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Abstract

We prove many new identities associated with Ramanujan’s continued fraction of
order sixteen and the Ramanujan-Göllnitz-Gordon continued fraction. We further
establish several new Eisenstein series identities associated with Ramanujan’s con-
tinued fraction of order sixteen.

1. Introduction

Throughout this paper, we assume that |q| < 1 and use the standard product

notation

(a; q)0 := 1, (a; q)n :=

n−1∏
j=0

(1− aqj), and (a; q)∞ :=

∞∏
n=0

(1− aqn).

For convenience, we sometimes use the multiple q-shifted factorial notation, which

is defined as

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞.

The famous Rogers-Ramanujan continued fraction R(q) was studied by Ramanu-
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jan and Rogers [24]:

R(q) := q1/5
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

=
q

1
5

1 +

q

1 +

q2

1 +

q3

1 + . . . .

Ramanujan made some significant contributions to the theory of the Rogers-

Ramanujan continued fraction expansion in his notebooks [23, Vol. II, Chapter

16, Section 15] and “Lost Notebook” [24]. Motivated by Ramanujan’s work, Liu

[18] and Chan, Chan, and Liu [11] established many new identities associated with

the Rogers-Ramanujan continued fraction R(q). Further, they proved new Eisen-

stein series identities which involve R(q). Recently, Cao et al. [7] established a

Rogers-Ramanujan-Slater type theta function identity.

The beautiful Ramanujan’s cubic continued fraction X1(q) was first introduced

by Ramanujan in his second letter to Hardy [23, p. xxvii], and is defined by

X1(q) := q1/3
(q, q5; q6)∞
(q3, q3; q6)∞

=
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 + . . . .

Ramanujan’s cubic continued fraction has several properties that are analogous to

those of the Rogers-Ramanujan continued fraction. Adiga et al. [2], Bhargava et

al. [6], Chan [9], and Cooper [14] established numerous elegant theorems for X1(q),

many of which are analogues of well known properties satisfied by the Rogers-

Ramanujan continued fraction.

In [29], Vasuki et al. studied the following continued fraction of order six:

X2(q) := q1/4
(q, q5; q6)∞
(q2, q4; q6)∞

=
q−1/4(1− q2)

(1− q3/2) +

(1− q1/2)(1− q7/2)

q1/2(1− q3/2)(1 + q3) + . . . .

The continued fraction X2(q) is a special case of an interesting continued fraction

identity recorded by Ramanujan in his second notebook [24], [1, p. 24]. Further-

more, they established modular relations between the continued fractions X2(q) and

X2(q
n) for n = 2, 3, 5, 7, and 11. Motivated by these, Adiga et al. [5] established

two new identities associated with X1(q) and X2(q) using the quintuple product

identity. Also, they derived Eisenstein series identities associated with X1(q) and

X2(q).

The celebrated Ramanujan-Göllnitz-Gordon continued fraction [24] is defined by

G(q) := q
1
2
(q, q7; q8)∞
(q3, q5; q8)∞

=
q1/2

1 + q +

q2

1 + q3 +

q4

1 + q5 + . . . .

The theory of the Ramanujan-Göllnitz-Gordon continued fraction has been further

developed by various mathematicians including Chan and Huang [10], Cooper [14],

and Vasuki and Srivatsa Kumar [30]. Chamaraju [8], in his thesis, established

new identities associated with G(q) and derived a new Eisenstein series identity
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involving G(q). In [12], Chaudhary and Choi established certain identities asso-

ciated with Eisenstein series, the Ramanujan-Göllnitz-Gordon continued fraction,

and combinatorial partition identities. Recently, Chaudhary [13] established some

Rogers-Ramanujan type identities.

In [19], Naika et al. established the following continued fraction of order 12:

U(q) :=
q (q, q11; q12)∞
(q5, q7; q12)∞

=
q(1− q)

(1− q3) +

q3(1− q2)(1− q4)

(1− q3)(1 + q6) + . . .
.

The continued fraction U(q) is a special case of a fascinating continued fraction

identity recorded by Ramanujan in his second notebook [24]. The above continued

fraction was studied by Naika et al. [19], Vasuki et al. [31], Dharmendra et al.

[15], and Adiga et al. [4]. Recently, Adiga et al. [3] established two new identities

associated with U(q) of order 12, using two elementary trigonometric sums and

the Jacobi theta function θ1. They also derived several Eisenstein series identities

involving U(q). In [25], Shpot et al. established the integrals of products of Hurwitz

zeta functions and the Casimir effect in φ4 field theories.

Surekha [27] and Vanitha [28] studied two continued fractions I1(q) and I2(q) of

order sixteen, which are defined as follows:

I1(q) :=
q1/2(q3, q13; q16)∞
(q5, q11; q16)∞

=
q1/2(1− q3)

(1− q4) +

q4(1− q)(1− q7)

(1− q4)(1 + q8) + . . . , (1)

and

I2(q) :=
q3/2(q, q15; q16)∞
(q7, q9; q16)∞

=
q3/2(1− q)

(1− q4) +

q4(1− q3)(1− q5)

(1− q4)(1 + q8) + . . . . (2)

The continued fractions I1(q) and I2(q), are a special case of a fascinating continued

fraction identity recorded by Ramanujan in his second notebook [24].

Surekha [27] derived modular relations for I1(q) and I2(q) and also proved the

2-, 4-, 8-, and 16-dissections for the continued fraction I1(q) of order sixteen and its

reciprocal. Vanitha [28] established the 2-, 4-, 8-, and 16-dissections of a continued

fraction I2(q) of order sixteen and its reciprocal. Also, Vanitha gave combinatorial

interpretations for the coefficients in the power series expansion of a continued

fraction I2(q) and its reciprocal. Park [21] studied the continued fractions I1(q)

and I2(q) by using the theory of modular functions. He proved the modularities

of I1(q) and I2(q). Further, he proved that the values of 2(I1(q)
2 + 1/I1(q)

2) and

2(I2(q)
2+1/I2(q)

2) are algebraic integers for a certain imaginary quadratic quantity

q. Recently, Rajkhowa and Saikia [22] established theta function identities, explicit

values, partition-theoretic results and some matching coefficients of the continued

fractions I1(q) and I2(q).

In this paper, we study the following. In Section 3, we derive several new iden-

tities associated with Ramanujan’s continued fractions I1(q) and I2(q) of order
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sixteen, and the Ramanujan-Göllnitz-Gordon continued fraction G(q), using the

Jacobi theta function θ1. In Section 4, we establish two new identities associated

with I1(q) and I2(q) by using Ramanujan’s 1Ψ1 summation formula. Finally, in Sec-

tion 5, we establish several Eisenstein series identities associated with Ramanujan’s

continued fractions I1(q) and I2(q) of order sixteen.

2. Definitions and Preliminary Results

In this section, we present some basic definitions and preliminary results on

Ramanujan’s theta functions. Ramanujan’s general theta function is

f(a, b) =

∞∑
n=−∞

an(n+1)/2 bn(n−1)/2, |ab| < 1. (3)

Then it is easy to verify that

f(a, b) = f(b, a), f(1, a) = 2f(a, a3), f(−1, a) = 0.

The Jacobi triple product identity states, for z ̸= 0, that

∞∑
n=−∞

(−1)nq
n(n−1)

2 zn = (q; q)∞ (z; q)∞ (q/z; q)∞.

In Ramanujan’s notation, the Jacobi triple product identity takes the shape

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

In [26], Srivastava et al. derived some theta function identities related to the Jacobi

triple product identity. If n is an integer,

f(a, b) = an(n+1)/2 bn(n−1)/2 f(a(ab)n, b(ab)−n). (4)

The most interesting special cases of f(a, b) are [1, Entry 22]

ψ(q) := f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (5)

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞. (6)
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Note that η(τ) = q1/24f(−q) where q = e2πiτ , Imτ > 0, and η(τ) is the Dedekind-

eta function. Also, Ramanujan, define

χ(q) := (−q; q2)∞. (7)

For convenience, we define, for a positive integer n,

fn := f(−qn) = (qn; qn)∞.

The following lemma is a consequence of the product representations of Identities

(5)-(7).

Lemma 1. We have

ψ(q) =
f22
f1
, f(q) =

f32
f1f4

, χ(q) =
f22
f1f4

, and χ(−q) = f1
f2
.

Lemma 2 ([1, Entry 30 (i -iii)]). We have

f(a, ab2)f(b, a2b) = f(a, b)ψ(ab), (8)

f(a, b) + f(−a,−b) = 2f(a3b, ab3), (9)

and

f(a, b)− f(−a,−b) = 2af

(
b

a
, a5b3

)
. (10)

3. Main Results

The Jacobi theta function, θ1, is defined as

θ1(z|τ) = 2

∞∑
n=0

(−1)nq
(2n+1)2

8 sin(2n+ 1)z

= 2q
1
8

∞∑
n=0

(−1)nq
n(n+1)

2 sin(2n+ 1)z. (11)

In [11], Chan et al. showed that

2

∞∑
n=0

(−1)nq
n(n+1)

2 sin(2n+ 1)z =

∞∑
n=−∞

(−1)nq
n(n+1)

2 sin(2n+ 1)z

= 2(sin z)(q; q)∞(qe2iz; q)∞(qe−2iz; q)∞. (12)
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Combining Identities (11) and (12) together, we find the infinite product represen-

tation of θ1:

θ1(z|τ) = 2q
1
8 (sin z)(q; q)∞(qe2iz; q)∞(qe−2iz; q)∞

= iq
1
8 e−iz(q; q)∞(e2iz; q)∞(qe−2iz; q)∞. (13)

Putting z = π
16 , z = 2π

16 , z = 3π
16 , z = 4π

16 , z = 5π
16 , z = 6π

16 , and z = 7π
16 , respectively,

in Identity (13), we obtain

θ1

( π
16

|τ
)
= 2q

1
8

(
sin

π

16

)
(q; q)∞(qe

2πi
16 ; q)∞(qe

−2πi
16 ; q)∞, (14)

θ1

(
2π

16
|τ
)

= 2q
1
8

(
sin

2π

16

)
(q; q)∞(qe

4πi
16 ; q)∞(qe

−4πi
16 ; q)∞, (15)

θ1

(
3π

16
|τ
)

= 2q
1
8

(
sin

3π

16

)
(q; q)∞(qe

6πi
16 ; q)∞(qe

−6πi
16 ; q)∞, (16)

θ1

(
4π

16
|τ
)

= 2q
1
8

(
sin

4π

16

)
(q; q)∞(qe

8πi
16 ; q)∞(qe

−8πi
16 ; q)∞, (17)

θ1

(
5π

16
|τ
)

= 2q
1
8

(
sin

5π

16

)
(q; q)∞(qe

10πi
16 ; q)∞(qe

−10πi
16 ; q)∞, (18)

θ1

(
6π

16
|τ
)

= 2q
1
8

(
sin

6π

16

)
(q; q)∞(qe

12πi
16 ; q)∞(qe

−12πi
16 ; q)∞, (19)

and

θ1

(
7π

16
|τ
)

= 2q
1
8

(
sin

7π

16

)
(q; q)∞(qe

14πi
16 ; q)∞(qe

−14πi
16 ; q)∞. (20)

Multiplying Identities (14)-(20) together, and using the identities

sin
π

16
sin

2π

16
sin

3π

16
sin

4π

16
sin

5π

16
sin

6π

16
sin

7π

16
=

√
2

64
, (21)

and

(1− x)(1− xe
2πi
16 )(1− xe

−2πi
16 )(1− xe

4πi
16 )(1− xe

−4πi
16 )(1− xe

6πi
16 )(1− xe

−6πi
16 )

× (1− xe
8πi
16 )(1− xe

−8πi
16 )(1− xe

10πi
16 )(1− xe

−10πi
16 )(1− xe

12πi
16 )(1− xe

−12πi
16 )

× (1− xe
14πi
16 )(1− xe

−14πi
16 )(1− xe

16πi
16 ) = (1− x16),
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in the resulting equation, then after some simplifications, we obtain the following

identity:

θ1

( π
16

|τ
)
θ1

(
2π

16
|τ
)
θ1

(
3π

16
|τ
)
θ1

(
4π

16
|τ
)
θ1

(
5π

16
|τ
)
θ1

(
6π

16
|τ
)
θ1

(
7π

16
|τ
)

=
2
√
2 η7(τ)η(16τ)

η(2τ)
. (22)

Taking

α = −2 cos
2π

16
= −

√
2 +

√
2, β = −2 cos

4π

16
= −

√
2,

γ = −2 cos
6π

16
= −

√
2−

√
2, δ = −2 cos

8π

16
= 0,

ε = −2 cos
10π

16
=

√
2−

√
2, λ = −2 cos

12π

16
=

√
2,

µ = −2 cos
14π

16
=

√
2 +

√
2,

and using η(τ) = q1/24f(−q), we may rewrite Identities (14)-(20) as follows:

P1(q) :=

∞∏
n=1

(1 + αqn + q2n) = q
−1
12

θ1
(

π
16 |τ

)
η(τ)2

(
sin π

16

) , (23)

P2(q) :=

∞∏
n=1

(1 + βqn + q2n) = q
−1
12

θ1
(
2π
16 |τ

)
η(τ)2

(
sin 2π

16

) , (24)

P3(q) :=

∞∏
n=1

(1 + γqn + q2n) = q
−1
12

θ1
(
3π
16 |τ

)
η(τ)2

(
sin 3π

16

) , (25)

P4(q) :=

∞∏
n=1

(1 + δqn + q2n) = q
−1
12

θ1
(
4π
16 |τ

)
η(τ)2

(
sin 4π

16

) , (26)

P5(q) :=

∞∏
n=1

(1 + εqn + q2n) = q
−1
12

θ1
(
5π
16 |τ

)
η(τ)2

(
sin 5π

16

) , (27)

P6(q) :=

∞∏
n=1

(1 + λqn + q2n) = q
−1
12

θ1
(
6π
16 |τ

)
η(τ)2

(
sin 6π

16

) , (28)
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and

P7(q) :=

∞∏
n=1

(1 + µqn + q2n) = q
−1
12

θ1
(
7π
16 |τ

)
η(τ)2

(
sin 7π

16

) . (29)

Multiplying Identities (23)-(29) together, and then using Identity (21) and Identity

(22) in the resulting identity, we find that

P1(q)P2(q)P3(q)P4(q)P5(q)P6(q)P7(q) = q
−7
12
η(16τ)

η(2τ)
. (30)

We are now ready to prove the main results.

Theorem 1. Let Pi(q), where 1 ≤ i ≤ 7, be defined as in (23)-(29) where α =

−
√

2 +
√
2, β = −

√
2, γ = −

√
2−

√
2, ε =

√
2−

√
2, λ =

√
2, µ =

√
2 +

√
2, and

G∗(q) =
√
G(q). Then, we have

P1(q
1
4 )

7∏
i=1,i̸=4

Pi(q
1
4 )− P7(q

1
4 )

7∏
i=1,i̸=4

Pi(q
1
4 )

=
2
√
2 η∗(τ)√
2−

√
2

[√
I1(q)

G∗(q)
− 1√

I1(q)G∗(q)
−
√

2 I2(q)G∗(q)

]
, (31)

P3(q
1
4 )

7∏
i=1,i̸=4

Pi(q
1
4 )− P5(q

1
4 )

7∏
i=1,i̸=4

Pi(q
1
4 )

=
2
√
2 η∗(τ)√
2 +

√
2

[√
I1(q)

G∗(q)
− 1√

I1(q)G∗(q)
+
√

2 I2(q)G∗(q)

]
, (32)

(1 + µ) P7(q
1
4 )

7∏
i=1,i̸=4

Pi(q
1
4 ) + (1 + α) P1(q

1
4 )

7∏
i=1,i̸=4

Pi(q
1
4 )

= 2η∗(τ)

[(√
G∗(q)

I2(q)
−
√
I1(q)G∗(q)

)

+ (1 +
√
2)

(√
G∗(q)

I1(q)
+
√
I2(q)G∗(q)

)]
, (33)
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µ P7(q
1
4 )

7∏
i=1,i̸=4

Pi(q
1
4 )− α P1(q

1
4 )

7∏
i=1,i̸=4

Pi(q
1
4 )

=
2
√
2 η∗(τ)√
2−

√
2

[(√
G∗(q)

I2(q)
− 1√

I1(q)G∗(q)

)

+ (1 +
√
2)

(√
I1(q)

G∗(q)
−
√
I2(q)G∗(q)

)]
, (34)

and

ε P3(q
1
4 )

7∏
i=1,i̸=4

Pi(q
1
4 )− γ P5(q

1
4 )

7∏
i=1,i̸=4

Pi(q
1
4 )

=
2
√
2 η∗(τ)√
2 +

√
2

[(√
G∗(q)

I2(q)
− 1√

I1(q)G∗(q)

)

+ (1−
√
2)

(√
I1(q)

G∗(q)
−
√
I2(q)G∗(q)

)]
, (35)

where

η∗(τ) = q
−7
48
η(4τ)η(16τ)

η(τ/4)η(τ)
4

√
η(τ)

η(2τ)
.

Proof. Subtracting Identity (29) from Identity (23), we obtain

P1(q)− P7(q) :=

∞∏
n=1

(1 + αqn + q2n)−
∞∏

n=1

(1 + µqn + q2n)

=
q

−1
12

η(τ)

(
θ1
(

π
16 |τ

)
2 sin π

16

−
θ1
(
7π
16 |τ

)
2 sin 7π

16

)
. (36)

Using Identity (11), the right-hand side of Identity (36) can be written as

q
−1
12

η(τ)

∞∑
n=0

(−1)nA(n)q
(2n+1)2

8 , (37)

where

A(n) =
sin(2n+ 1) π

16

sin π
16

−
sin(2n+ 1) 7π16

sin 7π
16

.
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Now, by using maple computations, we find that

A(16m+ 0) = 0, A(16m+ 8) =0,

A(16m+ 1) =
2
√
2√

2−
√
2
, A(16m+ 9) =− 2

√
2√

2−
√
2
,

A(16m+ 2) =
2
√
2√

2−
√
2
, A(16m+ 10) =− 2

√
2√

2−
√
2
,

A(16m+ 3) =
4√

2−
√
2
, A(16m+ 11) =− 4√

2−
√
2
,

A(16m+ 4) =
4√

2−
√
2
, A(16m+ 12) =− 4√

2−
√
2
,

A(16m+ 5) =
2
√
2√

2−
√
2
, A(16m+ 13) =− 2

√
2√

2−
√
2
,

A(16m+ 6) =
2
√
2√

2−
√
2
, A(16m+ 14) = − 2

√
2√

2−
√
2
, A(16m+ 7) = 0,

A(16m+ 15) = 0.

Therefore,

∞∑
n=0

(−1)nA(n)q
(2n+1)2

8 =
2
√
2√

2−
√
2

{
−

∞∑
m=0

q
(32m+3)2

8 +

∞∑
m=0

q
(32m+5)2

8

−
√
2

∞∑
m=0

q
(32m+7)2

8 +
√
2

∞∑
m=0

q
(32m+9)2

8 −
∞∑

m=0

q
(32m+11)2

8

+

∞∑
m=0

q
(32m+13)2

8 +

∞∑
m=0

q
(32m+19)2

8 −
∞∑

m=0

q
(32m+21)2

8 +
√
2

∞∑
m=0

q
(32m+23)2

8

−
√
2

∞∑
m=0

q
(32m+25)2

8 +

∞∑
m=0

q
(32m+27)2

8 −
∞∑

m=0

q
(32m+29)2

8

}
.

In the right-hand side of the above equation, changing m to m − 1 in the first six

summations and also changing m to −m in the last six summations, we obtain

∞∑
n=0

(−1)nA(n)q
(2n+1)2

8 =
2
√
2√

2−
√
2

{ ∞∑
m=−∞

q
(32m−19)2

8 −
∞∑

m=−∞
q

(32m−21)2

8

+
√
2

∞∑
m=−∞

q
(32m−23)2

8 −
√
2

∞∑
m=−∞

q
(32m−25)2

8 +

∞∑
m=−∞

q
(32m−27)2

8 −
∞∑

m=−∞
q

(32m−29)2

8

}
.
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Now, using Identities (3) and (4) in the right-hand side of the above equation, we

find that

∞∑
n=0

(−1)nA(n)q
(2n+1)2

8 =
2
√
2 q

9
8√

2−
√
2

{
−[f(q104, q152)− q20f(q24, q232)]

+q2[f(q88, q168)− q12f(q40, q216)]−
√
2q5[f(q72, q184)− q4f(q56, q200)]

}
. (38)

Subtracting Identity (10) from Identity (9), we deduce

f(−a,−b) = f(a3b, ab3)− af

(
b

a
, a5b3

)
. (39)

Putting {a = q20, b = q44}, {a = q12, b = q52}, and {a = q4, b = q60} in the above

equation, we obtain

f(−q20,−q44) = f(q104, q152)− q20f(q24, q232), (40)

f(−q12,−q52) = f(q88, q168)− q12f(q40, q216), (41)

f(−q4,−q60) = f(q72, q184)− q4f(q56, q200). (42)

Employing Identities (40)-(42) in Identity (38), we obtain

∞∑
n=0

(−1)nA(n)q
(2n+1)2

8 =
2
√
2 q

9
8√

2−
√
2

{
−f(−q20,−q44) + q2f(−q12,−q52)

−
√
2q5f(−q4,−q60)

}
. (43)

Combining Identities (36), (37), and (43), we find that

P1(q)− P7(q) =
2
√
2 q

25
24

(
√

2−
√
2)η(τ)

×
{
−f(−q20,−q44) + q2f(−q12,−q52)−

√
2q5f(−q4,−q60)

}
. (44)

Multiplying both sides of Identity (44) by Identity (30), we deduce

P 2
1 (q)P2(q)P3(q)P4(q)P5(q)P6(q)P7(q)− P1(q)P2(q)P3(q)P4(q)P5(q)P6(q)P

2
7 (q)

=
2
√
2 q

25
24 η(16τ)√

2−
√
2 η(τ)η(2τ)

{
−f(−q20,−q44) + q2f(−q12,−q52)

−
√
2q5f(−q4,−q60)

}
.

Now, using δ = 0 in the left-hand side of the above equation and using the fact

that (−q2; q2)∞ = q−
2
24
η(4τ)

η(2τ)
, then, after some simplification and changing q to
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q1/4 throughout, we get Identity (31). The proof of Identity (32) is identical to the

proof of Identity (31), so we omit it.

From Identities (23) and (29), we obtain

(1 + µ)P7(q) + (1 + α)P1(q)

= (1 + µ)

∞∏
n=1

(1 + µqn + q2n) + (1 + α)

∞∏
n=1

(1 + αqn + q2n)

=
q

−1
12

η(τ)

[
(1 + µ) θ1

(
7π
16 |τ

)
2 sin 7π

16

+
(1 + α) θ1

(
π
16 |τ

)
2 sin π

16

]
. (45)

Using Identity (11), the right-hand side of Identity (45), can be written as

q
−1
12

η(τ)

∞∑
n=0

(−1)nB(n)q
(2n+1)2

8 , (46)

where

B(n) =
(1 + µ) sin(2n+ 1) 7π16

sin 7π
16

+
(1 + α) sin(2n+ 1) π

16

sin π
16

.

Now, by using Maple computations, we find that

B(16m+ 0) = 2, B(16m+ 8) =− 2,

B(16m+ 1) = − 2√
2− 1

, B(16m+ 9) =
2√
2− 1

,

B(16m+ 2) = −2, B(16m+ 10) =2,

B(16m+ 3) = − 2√
2− 1

, B(16m+ 11) =
2√
2− 1

,

B(16m+ 4) = − 2√
2− 1

, B(16m+ 12) =
2√
2− 1

,

B(16m+ 5) = −2, B(16m+ 13) =2,

B(16m+ 6) = − 2√
2− 1

, B(16m+ 14) =
2√
2− 1

,

B(16m+ 7) = 2, B(16m+ 15) =− 2.
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Therefore,

∞∑
n=0

(−1)nB(n)q
(2n+1)2

8 = 2

{ ∞∑
m=0

q
(32m+1)2

8 +
1√
2− 1

∞∑
m=0

q
(32m+3)2

8

−
∞∑

m=0

q
(32m+5)2

8 +
1√
2− 1

∞∑
m=0

q
(32m+7)2

8 − 1√
2− 1

∞∑
m=0

q
(32m+9)2

8

+

∞∑
m=0

q
(32m+11)2

8 − 1√
2− 1

∞∑
m=0

q
(32m+13)2

8 −
∞∑

m=0

q
(32m+15)2

8

−
∞∑

m=0

q
(32m+17)2

8 − 1√
2− 1

∞∑
m=0

q
(32m+19)2

8 +

∞∑
m=0

q
(32m+21)2

8

− 1√
2− 1

∞∑
m=0

q
(32m+23)2

8 +
1√
2− 1

∞∑
m=0

q
(32m+25)2

8 −
∞∑

m=0

q
(32m+27)2

8

+
1√
2− 1

∞∑
m=0

q
(32m+29)2

8 +

∞∑
m=0

q
(32m+31)2

8

}
.

In the right-hand side of the above, changing m to m− 1 in the first eight summa-

tions and also changing m to −m in last eight summations, we obtain

∞∑
n=0

(−1)nB(n)q
(2n+1)2

8 = 2

{
−

∞∑
m=−∞

q
(32m−17)2

8 − 1√
2− 1

∞∑
m=−∞

q
(32m−19)2

8

+

∞∑
m=−∞

q
(32m−21)2

8 − 1√
2− 1

∞∑
m=−∞

q
(32m−23)2

8 +
1√
2− 1

∞∑
m=−∞

q
(32m−25)2

8

−
∞∑

m=−∞
q

(32m−27)2

8 +
1√
2− 1

∞∑
m=−∞

q
(32m−29)2

8 +

∞∑
m=−∞

q
(32m−31)2

8

}
.

Using Identities (3) and (4), in the right-hand side of the above equation, we find

that

∞∑
n=0

(−1)nB(n)q
(2n+1)2

8 = 2q
1
8 [f(q120, q136)− q28f(q8, q248)]

+
2√
2− 1

q
9
8 [f(q104, q152)− q20f(q24, q232)]− 2q

25
8 [f(q88, q168)− q12f(q40, q216)]

+
2√
2− 1

q
49
8 [f(q72, q184)− q4f(q56, q200)]. (47)
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Using Identity (39), with setting {a = q28, b = q36}, {a = q20, b = q44}, {a =

q12, b = q52}, and {a = q4, b = q60}, respectively, we obtain

f(−q28,−q36) = f(q120, q136)− q28f(q8, q248), (48)

f(−q20,−q44) = f(q104, q152)− q20f(q24, q232), (49)

f(−q12,−q52) = f(q88, q168)− q12f(q40, q216), (50)

f(−q4,−q60) = f(q72, q184)− q4f(q56, q200). (51)

Employing Identities (48)-(51) in Identity (47), we obtain

∞∑
n=0

(−1)nB(n)q
(2n+1)2

8 =2q
1
8

{
f(−q28,−q36)− q3f(−q12,−q52)

+ q(
√
2 + 1)[f(−q20,−q44) + q5f(−q4,−q60)]

}
. (52)

Combining Identities (45), (46), and (52), we find that

(1 + µ) P7(q)+(1 + α) P1(q) = 2
q

1
24

η(τ)

{
f(−q28,−q36)− q3f(−q12,−q52)

+ (
√
2 + 1)[qf(−q20,−q44) + q6f(−q4,−q60)]

}
. (53)

Multiplying both sides of Identity (53) by Identity (30), we obtain

{(1 + µ)P1(q)P2(q)P3(q)P4(q)P5(q)P6(q)P
2
7 (q)}

+ {(1 + α)P 2
1 (q)P2(q)P3(q)P4(q)P5(q)P6(q)P7(q)}

= 2
q

1
24

η(τ)

{
f(−q28,−q36)− q3f(−q12,−q52)

+ (
√
2 + 1)[qf(−q20,−q44) + q6f(−q4,−q60)]

}
.

Now, using δ = 0 in the left-hand side of the above equation and using the fact that

(−q2; q2)∞ = q
−2
24
η(4τ)

η(2τ)
, changing q to q1/4 throughout, we obtain Identity (33).

Proofs of Identities (34) and (35) are identical to the proof of Identity (33), so we

omit them here.

4. New Identities Associated with I1(q) and I2(q)

In this section, we establish the following two new identities associated with I1(q)

and I2(q) by using Ramanujan’s 1Ψ1 summation formula.
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Theorem 2. Let |q| < 1. Then, we have the identities

∞∑
n=1

n≡1 (mod 2)

q3n + q5n

1− q16n
−

∞∑
n=1

n≡1 (mod 2)

q11n + q13n

1− q16n
=
η4(32τ)

η2(16τ)

(
I1(q

2) +
1

I1(q2)

)
,

(54)

and

∞∑
n=1

n≡1 (mod 2)

qn + q7n

1− q16n
−

∞∑
n=1

n≡1 (mod 2)

q9n + q15n

1− q16n
=
η4(32τ)

η2(16τ)

(
I2(q

2) +
1

I2(q2)

)
.

(55)

Proof. Changing n to −n in the second summation in the left-hand side of Identity

(54), we obtain

∞∑
n=1

n≡1 (mod 2)

q3n + q5n

1− q16n
−

−1∑
n=−∞

n≡1 (mod 2)

q−11n + q−13n

1− q−16n

=

∞∑
n=−∞

q6n+3

1− q32n+16
+

∞∑
n=−∞

q10n+5

1− q32n+16
. (56)

Using a corollary of Ramanujan’s 1Ψ1 summation formula [1, Entry 17, p. 32]

∞∑
n=−∞

zn

1− aqn
=

(az, q/az, q, q; q)∞
(a, q/a, z, q/z; q)∞

, |q| < |z| < 1, (57)

in Identity (56), we find that

∞∑
n=1

n≡1 (mod 2)

q3n + q5n

1− q16n
−

−1∑
n=−∞

n≡1 (mod 2)

q−11n + q−13n

1− q−16n

=
(q32; q32)2∞
(q16; q32)2∞

{
q3

(q22, q10; q32)∞
(q6, q26; q32)∞

+ q5
(q26, q6; q32)∞
(q10, q22; q32)∞

}
. (58)

Using Identity (1) in Identity (58), we obtain Identity (54). The proof of Identity

(55) is similar to the proof of Identity (54), so we omit it here.

5. Eisenstein Series Identities Associated with I1(q) and I2(q)

In this section, we prove four Eisenstein series identities associated with I1(q) and

I2(q) by using the Jacobi theta function θ1. Differentiating both sides of Identity

(13), and then setting z = 0, yields

θ′1(0|τ) = 2q1/8(q; q)3∞,
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where θ′1 denotes the partial derivative of θ1 with respect to z.

Now we prove a lemma, which is fruitful in deriving Eisenstein series identities

associated with I1(q) and I2(q).

Lemma 2. We have

∞∑
n=1

qn − q7n − q9n + q15n

1− q16n
sin 2nz

= − θ′1(0|16τ)θ1(8πτ |16τ)θ1(6πτ |16τ)θ1(2z|16τ)
4θ1(z + πτ |16τ)θ1(z − πτ |16τ)θ1(z + 7πτ |16τ)θ1(z − 7πτ |16τ)

, (59)

and

∞∑
n=1

q3n − q5n − q11n + q13n

1− q16n
sin 2nz

= − θ′1(0|16τ)θ1(2πτ |16τ)θ1(8πτ |16τ)θ1(2z|16τ)
4θ1(z + 3πτ |16τ)θ1(z − 3πτ |16τ)θ1(z + 5πτ |16τ)θ1(z − 5πτ |16τ)

. (60)

Proof. For simplicity, we use J(z|τ) to denote the logarithmic derivative of θ1 with

respect to z. Logarithmically differentiating (13) with respect to z, after some

simplifications, we have

J
(
z +

πτ

2
|τ
)
= −i+ 4

∞∑
n=1

qn/2

1− qn
sin 2nz.

Replacing τ by 16τ in the above equation, we deduce that

J (z + 8πτ |16τ) = −i+ 4

∞∑
n=1

q8n

1− q16n
sin 2nz.

Replacing z by z − 7πτ in the above equation, we obtain

J (z + πτ |16τ) = −i+ 4

∞∑
n=1

q8n

1− q16n
sin 2n(z − 7πτ).

Writing z as −z in the above equation, we are led to the identity

J (z − πτ |16τ) = i+ 4

∞∑
n=1

q8n

1− q16n
sin 2n(z + 7πτ).

Adding the previous two equations together and using the trigonometric identity

sin 2n(z + 7πτ) + sin 2n(z − 7πτ) = 2 cos 14nπτ sin 2nz = (q7n + q−7n) sin 2nz,
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in the resulting equation, we immediately deduce that

J (z − πτ |16τ) + J (z + πτ |16τ) = 4

∞∑
n=1

qn + q15n

1− q16n
sin 2nz.

In a similar way, we find that

J (z − 7πτ |16τ) + J (z + 7πτ |16τ) = 4

∞∑
n=1

q7n + q9n

1− q16n
sin 2nz.

Combining the previous two equations, we find that

4
∞∑

n=1

qn − q7n − q9n + q15n

1− q16n
sin 2nz

= J (z − πτ |16τ) + J (z + πτ |16τ)− J (z − 7πτ |16τ)− J (z + 7πτ |16τ) . (61)

Recall the following remarkable identity, which can be found in [16, 20]:

J(x1|τ) + J(x2|τ) + J(x3|τ)− J(x1 + x2 + x3|τ)

=
θ′1(0|τ)θ1(x1 + x2|τ)θ1(x2 + x3|τ)θ1(x1 + x3|τ)
θ1(x1|τ)θ1(x2|τ)θ1(x3|τ)θ1(x1 + x2 + x3|τ)

.

Replacing τ by 16τ in the above equation and then letting x1 to z − πτ, x2 to

z + πτ, x3 to − z + 7πτ , we obtain

J (z − πτ |16τ) + J (z + πτ |16τ)− J (z − 7πτ |16τ)− J (z + 7πτ |16τ)

= − θ′1(0|16τ)θ1(6πτ |16τ)θ1(8πτ |16τ)θ1(2z|16τ)
θ1(z + πτ |16τ)θ1(z − πτ |16τ)θ1(z + 7πτ |16τ)θ1(z − 7πτ |16τ)

.

Combining the above equation and Identity (61), we get Identity (59). The proof

of Identity (60) is similar to the proof of Identity (59), so we omit it here.

Using Identities (59) and (60), we can obtain the following Eisenstein series

identities.

Theorem 3. Let |q| < 1. Then, we have the following identities

∞∑
n=1

n(qn − q7n − q9n + q15n)

1− q16n
=
q(q16; q16)2∞(q8; q8)2∞(q6, q10; q16)∞

(q, q7, q9, q15; q16)2∞
, (62)

and

∞∑
n=1

n(q3n − q5n − q11n + q13n)

1− q16n
=
q3(q16; q16)2∞(q8; q8)2∞(q2, q14; q16)∞

(q3, q5, q11, q13; q16)2∞
. (63)
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Proof. Dividing both sides of Identity (59) by z and then letting z → 0, we are led

to
∞∑

n=1

n(qn − q7n − q9n + q15n)

1− q16n
= −θ

′
1(0|16τ)2θ1(8πτ |16τ)θ1(6πτ |16τ)

4θ21(πτ |16τ)θ21(7πτ |16τ)
.

Using Identity (13), we easily find that

θ1(πτ |16τ) = iq3/2(q, q15, q16; q16)∞, θ1(6πτ |16τ) = iq−1(q6, q10, q16; q16)∞,

θ1(7πτ |16τ) = iq−3/2(q7, q9, q16; q16)∞, θ1(8πτ |16τ) = iq−2(q8, q8, q16; q16)∞.

Combining the above two equations, we obtain Identity (62). The proof of Identity

(63) is similar to the proof of Identity (62), so we omit it here.

Theorem 4. Let |q| < 1. Then, we have the following identities

∞∑
n=1

(n
3

)qn − q7n − q9n + q15n

1− q16n

=
q(q8; q8)2∞(q48; q48)∞(q6, q10; q16)∞(q, q7, q9, q15; q16)∞

(q16; q16)∞(q3, q21, q27, q45; q48)
, (64)

and

∞∑
n=1

(n
3

)q3n − q5n − q11n + q13n

1− q16n

=
q3(q8; q8)2∞(q48; q48)∞(q2, q14; q16)∞(q3, q5, q11, q13; q16)∞

(q16; q16)∞(q9, q15, q33, q39; q48)
. (65)

Proof. If p is a prime, we use
(

·
p

)
to denote the Legendre symbol modulo p. Setting

z = π
3 in Identity (59) and noting that

sin
2nπ

3
=

√
3

2

(n
3

)
, θ1(

2π

3
|τ) =

√
3q1/8(q3; q3)∞,

we find that

∞∑
n=1

(n
3

) qn − q7n − q9n + q15n

1− q16n

= − q2θ′1(0|16τ)θ1(6πτ |16τ)θ1(8πτ |16τ)(q48; q48)∞
2θ1(π/3 + πτ |16τ)θ1(π/3− πτ |16τ)θ1(π/3 + 7πτ |16τ)θ1(π/3− 7πτ |16τ)

.

(66)

Recall the beautiful identity [17, Eq. (3. 1)]

θ1

(π
3
− z|τ

)
θ1

(π
3
+ z|τ

)
=

(q; q)3∞
(q3; q3)∞

θ1(3z|3τ)
θ1(z|τ)

.
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Using the above identity in Identity (66), we obtain Identity (64). The proof of

Identity (65) is similar to the proof of Identity (64), so we omit it here.
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Ramanujan-Göllnitz-Gordon continued fraction and combinatorial partition identities, Inter.
J. Math. Anal. 10 (5) (2016), 237-244.



INTEGERS: 25 (2025) 20

[14] S. Cooper, Ramanujan’s Theta Functions, Springer International Publishing AG 2017,
Switzerland.

[15] B. N. Dharmendra, M. R. Rajesh Kanna, and R. Jagadeesh, On continued fraction of order
twelve, Pure Math. Sci. 1 (2012), 197-205.

[16] Z. -G. Liu, A three-term theta function identity and its applications, Adv. Math. 195 (2005),
1-23.

[17] Z. -G. Liu, A theta function identity and its implications, Trans. Amer. Math. Soc. 357
(2005), 825-835.

[18] Z. -G. Liu, A theta function identity and the Eisenstein series on Γo(5), J. Ramanujan Math.
Soc. 22 (2007), 283-298.

[19] M. S. Mahadeva Naika, B. N. Dharmendra, and K. Shivashankara, A continued fraction of
order twelve, Cent. Eur. J. Math. 6 (2008), 393-404.

[20] S. McCullough and L. -C. Shen, On the Szegö kernel of an annulus, Proc. Amer. Math. Soc.
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