax2+ bxy+

cy2 using integer values of the variables x and y, and naturally all the terms of the

arithmetic progression are integers.

3. Arithmetic Progressions of Nine Terms Represented by the Binary
Quadratic Form px2 + qy2

In this section we will explicitly construct a two-parameter arithmetic progression

of nine terms that can all be represented by an irreducible integral binary quadratic

form px2 + qy2, and then show that, in certain cases, it is possible to extend the

9-term arithmetic progression to 11 terms all of which can be represented by the

aforesaid quadratic form.

3.1. An Arithmetic Progression of Nine Terms

Theorem 1. If p and q are arbitrary integers such that the binary quadratic form

px2 + qy2 is irreducible, and we define two integers u1 and d in terms of p, q and

two arbitrary integer parameters g and h by

u1 = 4p5g10 − 47p4qg8h2 − 156p3q2g6h4 + 2052p2q3g4h6

+ 4833pq4g2h8 + 324q5h10,

d = 12pqg2h2(pg2 − 3qh2)(pg2 + 6qh2)(2pg2 + 3qh2),

(3.1)

all the nine terms of the arithmetic progression ui, i = 1, 2, . . . , 9, where ui = u1 +

(i− 1)d, can be represented by the binary quadratic form px2 + qy2.
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Proof. Let y1, y2, y3 be integers such that y21 , y
2
2 , y

2
3 are in arithmetic progression so

that

y21 − 2y22 + y23 = 0, (3.2)

and the common difference of the arithmetic progression is d = y22 − y21 .

We now construct three arithmetic progressions (u1, u2, u3), (u4, u5, u6) and (u7,

u8, u9) as follows:

(u1, u2, u3) = (px2
1 + qy21 , px

2
1 + qy22 , px

2
1 + qy23),

(u4, u5, u6) = (px2
2 + qy21 , px

2
2 + qy22 , px

2
2 + qy23),

(u7, u8, u9) = (px2
3 + qy21 , px

2
3 + qy22 , px

2
3 + qy23),

(3.3)

where x1, x2, x3 are arbitrary integers. The above three arithmetic progressions

have the same common difference d = q(y22 − y21), and all the terms of the three

arithmetic progressions are expressible by the quadratic form px2+ qy2. The terms

ui, i = 1, 2, . . . , 9, will constitute the terms of a single arithmetic progression of nine

terms if u4 = u1+3d and u7 = u1+6d. Thus we will obtain an arithmetic progression

of nine terms if we solve the following simultaneous diophantine equations:

px2
1 + 3q(y22 − y21) = px2

2, (3.4)

px2
1 + 6q(y22 − y21) = px2

3. (3.5)

As Equation (3.2) is an equation of degree 2 in three parameters, its solution is

readily obtained and may be written as follows:

y1 = h(m2 + 2m− 1), y2 = h(m2 + 1), y3 = h(m2 − 2m− 1), (3.6)

where h and m are arbitrary parameters.

Next, we eliminate y1 and y2 from Equations (3.4) and (3.5), and get

x2
1 − 2x2

2 + x2
3 = 0. (3.7)

Equation (3.7) is similar to Equation (3.2) and its solution may, accordingly, be

written as follows:

x1 = g(n2 + 2n− 1), x2 = g(n2 + 1), x3 = g(n2 − 2n− 1), (3.8)

where g and n are arbitrary parameters.

On substituting the values of xi and yi, i = 1, 2, given by (3.8) and (3.6), re-

spectively, in Equation (3.4), and transposing all terms to the left-hand side, we

get

12qm(m− 1)(m+ 1)h2 − 4pn(n− 1)(n+ 1)g2 = 0. (3.9)

To solve Equation (3.9), we write n = m + 1, and now Equation (3.9) can be

readily solved, and we get

m = (3h2q + 2g2p)/(3h2q − g2p). (3.10)
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Since n = m+ 1, we get

n = (6h2q + g2p)/(3h2q − g2p). (3.11)

Using the values of m and n given by (3.10) and (3.11), respectively, and the

relations (3.6) and (3.8), we get a solution of the simultaneous diophantine equations

(3.2), (3.4) and (3.5). As these three equations are homogeneous, we may write the

solution already obtained, after appropriate scaling, as follows:

x1 = −(2p2g4 − 12pqg2h2 − 63q2h4)g,

x2 = (2p2g4 + 6pqg2h2 + 45q2h4)g,

x3 = (2p2g4 + 24pqg2h2 − 9q2h4)g,

y1 = −(p2g4 − 24pqg2h2 − 18q2h4)h,

y2 = (5p2g4 + 6pqg2h2 + 18q2h4)h,

y3 = (7p2g4 + 12pqg2h2 − 18q2h4)h,

(3.12)

where g and h are arbitrary parameters.

We thus get an arithmetic progression of nine terms, whose first term u1 and

common difference d are given by the relations (3.1), such that all the nine terms of

this arithmetic progression are expressible by the binary quadratic form px2 + qy2.

The representations of the nine terms u1, u2, . . . , u9, by the form px2+qy2 are given

by the relations (3.3). This proves the theorem.

We note that even if p and q are rational numbers such that the form px2 + qy2

is irreducible, we can find arithmetic progressions of nine terms such that all the

nine terms are expressible as px2 + qy2, and by appropriate scaling, we can ensure

that x and y are integers.

3.2. Extension of the Nine-term Arithmetic Progression to 11 Terms

We will now describe a method by which the arithmetic progression of nine terms

obtained in Section 3.1 can sometimes be extended to an arithmetic progression of

11 terms that can all be represented by the given quadratic form.

With the arithmetic progression defined by (3.1), we first express d/q as a dif-

ference of two rational squares, Y 2
2 − Y 2

1 , and then try to ensure that the tenth

term of the arithmetic progression can be written as pX2 + qY 2
1 where X is some

rational number. If this condition is satisfied, the eleventh term of the arithmetic

progression may be written as pX2 + qY 2
1 + d = pX2 + qY 2

2 , and hence both the

tenth and the eleventh terms of the arithmetic progression are expressible by the

quadratic form px2 + qy2 albeit using rational numbers. On applying Lemma 1, we

can now get an arithmetic progression of 11 terms that can be represented by the

quadratic form px2 + qy2 using integer values of x and y.
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To choose Yi, i = 1, 2, suitably, we write

Y2 − Y1 = 4h(2pg2 + 3qh2)(pg2 − 3qh2)ξ,

Y2 + Y1 = 3pg2h(pg2 + 6qh2)/ξ,
(3.13)

where ξ is some nonzero rational number, so that Y 2
2 − Y 2

1 = d/q, and on solving

Equations (3.13), we get

Y1 = (3(pg2 + 6qh2)pg2h− 4(2pg2 + 3qh2)(pg2 − 3qh2)ξ2h)/(2ξ),

Y2 = (3(pg2 + 6qh2)pg2h+ 4(2pg2 + 3qh2)(pg2 − 3qh2)ξ2h)/(2ξ).
(3.14)

The condition that the tenth term of the arithmetic progression may be express-

ible as pX2+ qY 2
1 reduces, on writing X = η/(2pξ) and after suitable transposition

of terms, to

− 16(2pg2 + 3qh2)2(pg2 − 3qh2)2pqh2ξ4 + 4(4p5g10 + 181p4qg8h2

+ 870p3q2g6h4 − 1026p2q3g4h6 − 1323pq4g2h8 + 324q5h10)pξ2

− 9p5qg8h2 − 108p4q2g6h4 − 324p3q3g4h6 = η2. (3.15)

Equation (3.15) may be considered as a quartic curve in ξ and η defined over the

function field Q(g, h), and we have to perform trials to obtain a solution.

As a numerical example, we will apply the above method to obtain an arithmetic

progression of 11 terms with all the terms being expressible as sums of two squares,

that is, the arithmetic progression is representable by the quadratic form x2 + y2.

Taking (p, q) = (1, 1), and proceeding as in Section 3, we first obtain an arith-

metic progression of nine terms representable by the quadratic form x2+y2, and to

extend this arithmetic progression to 11 terms, we have to solve Equation (3.15).

With (p, q) = (1, 1), a solution of Equation (3.15), found by trial, is as follows:

(g, h, ξ, η) = (4, 1, 30/7, 121656/7). (3.16)

Taking (g, h) = (4, 1), and using the relations (3.1), we get an arithmetic progression

whose first term is 1078100, common difference is 1921920, and the first nine terms

of the arithmetic progression are all expressible as sums of two squares. Further,

according to the above method, the tenth and eleventh terms of our arithmetic

progression namely, 18375380 and 20297300, respectively, can be expressed as sums

of two squares of rational numbers as follows:

18375380 = (10138/5)2 + (18884/5)2, 20297300 = (10138/5)2 + (20116/5)2.

We found by direct computation that both 18375380 and 20297300 can, in

fact, be represented as sums of two squares of integers. Further, we note that

gcd(1078100, 1921920) = 20, and we can divide all the terms of our arithmetic



INTEGERS: 25 (2025) 7

progression by 4 and thus obtain a numerically smaller arithmetic progression be-

ginning with 269525 and having common difference 480480, and such that all the

11 terms of the smaller arithmetic progression can be represented as sums of two

squares of integers. We give below the representation, as sums of two squares, of

all the 11 terms of the smaller arithmetic progression beginning 269525:

269525 = 5142 + 732, 750005 = 5142 + 6972, 1230485 = 5142 + 9832,

1710965 = 13062 + 732, 2191445 = 13062 + 6972, 2671925 = 13062 + 9832,

3152405 = 17742 + 732, 3632885 = 17742 + 6972, 4113365 = 17742 + 9832,

4593845 = 1512 + 21382, 5074325 = 4102 + 22152.

We note that when (g, h) = (4, 1), Equation (3.15) represents a quartic model of

an elliptic curve defined by

−3312400ξ4 + 77345360ξ2 − 1115136 = η2, (3.17)

with one rational point on the curve (3.17) being (ξ, η) = (30/7, 121656/7). It has

been verified that the elliptic curve defined by the quartic equation (3.17) is of

rank 2, and there are infinitely many rational points on the curve (3.17). However,

since the first term and the common difference of the arithmetic progression are

determined by g and h only, the infinitely many rational solutions of the quartic

equation (3.17) do not yield distinct arithmetic progressions that may be represented

by the quadratic form x2 + y2.

To obtain more arithmetic progressions of length 11 that can be represented by

the quadratic form x2+y2, we may multiply each term of the arithmetic progression

of 11 terms obtained above by α2 + β2, where α and β are arbitrary integers such

that α2 + β2 is not a perfect square, and thus obtain a new arithmetic progression

of length 11 that can be represented by the quadratic form x2 + y2. Each term of

the new arithmetic progression is expressible as a sum of two squares in view of the

following composition of forms identity:

(α2 + β2)(m2 + n2) = (αm+ βn)2 + (αn− βm)2.

While all such arithmetic progressions are scalar multiples of the first arithmetic

progression of 11 terms, since α2 + β2 is not a perfect square, they should not be

considered equivalent to the first arithmetic progression. We thus obtain infinitely

many arithmetic progressions of 11 terms that can be represented by the quadratic

form x2 + y2.
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4. Arithmetic Progressions of Nine Terms Represented by the Binary
Quadratic Form ax2 + bxy + cy2

Theorem 2. Given an arbitrary irreducible integral binary quadratic form, it is

always possible to construct arithmetic progressions of nine terms such that all

the terms of these arithmetic progressions can be represented by the given binary

quadratic form.

Proof. Let ax2 + bxy + cy2 be an arbitrary irreducible integral binary quadratic

form so that the discriminant b2 − 4ac is not a perfect square. Since

ax2 + bxy + cy2 = a(x+ by/(2a))2 + (4ac− b2)y2/(4a),

on writing (p, q) = (a, (4ac− b2)/(4a)), and

x+ by/(2a) = X, y = Y, (4.1)

we get ax2 + bxy + cy2 = pX2 + qY 2. As in Section 3, we can obtain arithmetic

progressions of nine terms that can be represented by the form pX2+qY 2. Using the

relations (4.1), we may express all the nine terms of these arithmetic progressions

by the form ax2 + bxy + cy2 using rational values of x and y. It now follows from

Lemma 1 that we can obtain arithmetic progressions of nine terms that can all be

represented by the form ax2+bxy+cy2 using integer values of x and y. This proves

the theorem.

As an example, the form ϕ(x, y) = x2 + xy + y2, which may be written as

X2 + 3Y 2/4, where X = x + y/2, Y = y, represents an arithmetic progression

of nine terms, with the first term and the common difference of the arithmetic

progression being given by

1024g10 − 9024g8h2 − 22464g6h4 + 221616g4h6 + 391473g2h8 + 19683h10

and

72(2g + 3h)(2g − 3h)(8g2 + 9h2)(2g2 + 9h2)g2h2,

respectively, where g and h are arbitrary parameters.

We could not find suitable values of g and h to extend this arithmetic progression

to a longer one that can be represented by the form x2 + xy + y2.

As a numerical example, taking (g, h) = (2, 1), we get an arithmetic progression

of nine terms beginning with 2432167 and with common difference 1405152 such

that all the terms of the arithmetic progression may be represented by the form
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ϕ(x, y) as follows:

2432167 = ϕ(733, 1058), 3837319 = ϕ(397, 1730),

5242471 = ϕ(159, 2206), 6647623 = ϕ(1881, 1058),

8052775 = ϕ(1545, 1730), 9457927 = ϕ(1307, 2206),

10863079 = ϕ(2637, 1058), 12268231 = ϕ(2301, 1730),

13673383 = ϕ(2063, 2206).

5. An Open Problem

It would be of interest to devise a method that generates long sequences of arithmetic

progressions that can be represented by an arbitrary irreducible integral binary

quadratic form, or a specific quadratic form such as x2 + y2. It would be a more

challenging problem to find binary quadratic forms that can represent arithmetic

progressions whose common difference is small. For instance, it would be interesting

to find binary quadratic forms that can represent long sequences of consecutive

integers.
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