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Abstract

Positive integers with all digits equal are called repdigits. In this paper, we find all
balancing and Lucas-balancing numbers which can be expressed as the difference of
two repdigits. The method of proof involves the application of Baker’s theory for
linear forms in logarithms of algebraic numbers and the Baker–Davenport reduction
procedure.

1. Introduction

The balancing number sequence (Bn)n≥0 and the Lucas-balancing sequence (Cn)n≥0

are defined by the binary recurrences

Bn+1 = 6Bn −Bn−1, B0 = 0, B1 = 1

and

Cn+1 = 6Cn − Cn−1, C0 = 1, C1 = 3.

The Binet formulas for the sequences are given by
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Bn = αn−βn

4
√
2

and Cn = αn+βn

2 for n ≥ 1,

where (α, β) = (3+ 2
√
2, 3− 2

√
2) is the pair of roots of the characteristic equation

x2 − 6x− 1 = 0. This easily implies that the inequalities

αn−1 ≤ Bn < αn and αn < 2Cn < αn+1,

hold for all n ≥ 1.

A repdigit is a positive integer whose digits are all equal. Investigations of repdig-

its in second-order linear recurrence sequences have been of interest to mathemati-

cians. All balancing and Lucas-balancing numbers which are repdigits were found in

[12]. Rayaguru and Panda [14] identified all balancing and Lucas-balancing numbers

which can be expressed as the sums of two repdigits. Mohapatra et al. [10] investi-

gated the existence of repdigits as the difference of two balancing or Lucas-balancing

numbers. Erduvan et al. [8] found all Fibonacci and Lucas numbers which are the

difference of two repdigits. Edjeou and Faye [7] explored all Pell and Pell-Lucas

numbers which can be written as the difference of two repdigits. Recently, Duman

[6] obtained all Padovan numbers which are the difference of two repdigits. In this

paper, we explore all balancing and Lucas-balancing numbers which can be written

as the difference of two repdigits. For this purpose, we consider the following two

equations

Bk = d1

(
10n − 1

9

)
− d2

(
10m − 1

9

)
(1)

and

Ck = d1

(
10n − 1

9

)
− d2

(
10m − 1

9

)
, (2)

where k,m, n are positive integers with n ≥ 2 and d1, d2 ∈ {1, 2, . . . , 9} such that

Bk and Ck are positive integers.

2. Auxiliary Results

To solve the Diophantine equations involving repdigits and terms of binary recur-

rence sequences, many authors have used Baker’s theory to reduce lower bounds

concerning linear forms in logarithms of algebraic numbers. These lower bounds

play an important role in solving such Diophantine equations. We begin by recall-

ing some basic definitions and results from algebraic number theory.

Let λ be an algebraic number with minimal primitive polynomial

f(X) = a0(X − λ(1)) · · · (X − λ(k)) ∈ Z[X],

where a0 > 0 and λ(i)’s are conjugates of λ. Then
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h(λ) =
1

k

(
log a0 +

k∑
j=1

max{0, log |λ(j)|}
)

is called the logarithmic height of λ. If λ = a/b is a rational number with gcd(a, b) =

1 and b > 1, then h(λ) = log(max{|a|, b}).
We give some properties of the logarithmic height whose proofs can be found in

[2, Theorem B5]. Let γ and η be two algebraic numbers, then

(i) h(γ ± η) ≤ h(γ) + h(η) + log 2,

(ii) h(γη±1) ≤ h(γ) + h(η), and

(iii) h(γk) = |k|h(γ).

Now we give a theorem which is deduced from Corollary 2.3 of Matveev [9] and

provides a large upper bound for the subscript k in Equations (1) and (2) (see also

Theorem 9.4 in [3]).

Theorem 1 ([9]). Let γ1, . . . , γl be positive real algebraic numbers in an algebraic

number field L of degree dL and b1, . . . , bl be nonzero integers. If

Γ =

l∏
i=1

γbi
i − 1

is not zero, then

log |Γ| > −1.4 · 30l+3 · l4.5 · d2L(1 + log dL)(1 + logD)A1A2 · · ·Al,

where D ≥ max{|b1|, . . . , |bl|} and A1, . . . , Al are positive integers such that

Aj ≥ h′(γj) = max{dLh(γj), | log γj |, 0.16},

for j = 1, . . . , l.

Next, we introduce a lemma proved in [1], which is a modification of the lemma

given by Dujella and Pethő in [5]. It reduces the upper bound of the variable k in

Equations (1) and (2).

Lemma 1 ([1]). Let M be a positive integer and p/q be a convergent of the continued

fraction of the irrational number τ such that q > 6M . Let A,B, µ be some real

numbers with A > 0 and B > 1. Let ϵ := ∥µq∥ − M ∥τq∥, where ∥.∥ denotes the

distance from the nearest integer. If ϵ > 0, then there exists no solution to the

inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ϵ)

logB
.
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We also need the following lemmas in order to achieve the objectives of this

paper.

Lemma 2 ([4]). Let a, x ∈ R. If 0 < a < 1 and |x| < a, then

| log(1 + x)| < −| log(1− a)|
a

|x|

and

|x| < a

1− e−a
|ex − 1|.

Lemma 3 ([13]). The only balancing number which is the concatenation of two

repdigits is 35.

Lemma 4 ([11]). The only balancing numbers which are concatenation of three

repdigits are 204 and 1189.

Lemma 5 ([15]). The only Lucas-balancing numbers which are the concatenation

of two repdigits are 17 and 577.

Lemma 6 ([11]). The only Lucas-balancing number which is concatenation of three

repdigits is 3363.

3. Balancing Numbers as the Difference of Two Repdigits

In this section, we will show that 6 and 35 are the only balancing numbers which

can be expressed as the difference of two repdigits. Specifically, we will prove the

following theorem.

Theorem 2. If Bk is expressible as the difference of two repdigits, then Bk ∈
{6, 35}. In particular, B2 = 6 = 11− 5 and B3 = 35 = 44− 9.

Proof. Assume that Equation (1) holds. Let 1 ≤ k ≤ 25 and n ≥ 2. Using

Mathematica, one can obtain the solutions listed in Theorem 2. From now on,

assume that k > 25.

If n = m, it follows that d1 > d2, which implies that Bk is a repdigit. However,

the largest possible repdigit in Bk is 6 (see [12]), leading to a contradiction since

k > 25. Next, consider the case where n − m = 1. If d1 ≥ d2, we encounter

balancing numbers which are the concatenation of two repdigits. This is impossible

by Lemma 3. If d1 < d2, we obtain balancing numbers which are concatenation of

three repdigits, contradicting Lemma 4. Therefore, we conclude that n−m ≥ 2.

The inequality

αn

20
<

10n−1

2
< 10n−1 − 10m−1 <

d1(10
n − 1)

9
− d2(10

m − 1)

9
= Bk < αk
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implies that n < k + 2. On the other hand, Equation (1) can be rewritten as

αk − βk

4
√
2

=
d1(10

n − 1)

9
− d2(10

m − 1)

9

to obtain
9αk

4
√
2
− d110

n =
9βk

4
√
2
− d210

m − (d1 − d2). (3)

By taking the absolute value of both sides of Equation (3), we get∣∣∣∣ 9αk

4
√
2
− d110

n

∣∣∣∣ ≤ 9|β|k

4
√
2

+ d210
m + |d1 − d2|. (4)

Division of both sides of Equation (4) by d110
n results in∣∣∣∣9 · 10−n · αk

d1 · 4
√
2

− 1

∣∣∣∣ ≤ 9|β|k

d110n · 4
√
2
+

d210
m

d110n
+

|d1 − d2|
d110n

≤ 9|β|k

10n−m+1 · 4
√
2
+

9

10n−m
+

8

10n−m+1
,

which implies ∣∣∣∣9 · 10−n · αk

d1 · 4
√
2

− 1

∣∣∣∣ < 9.81

10n−m
. (5)

Put (γ1, γ2, γ3) = (α, 10, 9/(d1 · 4
√
2)) and (b1, b2, b3) = (k,−n, 1). Notably, γ1, γ2,

and γ3 are positive real numbers and elements of the field K = Q(
√
2). Conse-

quently, the degree of the field K is dL = 2. Define

Γ1 =
9 · 10−n · αk

d1 · 4
√
2

− 1.

If Γ1 = 0, then αk = 10nd1 · 4
√
2/9. By conjugating in Q(

√
2), we obtain βk =

−10nd1 · 4
√
2/9, which implies that Ck = (αk + βk)/2 = 0. This leads to a contra-

diction. Therefore, Γ1 ̸= 0.

By the properties of the absolute logarithmic height, the logarithmic heights of

γ1, γ2, and γ3 are calculated as h(γ1) = (logα)/2, h(γ2) = log 10, and

h(γ3) ≤ h(4d1
√
2) + h(9) < 6.2.

Accordingly, we set A1 = logα, A2 = 2 log 10, and A3 = 12.4. Since n < k + 2, we

take D = k + 2 ≥ max{n, k, 1}. Thus, using (5) and Theorem 1, we obtain

log

(
9.81

10n−m

)
> log |Γ1| > C · (1 + log 2)(1 + log(k + 2))(logα)(2 log 10)(12.4),
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where C = −1.4 · 306 · 34.5 · 22. Through a simple calculation, the above inequality

leads to

(m− n) log(α) < log(9.81) + 9.8 · 1013(1 + log(k + 2))

< 9.9 · 1013(1 + log(k + 2)).
(6)

Rearranging Equation (1) as

αk

4
√
2
− d110

n − d210
m

9
=

βk

4
√
2
− (d1 − d2)

9
(7)

and taking the absolute value of both sides of Equation (7), we get∣∣∣∣ αk

4
√
2
− d110

n − d210
m

9

∣∣∣∣ ≤ |βk|
4
√
2
+

|d1 − d2|
9

. (8)

Dividing both sides of Equation (8) by αk/4
√
2, we obtain∣∣∣∣1− (d1 − d210

m−n) · 10n · α−k · 4
√
2

9

∣∣∣∣ ≤ 1

α2k
+

8 · 4
√
2

9αk
<

6

αk
. (9)

Now, take

(γ1, γ2, γ3) =

(
10, α,

(d1 − d210
m−n) · 4

√
2

9

)
and (b1, b2, b3) = (n,−k, 1).

Note that γ1, γ2, and γ3 are positive real numbers and elements of the field K =

Q(
√
2). Thus, the degree of the field K is dL = 2. Let

Γ2 = 1− (d1 − d210
m−n) · 10n · α−k · 4

√
2

9
.

If Γ2 = 0, then α2k ∈ Q, which is false for k > 0. Therefore, Γ2 ̸= 0.

Using the properties of the absolute logarithmic height, we get

h(γ1) = log 10, h(γ2) = h(α) =
logα

2
,

and

h(γ3) = h

(
(d1 − d210

m−n) · 4
√
2

9

)
≤ h(9) + h(4

√
2) + h(d1) + h(d2) + (n−m) log 10 + log 2

< 9.02 + (n−m) log 10.

Thus, we can set A1 = 2 log 10, A2 = logα, and A3 = 18.04+2(n−m) log 10. Since

n < k + 2, we take D = k + 2 ≥ max{n, k, 1}. Taking into account Equation (9)

and Theorem 1, we arrive at

6 · α−k > |Γ2| > e(C·(1+log 2)(1+log(k+2))(logα)(2 log 10)(18.04+2(n−m) log 10)),



INTEGERS: 25 (2025) 7

where C = −1.4 · 306 · 34.5 · 22. A simple computation shows that

k logα− log 6 < 7.9 · 1012 · (1 + log(k + 2))(18.04 + 2(n−m) log 10). (10)

Using Equations (6) and (10), and a computer search with Mathematica, we find

k < 1.7 · 1028.
Now we reduce the upper bound on k by using the Baker–Davenport algorithm

given in Lemma 1. Define

Λ1 = k logα− n log 10 + log

(
9

d1 · 4
√
2

)
.

In view of Equation (5), we have

|x| = |eΛ1 − 1| < 9.81

10n−m
<

1

10
,

for n−m ≥ 2. Choosing a = 0.1 and using Lemma 2, we get the inequality

|Λ1| = | log(x+ 1)| < log(10/9)

1/10
· 9.81

10n−m
< (10.34) · 10m−n.

Consequently,

0 <

∣∣∣∣k logα− n log 10 + log

(
9

d1 · 4
√
2

)∣∣∣∣ < (10.34) · 10m−n.

Dividing this inequality by log 10, we obtain

0 <

∣∣∣∣k( logα

log 10

)
− n+

log

(
9

d1 · 4
√
2

)
log 10

∣∣∣∣ < (4.5) · 10m−n. (11)

We can take τ = logα/ log 10 /∈ Q and M = 1.7 · 1028. Then, we find that

q59 = 808643106803003389273254071835,

which is the denominator of the 59th convergent of τ , and is greater than 6M . Now,

let

µ =
log(9/(d1 · 4

√
2))

log 10
.

Considering the fact that 1 ≤ d1 ≤ 9, a quick computation with Mathematica gives

ϵ(µ) := ∥µq59∥ −M ∥τq59∥ = 0.03855.

Let A = 4.5, B = 10, and ω = n−m in Lemma 1. Using Mathematica, we conclude

that Equation (11) has no solution if

log(Aq59/ϵ(µ))

logB
< 31.97 < n−m.
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So, n − m ≤ 31. Substituting this upper bound for n − m in Equation (10), we

obtain k < 3.1 · 1015. Next, define

Λ2 = n log 10− k logα+ log

(
(d1 − d210

m−n) · 4
√
2

9

)
.

In view of Equation (9), we have

|x| = |eΛ2 − 1| < 6

αk
<

1

10
,

for k > 25. By choosing a = 0.1 and using Lemma 2, we obtain

|Λ2| = | log(x+ 1)| < log(10/9)

1/10
· 6

αk
< (6.33) · α−k,

from which, it follows that

0 <

∣∣∣∣n log 10− k logα+ log

(
(d1 − d210

m−n) · 4
√
2

9

)∣∣∣∣ < (6.33) · α−k. (12)

Dividing both sides of Equation (12) by logα, we obtain

0 <

∣∣∣∣n( log 10

logα

)
− k +

log

(
(d1 − d210

m−n) · 4
√
2

9

)
logα

∣∣∣∣ < (3.6) · α−k. (13)

Putting τ = log 10/ logα /∈ Q and taking M = 3.1 · 1015, we find that

q36 = 73257846218558279,

the denominator of the 36th convergent of τ , exceeds 6M . Now, let

µ =

log

(
(d1 − d210

m−n) · 4
√
2

9

)
logα

.

In this case, considering the fact that 1 ≤ d1, d2 ≤ 9 and 2 ≤ n−m ≤ 31, a quick

computation gives

ϵ(µ) := ∥µq36∥ −M ∥τq36∥ = 0.327562.

Let A = 3.6, B = α, and ω = k in Lemma 1. Using Mathematica, we conclude

that Equation (13) has no solution if

log(Aq36/ϵ(µ))

logB
< 23.38 < k.

This implies k ≤ 23, which contradicts the assumption that k > 25. This completes

the proof. 2
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4. Lucas-balancing Numbers as the Difference of Two Repdigits

In this section, we will show that 3 and 17 are the only Lucas-balancing numbers

which can be expressed as the difference of two repdigits. Specifically, we will prove

the following theorem.

Theorem 3. If Ck is expressible as the difference of two repdigits, then Ck ∈
{3, 17}. In particular, C2 = 3 = 11− 8 and C3 = 17 = 22− 5.

Proof. The proof bears similarities to that of Theorem 2. At times, we may leave

out some details.

Assume that Equation (2) holds. Let 1 ≤ k ≤ 25 and n ≥ 2. UsingMathematica,

one can verify the solutions provided in Theorem 3. So, from now on, assume that

k > 25.

If n = m, it follows that d1 > d2, implying that Ck is a repdigit. However, the

largest repdigit in Ck is 99 [12], which contradicts the assumption that k > 25.

If n − m = 1 and d1 ≥ d2, we encounter Lucas-balancing numbers which are the

concatenation of two repdigits. This is impossible by Lemma 5. If n −m = 1 and

d1 < d2, then we have Lucas-balancing numbers which are concatenation of three

repdigits, which is not feasible according to Lemma 6. Consequently, we can assume

that n−m ≥ 2.

The inequality

αn

20
<

10n−1

2
< 10n−1 − 10m−1 <

d1(10
n − 1)

9
− d2(10

m − 1)

9
= Ck < αk+1

implies that n < k+3. By applying the Binet formula for Lucas-balancing numbers,

we can rearrange Equation (2) into two distinct equations as

9αk

2
− d110

n = −9βk

2
− d210

m − (d1 − d2)

and
αk

2
− d110

n − d210
m

9
= −βk

2
− (d1 − d2)

9
.

Using the same steps as in the proof of Theorem 2, we deduce that k < 2.4 · 1028.
This upper bound on k can be further reduced using the Baker–Davenport algorithm

given in Lemma 1, whose procedure is comparable to that of Theorem 2.

Continuing in this manner, we arrive at k ≤ 23, which contradicts our initial

assumption that k > 25. This ends the proof. 2
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