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Abstract
Let ¢x(n) denote the number of F-partitions of n that allow up to k repetitions of
an integer in any row. In this paper we represent the generating function for ¢4(n)
in terms of g-products and dissect it to obtain several congruences for ¢4(n).

1. Introduction
A partition of a positive integer n is a sequence A = (A1, Ag, ..., Ag) of positive

integers Ay > Ao > -+ > X\, with Zf;l Ai = n. It is often useful to represent a
partition of n in terms of a two-rowed Frobenius symbol

ay ax ... Qp
<b1 by ... b,.) ()

with
T T
n:r—i—Zai—i—Zbi,
i=1 i=1
where the strictly decreasing sequences of non-negative integers {a1, az, - - ,a,} and
{b1,ba,-- ,b.} are obtained by enumerating the dots above and below the main

diagonal by rows and columns, respectively, in the Ferrers—Young diagram of the
partition. For example, the Ferrers—Young diagram of the partition A = (5, 4, 3, 1)
of 13 is

DOLI: 10.5281/zenodo.14907318




INTEGERS: 25 (2025) 2

Enumerating the dots above and below the main diagonal by rows and columns, re-
spectively, we can easily see that the partition A of 13 can be presented in Frobenius

notation as
4 2 0
3 1 0/°

In [1], Andrews introduced the idea of generalized Frobenius partitions or, more
simply, F-partitions which arise naturally as a combinatorial object associated to
elliptic theta functions. A generalized Frobenius partition is an array as in (1) but
the entries in the rows are allowed to be non-increasing. Andrews also discussed two
general classes of F-partitions. In the first of these two classes, those F-partitions are
considered that allow up to k repetitions of an integer in any row. Let ¢ (n) denote
the number of such F-partitions of n. For example, the 11 partitions enumerated

by ¢3(4) are

3 0 2 1 20 00 11 00 10 100 000
(o) () G)- ) (o) Go)- (o) (1) (o) (ooo)- (o)
For the second general class of F-partitions, k copies ji,ja2, -+ ,jr of each nonneg-
ative integer j are considered and an order relation between two copies j; and [}, is
defined by “j; < I, if and only if j <l or j =1 and i < h”. Also j; is said to be
distinct from Ij, unless j = [ and ¢ = h. Further, c¢i(n) represents the number of
F-partitions of n using these k copies of integers with strict decrease in each row.

The generating function ®x(q) for ¢x(n) is given by [1],

o0

> ¢ U= 1yt (k=2)mat fmi1 (Qma, ma, oy mi1)
@k(q) = M1, M2, ..., Mp—1=—00 7 (2)
(G 9)k,
where
Q(my, ma, ..., mp_1)=m2+ms+...+mi_, + Z mim,
1<i<j<k—1
oo
(@:9)o = [J(1 = ag’™"), and ¢ = &2/ (4D,
j=1

In particular, Andrews also found the following elegant infinite product representa-
tions for ®1(q), P2(q), and P3(q).

w0 = [ =

n=1
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> 1
P2(q) = };[1 (1—q™)(1 = ¢127=2)(1 — ¢127=3) (1 — ¢12—9)(1 — q12n710)’
®3(q) = )

] (1 _ q6n71)(1 _ q6n72)2(1 _ q6n73)3(1 _ q6n74)2(1 _ q6n75)(1 _ q12n) :

n

The generating function for c¢y(n) is given by [1],

(o)
N Z qQ(m17m27~~~7mk—1)
M1, M2,y .eey MEp—1=—00
> con(ma” = —z ,
= (¢:9)k,
where
Q(my, ma, ..., mp_1) =m3+m3+...+mi_, + Z m;m;.

1<i<j<k—1
In [1], it was also proved that

¢$2(5n 4+ 3) = cp2(5n+3) =0 (mod 5),
cor(n) =0 (mod k?) if k is a prime and does not divide n.

Since its publication, a number of authors worked on these partition functions
and uncovered a host of congruences, mostly for c¢y(n). For example, Sellers [22]
established that

#3(3n+2) =0 (mod 3).

Lovejoy [16] established modular forms whose Fourier coefficients are related to
c¢3(n) and proved the following congruences modulo 5, 7, 11 and 19 for cé3(n):

chs3(45n+23) =0 (mod 5),
c3(45n +41) =0 (mod 5),
cp3(63n +50) =0 (mod 7),
cp3(99n +95) =0 (mod 11),
cp3(17In +50) =0 (mod 19).

Baruah and Sarmah [4] represented the generating function for cg4(n) in terms of
g-products and established the following congruences modulo powers of 4 for co4(n):

chs(2n+1) =0 (mod 4?),
chs(4n +3) =0 (mod 4%),
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cps(dn+2) =0 (mod 4).
Xia [25] proved the following congruences modulo 5 for cg4(n):
cps(20n +11) =0 (mod 5).

Hirschhorn and Sellers [11] proved the following characterization of c¢4(10n + 1)
modulo 5:

k+1 (mod 5) if n = k(3k + 1) for some integer k,
0 (mod 5) otherwise.

coa(10n 4+ 1) = {

From the above characterization they found the following infinite set of Ramanujan-
like congruences modulo 5 satisfied by c¢4(n). Let p > 5 be prime and let r be an
integer, 1 < r < p—1, such that 12r 41 is a quadratic non-residue modulo p. Then,
for all n > 0,

cps(10pn+10r +1) =0  (mod 5).

Garvan and Sellers [8] proved several infinite families of congruences for c¢y(n),
where k is allowed to grow arbitrarily large. In particular, they proved that, if p is
a prime, 7 is an integer such that 0 < r < p and

cor(pn+1r) =0 (mod p)
for all n > 0, then

copnti(pn+7) =0 (mod p)

for all N > 0 and n > 0. As a corollary, they proved a number of congruences for
copN+i(pn + r) modulo p, where p = 3, 5, 7, and 11, for particular values of k. For
some other congruences and families of congruences involving generalized Frobenius
partitions we refer to [3, 7, 12, 15, 19, 20, 24, 26, 27].

Kolitsch [13, 14] introduced the function cg,(n), which denotes the number of
F-partitions of n with k& colors whose order is k under cyclic permutation of the k
colors. For example, the F-partitions enumerated by ce,(2) are

) () () () () () () (52)

where the subscripts represent the two colors of the non-negative integers. The
generating function for c¢,(n) is given by [13],

s (m)
Z chp(n)g" = M

s g9k

)
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where the sum on the right extends over all vectors m = (mq, ma, ..., mg) with
m.1 =1 and Q(m) = %Zle(mz —m;q1)? wherein T=(1,1,...,1) and mgy1 = m.
Kolitsch [14] found that, for all integers k > 2,

cop(n) =0 (mod k?).
Sellers [21, 23] established that
co(kn) =0 (mod k*) for k =2, 3,5, 7, and 11.
Baruah and Sarmah [4] established the following congruences modulo powers of 4
for cg,(n) :
cg,(2n) =0 (mod 4?),
co (4n+3) =0 (mod 4%),
co, (4n) =0  (mod 4%).
The existence of such a wide variety of results for c¢y(n) and céy,(n) for various
values of k inspires us to investigate the function ¢x(n) and to search for new results.
The main objective of this paper is to represent the generating function for ¢4(n)

in terms of g-products and dissect it to obtain a number of congruences for ¢4(n)
modulo 2 and 5. In particular, we shall prove the following results.

Theorem 1. We have

o0 10 15 £2 6
S = g i S ®)
; $4(2n+ 1)g" = fgg"g, (4)
where fi, k> 1, is defined as
= (0" ¢")oo-
Theorem 2. For n >0, we have
$4(An+3) =0 (mod 2). (5)

Theorem 3. If N is a positive integer which is not a multiple of 5, then we have
$4(2N +1)=0 (mod 2). (6)
Theorem 4. For n > 0, we have

1 (mod 2) if n = Wfor some integer k,
0 (mod 2) otherwise.

pa(dn +1) = { (7)
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Theorem 5. For n > 0, we have
$4(10n+6) =0 (mod 5). (8)
Theorem 6. For n > 0, we have

k+1 (mod 5) if n = k(3k + 1) for some integer k,
0 (mod 5) otherwise.

Ga(10n +1) = {

We conclude this section with some well known identities that arise from Ra-
manujan’s general theta function and a brief discussion on integer matrix exact
covering systems as described in [6].

Ramanugan’s general theta function f(a,b) is given by [5, p.34, Eq.(18.1)],

Z @ D/2pn(n=D/2 - where  |ab] < 1.

n=—oo

We also use the following two special cases of f (a,b).

0(q) == f(g,q) = Zq—f 9)

n=-—00 1

(@)= [ (¢,9 Zq (/2 = 22, (10)
fi
The product representations in the above two identities arise from Jacobi’s triple
product identity [5, p.34, Entry 19].
We also note that

o(—q) = = (11)

fo
An ezact covering system is a partition of the set of integers into a finite set of
arithmetic sequences. An integer matriz exact covering system is a partition of Z",
the set of all n-tuples with entries from Z, into a lattice and a finite number of its
translates without overlap.
Let
oo

S = Z f(mlmea"'7x’ﬂ)'

L1, T2, ", Tp=—"00
We change the variables from z; to y; (¢ = 1,2, ...,n) by the transformation y = Az,
where A is an integer matrix with det A # 0,

T U1

T2 Y2
T = . , and y =

T Yn
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Then, as given in [4], S can be written as a linear combination of k parts us-
. . . . k—
ing the integer matrix exact covering system {By + éBc,.}T:; for Z", where B =

n(A)—=
sensa ()
sn(A) = dii(ll?zl)’ d=lsp(A)],and y = ¢, (mod d), r =0,1,--- , k — 1is the solution
set of By =0 (mod d).

with A* = adjoint of A, di(A) = k** determinantal divisor of A,

2. Preliminaries

In this section, we list a number of lemmas that play important roles in the proofs
of our main results.

Lemma 1. If ab = cd, then

f(a,b) f (c,d) = f (ad,bec) f (ac,bd) + af (c/a,a’bd) f (d/a,a’bc) . (12)
For a proof of Lemma 1, see [5, p.45, Entry 29].
Lemma 2. We have
1 i fifs
-z = + 4q . 13
ZA "
For a proof of Lemma 2, see [5, p.40, Entry 25].

Lemma 3. We have

fl f2f8f230 fsz40

o _glilso 14
f5 fafiofao fsfio (14)
For a proof of Lemma 3, see [10, 17].
Lemma 4. We have
1 fi I8 13 [ f20 s fifi
- —9ql4t20 | 5, +2g . 15
Bh - fihe RR U 2 Foofo 15)
For a proof of Lemma 4, see [18].
Lemma 5. We have
f3 f5 fo
iy fho fifa (16)
f5 12 fs fo
Fif Tefo T (a7)

For a proof of Lemma 5, see [2].
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3. Proof of Theorem 1

We now present the proof of Theorem 1.

Proof of Theorem 1. From Equation (2), we have

Sy
P4(q) = 1 (18)
(4 9%
where
o
Sy = § <3m1+2m2+m3qu+m§+m§+m1m2+m2m3+m1ms
mi, M2, M3=—00

with ¢ = e?™/°. We change the variables from my, ms, ms to n1, ns, ns using the
integer matrix exact covering system

-1 1 1 ny -1 1 1 ny 1
{ 1 -1 1 no |, [ 1 -1 1 na | +10],
1 1 —1) \ns 1 1 -1/ \ns 0
-1 1 1 ny 0 -1 1 1 ny 0
1 -1 1 ne |+ (1,1 -1 1 na |+ |0 }
1 1 -1/ \ns 0 1 1 -1/ \ns 1

developed in [4]. Corresponding to this integer matrix exact covering system, we
can write Sy as a linear combination of four parts as

o0
54 — § C2n2+4n3 q2n§+2ng+2n§
n1, N2, N3=—00
)
+ Z C3+2n2+4n3 q2n§+2n§+2n§+2n2+2n3+1
ni,n2,N3=-—00
)
+ 2: <2+2n2+4n3 q2n§+2n§+2n§+2n1+2n3+1
n1, N2, N3=—00
0
+ § C1+2n2+4n3 q2n?+2ng+2n§+2n1 +2no+1
n1, N2, N3=—00
[eS) [eS) [eS)
_ E q2nf § <2n2 q2n§ § <4n3q2n§
n;g=—0o0 ng=—00 ny=——oo
[eS) [e'S) 9]
4 qCS E q2nf § C2n2q2ng+2ng E <-4n3 q2n§+2n3
ni=-—o00 ng=—00 ng=-—00

+QC2< Z q2n§+2n1>< Z <2n2q2n§>< Z <4n3q2n§+2n3>

ni=-—00 Ng=—00 n3=-—00
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+ q<< Z q2nf+2n1> ( Z C2n2q2n§+2n2> ( Z <4n3q2n§>. (19)

nyg=—0o0 Ny =—00 ng=—oo
Using Jacobi’s triple product identity [5, p.34, Entry 19], we have

Z quk2 _ H (1 + <71q2k71) (1 +<q2k71) (1 o q2k)

k=—o00 k>1
= (¢ ?) (o ?) (65 d%)
= f(¢q, ¢*q). (20)
Using another version of Jacobi’s triple product identity [9, p.11], we obtain

o0

> (~1)Rckg"FE = (€5 a) (G Do (@ @)
k=—o00
= f(_C_17 _Cq)
Therefore, we have
Z FCTY Ca) = f(SH Ca). (21)

k=—o00

Using Equations (20) and (21), we have

i e = F(CG ) = F(ICE G, (22)
i ¢ = F(¢Cha2 C19?) = F(CR CaP), (23)
i ¢ = F(CP, ) = £(C ), (24)
i_ CIng I (10 gty = (¢, (g, (25)

We recall Equations (9) and (10) to note that

o)== 3 &, (26)

k=—o0

(o] 1 o0
W(g) = flg.q°) =D q" V=5 Y D (27)
k=0

k=—o0
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Using Equations (22), (23), (24), (25), (26), and (27) in Equation (19), we have
Si=o(*)f(CP, CP) (P ) +aPe(@®) (P, Cah)f(¢ ¢t
+2¢CP(g) F(CPa?, CP) S Cat) + 2080 (@) (S, Ca®)F(SP, ). (28)
Now
(P, CP (P ()
= (% ) (~Cd% ah) (¢ ) L (—¢a% ah) o (a5 a)2,
= (=¢a* ¢ (=C q') (=P q*) o (—<d*d®s ¢ (a5 ) o

(g% a')
e 7*) o
— H (1 _’_Cq4n+2) (1 +<2q4n+2) (1 + 63q4n+2) (1 +<4q4n+2) (1 + q4’n+2)
n=0
(0% ¢*)>
DN
2
_ M g20m+10) (¢" ¢*)
nl;[o ( 7% %) o
= (=" ¢*) (% &?)  (¢% @),
(q :q%0)2
= (@™ ) _ (q'0; ¢'0) _ (q2; q2)oo (q83 qs)oo
_ fafsf3
B f10f40 ’ (29)
Similarly, we find that
F(E3, G, ¢t
= (—C3; ) (—Cqh a) (G ah) L (—Cah Y (6% a2
H 1+C3 4n 1+<2q4n+4) (1+<q4n) (1+C4q4n+4) (q4; q4)io
_ (1 +<) (1 +C3> H (1 + C3q4n+4) (1 +4-2q4n+4) (1 =+ Cq4n+4) (1 + C4q4n+4)
n=0
x (q% ¢*)%
1 (¢* ¢*)°
__ 14 g20on+20y 09 oo
& L[O( T ) (—a% 4%

2
_ 1 (—q20' 20) (‘14; q4)oo
T (=gt Y
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1 S fifs
¢ fao fs
1 fifao
G ffoo (30)
Next, we take
Ag) = f(C% Ca" ) F (', Ca®) + CF(C, ¢ (P, ).
Setting a = ¢, b = (*¢?, ¢ = (3¢% and d = ¢? in Equation (12), we have
Aq) = f(C, ¢*) F(CP, Cd?). (31)
Now
£ PSP )
= ( G a?) o (¢ ) (- ) (-Cd% ) (6% d?)2
H 1 +qun 1 +C4q2n+2) (1 +C2q2n) (1+<3q2n+2) (qz; qz)io
_ (1 +C) (1 +C2) H (1 =+ Cq2n+2) (1 + C4q2n+2) (1 +<—2q2n+2) (1 + C3q2n+2)
n=0
x (% ¢°),
a CnHO ( 0% ¢%) o
1 7 ¢*)’
= e <(—qq)5’°
L1/ fy
Cho i (82)

From Equations (31) and (32), we have

3
Al = [ Ca) P () + G Ca) @, Oy = — 2 22T ()
¢ fio fa
Employing Equations (29), (30), and (33) in Equation (28), we have

_ oo fofsfh s o ( 1 f4f40> 4 (_1f23f20>
S1=¢(q”) it +q¢v(q7) TS +2qC(q") Tt
_ i o fafs 3 4 f3 y 3 fao 9 I3 f2f20
2727 fofo T2 fsfe Uh T fufu

I3 130 [ f10 5 13 18 fao

T Rafshofi 2w U 2 (34)
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Using Equation (34) in Equation (18), we find that

L[ 215 I3 fao fg’fngm]
Pa(a) = ft |:f2f8f10f40 fgfngo — f2fi0

:1[ I8 1o (f2f8f20 f4f40) 9 f2f8f20] (35)
FE L3212 f20 \ faf3y [0 f8f1o f2f10

Employing Equation (14) in Equation (35), we have
12 1o I, fzfsfzo}

1
@4(Q)_ﬁ[f§f§fzo 5
R 312 Fao
= BRA T i (36)

Using Equations (13) and (15) in Equation (36), we have

I8 1 [ fi e I3 f20 2 fifh ]
) = —2q 5q 2
= e T 2 T T R
f3 18 f20 { 'S f4f8]
-2 4
e fifio Lf3fS -
_ ( fi°fro + g f1° fio _3 2f8f20)
f§f82f20 f212f8f20 f2f10
2 12 f20 12 f20 >
5 -2 -2 . 37
i ( i e U (37)

Equating the coefficients of ¢?" and then replacing ¢? by ¢ in Equation (37), we
find that

= n_ J3°fs 2% f30 I3 f1o
D )" = gy A~ S0

which is Equation (3).
Similarly, equating the coefficients of ¢?"*!, dividing both sides of the resulting
identity by ¢ and replacing ¢? by ¢ in Equation (37), we find that

T

oz g (38)

Z¢42n+ =5

Now, multiplying Equation (16) by 5 and Equation (17) by 4, and then subtracting
the resulting equations, we have

f2 f2f5 5 (39)

ri T T
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9 £3
Multiplying Equation (39) by %, we obtain
T fifs
9 ¢2 12 7 £2
5 f120f52 —4 121 J;IO = {52 J;102_ (40)
f1 f4 f1 f4f5 f1f4f5
Using Equation (40) in Equation (38), we find that
- 317
¢4 2n + 1 qn = 9
2 alan+ 0" = s
which is Equation (4). O

4. Proofs of Theorem 2-6

Proof of Theorem 2. Using Equations (9) and (11), we rewrite Equation (4) as

& 7 r2
D tant 00" = 3
2
ey 2 “

From [9, p.311, Eq. (34.1.1)], we find that

o (0% 0%) oo (0%; 0%)so(4®; ¢°) o
#la) = —eld) +2 (@3 @%)o (0% %) o0 (q7; ¢®)os

=¢(¢*) (mod 2). (42)

Similarly, from [9, p.15, Eq. (1.10.1)], we have

©*(—q) = ¢*(¢*) (mod 2). (43)

Using Equations (42) and (43) in Equation (41), we find that

c- Jf10
do4(2n+ 1)q¢" = mod 2),
I
from which Equation (5) follows. O

Proof of Theorem 3. From Equation (41), we have

3 du(2n+1)g" = @f((f)q) % (44)
n=0 5
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From [9, p.311, Eq. (34.1.7)] and [9, p.313, Eq. (34.1.20)], respectively, we have

¢(q) = ¢(¢®) (mod 2), (45)
¢*(—a) = ¥*(=¢°) (mod 2). (46)
Using Equations (45) and (46) in Equation (44), we arrive at Equation (6). O

Proof of Theorem 4. Employing Equation (15) in Equation (4), we have

Z¢4(2n+1)qn: o f4f20 +10q f2 f20/10 g St fio

f27 f2f10 f28 f210f82f10f20

2f410f20_ o f1f3% _ 5 f1° f20fio
AT 200 o 8 s

fiffofio 5 f1°fio . fi%fi
+ 25¢* +20q +4gt 42220 (47)
3 f2' f3 122 fs Fof
Equating the coefficients of ¢?® and replacing ¢? by ¢ in Equation (47), we find that
Z d4(dn 4+ 1)q"
11 42 10 £4 7 £3 442 £2 16 £4
_ f2 i B o B g BRI | TS
f2f5fro Ik i fi i fs o
f2 f10
="—=+4q¢= (mod 2). 48
2t mod) (49
Now, from Equation (15), we have
f2 f10
= mod 2). 49
£t = g mod (49
From Equations (48) and (49), we find that
i i 5n(3n+1)
Z ¢s(4n+1)¢" = f5 (mod 2) =1+ Z q 2 (mod 2). (50)
n=0 n=1
Now, Equation (7) follows from Equation (50). O

Proof of Theorem 5. We have

c- n_ f2°fs 2T o fifo
2 D" = i g~ ST

_
~ 57

] f10f20

13 f2fs (mod 5). (51)
5

o(a) + 24 J} (03—
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From [9, p.341, Eq. (36.3.1)], we have the 5—dissection of ¢(q) as
¢(q) = Lo + L1 + La, (52)

where Ly = ¢(¢*®), L1 = 2qf(¢'%, ¢*), and Ly = 2¢* f(¢°, ¢*°).
From [9, p.31, Eq. (3.2.5)], we have the 5—dissection of f; as

Ji=Eo+ E1 + E, (53)

where

(qu7 q25)oo(q157 q25)<>o

Ey = fos ;
(@°, 4%°)50(¢%°, ¢%) oo
Ei = —qfos,
5 25 20 25
By = 2 s 12 1)o@, 0 )

(@, ¢2) o (¢%, ¢®) oo’
Further, from [9, p.33, Eq. (3.2.6)], we have the 5—dissection of f} as
fi=Jo+ 1, (54)
where
Jo = (4" ¢*°)o (4" ¢*°) o0 (6*; 4°°) oo
J1 = =34(0°; 6*)oc (@5 )0 (6*°; 4*°) oo

Using Equations (52), (53), and (54) in Equation (51), we find that there are no
terms of the form ¢°”*3, n > 0, in the resulting congruence, from which Equation
(8) follows. O

Proof of Theorem 6. We have

o 3£
d4(2n + 1)¢" =
2 [
21'7
= —=— (mod 5).
Fof3
For the remaining part of the proof, see [11, Theorem 1.3]. O

Acknowledgement. The authors thank the anonymous referee for carefully read-
ing the paper.
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