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Abstract

We apply a seemingly forgotten series expression of Nörlund for the psi function to
express infinite series involving inverse factorials in closed form. Many of the series
contain products of Catalan numbers and (odd) harmonic numbers. We also prove
some new series for π.

1. Motivation and Preliminaries

The Gamma function, Γ(z), is defined for ℜ(z) > 0 by the integral [11]

Γ(z) =

∫ ∞

0

e−ttz−1 dt.

The function Γ(z) has the property that it extends the classical factorial function

to the complex plane by (z − 1)! = Γ(z). The Gamma function can be extended to

the whole complex plane by analytic continuation. Closely related to the Gamma

function is the psi (or digamma) function defined by ψ(z) = Γ′(z)/Γ(z). It possesses

a range of integral representations and infinite series expressions. Two such series

expressions are [11, p. 14]

ψ(z) = −γ +

∞∑
k=0

(
1

k + 1
− 1

k + z

)
, (1)

and

ψ(z + n) = ψ(z) +

n∑
k=1

1

z + k − 1
,
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where in the series (1) γ denotes the Euler-Mascheroni constant. Coffey [4] has

obtained a variety of other series and integral representations of ψ(z). Summations

over digamma and polygamma functions were studied, among others, by Alzer et

al. [1] and Coffey [5].

A series expression that seems to be not well known is the expression

ψ(z + h)− ψ(z) =

∞∑
n=0

(−1)n h (h− 1) · · · (h− n)

(n+ 1) z (z + 1) · · · (z + n)
, (2)

which holds for all z, h ∈ C with ℜ(z) > 0 and ℜ(z + h) > 0. Identity (2) is stated

by Hille in his paper [6] from 1927 and is attributed to Nörlund.

The seemingly forgotten Identity (2) will play the key role in this paper. The

common feature of all series studied here is the appearance of inverse factorials.

Similar series were studied by Sofo [8, 9] and more recently by Karp and Prilepkina

[7], and also by Boyadzhiev in his papers from 2020 and 2023 [2, 3]. A finite variant

was the subject of another paper by Sofo [10].

Among other things, we will establish connections with harmonic numbers Hα

and odd harmonic numbers Oα defined for 0 ̸= α ∈ C \ Z− by the recurrence

relations

Hα = Hα−1 +
1

α
and Oα = Oα−1 +

1

2α− 1
,

with H0 = 0 and O0 = 0. Harmonic numbers are connected to the digamma

function through the fundamental relation

Hα = ψ(α+ 1) + γ.

Generalized harmonic numbers H
(m)
α and generalized odd harmonic numbers

O
(m)
α of order m ∈ C are defined by

H(m)
α = H

(m)
α−1 +

1

αm
and O(m)

α = O
(m)
α−1 +

1

(2α− 1)m
,

with H
(m)
0 = 0 and O

(m)
0 = 0 so that Hα = H

(1)
α and Oα = O

(1)
α . The recurrence

relations imply that if α = n is a non-negative integer, then

H(m)
n =

n∑
j=1

1

jm
and O(m)

n =

n∑
j=1

1

(2j − 1)m
.

Generalized harmonic numbers are linked to the polygamma functions ψ(r)(z) of

order r defined by

ψ(r)(z) =
dr

dzr
ψ(z) = (−1)r+1r!

∞∑
j=0

1

(j + z)r+1
,
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through

H(r)
z = ζ(r) +

(−1)r−1

(r − 1)!
ψ(r−1)(z + 1),

where ζ(y) is the Riemann zeta function.

To whet the reader’s appetite for reading on, we present the following samples

from our results:

1 +

∞∑
n=1

1

n+ 1

n∏
j=1

3j − 1

3j + 1
=

π√
3
,

1 +

∞∑
n=1

2n

n+ 1

n∏
j=1

5j − 2

10j + 3
=

3π

4

√√
5

α3
, (α = (1 +

√
5)/2)

∞∑
n=0

22n(
n
h

)(
2(n+1)
(n+1)

)
(n+ 1)

2
=
π

4

Hh−1/2 −H−1/2

sin(πh)
, h ∈ C \ Z, 2h ̸∈ Z−,

and for non-negative integer h,

∞∑
n=h

(
2(n−h)
n−h

)(
n
h

)(
2(n+1)
n+1

) On−h

(n+ 1)
2 = − (−1)

h ζ (2)−H
(2)
h

2 (h+ 1)
(
2(h+1)
h+1

) + (−1)
h Hh + 2 ln 2

(h+ 1)
(
2(h+1)
h+1

)Oh+1

−
h−1∑
n=0

(−1)
n−h (h

n

)(
2(h−n)
h−n

)(
2(n+1)
n+1

) On−h

(n+ 1)
2 .

2. First New Series Associated with Identity (2)

We first prove two results that are immediate consequences of Identity (2) and

which yield some possibly new series for π. Two such series provide unexpected

expressions involving the golden section α = (1 +
√
5)/2. We then evaluate several

series of certain ratios involving Catalan numbers and binomial coefficients in closed

form.

Theorem 1. For each integer k ≥ 2 we have the expression

(k − 2)

1 +

∞∑
n=1

1

n+ 1

n∏
j=1

kj − (k − 2)

kj + 1

 = π cot
(π
k

)
.
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In particular, we have the curious expressions for π in the form

1 +

∞∑
n=1

1

n+ 1

n∏
j=1

3j − 1

3j + 1
=

π√
3
,

1 +

∞∑
n=1

2n

n+ 1

n∏
j=1

2j − 1

4j + 1
=
π

2
, (3)

1 +

∞∑
n=1

1

n+ 1

n∏
j=1

5j − 3

5j + 1
=
π

3

√
α3

√
5

and

1 +

∞∑
n=1

2n

n+ 1

n∏
j=1

3j − 2

6j + 1
=

√
3π

4
. (4)

Proof. Set h = 1 − 2z in Identity (2). Then, for all z ∈ C with 0 < ℜ(z) < 1, we

have

π cot(πz) = ψ(1− z)− ψ(z) =

∞∑
n=0

(−1)n

n+ 1

n∏
j=0

(
1− z

j + z
− 1

)
and with z = 1/k, k ≥ 2, the claim follows.

Theorem 2. For all z ∈ C with −1/2 < ℜ(z) < 1/2, we have

∞∑
n=0

2n+1

n+ 1

n∏
j=0

2z − j

2z − (2j + 1)
= −π tan(πz). (5)

In particular, when z = 1/3 then Identity (5) gives Identity (4), and when z = 1/4

then we get Identity (3). When z = 1/5, then Identity (5) yields

1 +

∞∑
n=1

2n

n+ 1

n∏
j=1

5j − 2

10j + 3
=

3π

4

√√
5

α3
.

Proof. In Identity (2) make the replacements z 7→ 1/2−z and h 7→ 2z, while keeping

in mind that

ψ

(
1

2
+ z

)
− ψ

(
1

2
− z

)
= π tan(πz).

Since

h(h− 1) · · · (h− n) =

n∏
j=0

(h− j) = (−1)n+1Γ(n+ 1− h)

Γ(−h)
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and

z(z + 1) · · · (z + n) =

n∏
j=0

(z + j) =
Γ(n+ 1 + z)

Γ(z)
,

Identity (2) can be written in terms of harmonic numbers via Identity (1) as

Hz+h−1 −Hz−1 = − Γ(z)

Γ(−h)

∞∑
n=0

Γ(n+ 1− h)

(n+ 1)Γ(n+ 1 + z)
. (6)

Lemma 1. We have

Hk−1/2 = 2Ok − 2 ln 2,

H
(2)
k−1/2 = −2ζ (2) + 4O

(2)
k ,

H
(3)
−1/2 = −6ζ (3) ,

H
(m+1)
k−1/2 −H

(m+1)
−1/2 = 2m+1O

(m+1)
k .

Lemma 2. We have

(r − 1/2)! =

√
π

22r

(
2r

r

)
r!, r ∈ C \ Z−,

(−r − 1/2)! =
√
π
(−1)

r

r!

22r(
2r
r

) , r ∈ N0.

Theorem 3. We have
∞∑

n=0

Cn

22n (n+ 1)
= 4 (1− ln 2) ,

∞∑
n=0

Cn

22n (n+ 1) (n+ 2)
=

10

3
− 4 ln 2,

and more generally, if 0 ̸= z ∈ C \ Z−, 2z ̸∈ Z−, then

∞∑
n=0

Cn

22n
(
n+z
n

) = −2z
(
Hz−1 −Hz−1/2

)
, (7)

where here and throughout this paper Cj are Catalan numbers, defined for j ∈ N0

by

Cj =

(
2j
j

)
j + 1

.

Proof. Set h = 1/2 in Identity (6), express the Gamma functions as factorials and

then arrange. The result is

−
∞∑

n=0

(n− 1/2)!

n! (n+ 1)

1

z

z!n!

(z + n)!
= 2

√
π(Hz−1 −Hz−1/2),
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that is,

−
∞∑

n=0

√
π

22n

(
2n
n

)
n+ 1

1

z

1(
z+n
n

) = 2
√
π(Hz−1 −Hz−1/2),

and hence Identity (7) follows.

Theorem 4. We have

∞∑
n=0

On+1

(n+ 1)(2n+ 1)
=
π2

6
, (8)

∞∑
n=0

Cn

22n
Hn+1

n+ 1
= 8− 2π2

3
, (9)

and more generally, if 0 ̸= z ∈ C \ Z−, 2z ̸∈ Z−, then

∞∑
n=0

Cn

22n
Hn+z(
n+z
n

) = 2(Hz−1 −Hz−1/2)(1− zHz) + 2z
(
−H(2)

z−1 +H
(2)
z−1/2

)
. (10)

Proof. Differentiate Identity (7) with respect to z to obtain

∞∑
n=0

Cn

22n
(Hn+z −Hz)(

n+z
n

) = 2Hz−1 − 2Hz−1/2 + 2z
(
−H(2)

z−1 +H
(2)
z−1/2

)
;

from which Identity (10) follows upon a second use of (7). Evaluation of (10) at

z = 1/2 gives (8) while evaluation at z = 1 gives (9).

Theorem 5. We have

∞∑
n=0

2n+ 1

n+ 1

Cn

22n
= 4 ln 2,

∞∑
n=0

2n+ 1

(n+ 1)(n+ 2)

Cn

22n
= 4 ln 2− 2,

and more generally, if z ∈ C with z − 3/2 ̸∈ Z−, then

∞∑
n=0

2n+ 1

22n
Cn(
n+z
n

) = 2z
(
Hz−1 −Hz−3/2

)
. (11)

Proof. The proof is very similar to the proof of Theorem 3. Set h = −1/2 in

Identity (2) and use Γ(1/2) =
√
π.

Corollary 1. If z ∈ C with z − 3/2 ̸∈ Z−, then

∞∑
n=0

n

22n
Cn(
n+z
n

) = 2zHz−1 − z
(
Hz−1/2 +Hz−3/2

)
. (12)
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Proof. Combine Theorems 3 and 5.

Remark 1. We have
∞∑

n=0

n

(n+ 1)

Cn

22n
=

∞∑
n=0

2n+ 1

(n+ 1)(n+ 2)

Cn

22n
= 4 ln 2− 2.

Theorem 6. If z ∈ C with z − 3/2 ̸∈ Z−, then

∞∑
n=0

2n+ 1

22n
CnHn+z(

n+z
n

) = 2(zHz − 1)
(
Hz−1 −Hz−3/2

)
+ 2z

(
H

(2)
z−1 −H

(2)
z−3/2

)
. (13)

In particular,

∞∑
n=0

2n+ 1

n+ 1

CnHn+1

22n
=

2π2

3
,

∞∑
n=0

2n+ 1

(n+ 2)(n+ 1)

CnHn+2

22n
=

2π2

3
+ 4 ln 2− 8,

and
∞∑

n=0

On+2

(n+ 1)(2n+ 3)
= 4− 2 ln 2− π2

6
. (14)

Proof. Differentiate Identity (11) with respect to z and simplify. Identity (14) is

obtained by setting z = 3/2 in Identity (13) and using Lemma 1.

Theorem 7. If z ∈ C with z − 3/2 ̸∈ Z−, then

∞∑
n=0

n

22n
CnHn+z(

n+z
n

) = (zHz − 1)
(
2Hz−1 −Hz−1/2 −Hz−3/2

)
+ z

(
2H

(2)
z−1 −H

(2)
z−1/2 −H

(2)
z−3/2

)
. (15)

In particular, at z = 1 and at z = 3/2 we obtain

∞∑
n=1

nCn

22n
Hn+1

n+ 1
=

2π2

3
− 4

and
∞∑

n=1

nOn+2

(n+ 1)(2n+ 1)(2n+ 3)
=

13

4
− 2 ln 2− π2

6
, (16)

respectively.

Proof. Differentiate Identity (12) with respect to z and simplify. Note that we used(
n+ 3/2

n

)
=

(2n+ 1)(2n+ 3)

22n 3

(
2n

n

)
in Identity (15) to derive the special case in (16).
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3. More New Series Associated with Identity (2)

Theorem 8. We have

∞∑
n=0

22n(
2(n+1)
n+1

)
(n+ 1)

2
=
π2

8
, (17)

∞∑
n=0

1

(2n+ 1) (n+ 1)
= 2 ln 2, (18)

and, more generally, for h ̸∈ Z, 2h ̸∈ Z−,

∞∑
n=0

22n(
n
h

)(
2(n+1)
(n+1)

)
(n+ 1)

2
=
π

4

Hh−1/2 −H−1/2

sin(πh)
. (19)

Proof. Set z = 1/2 in Identity (6) and express as factorials to obtain

∞∑
n=0

(n− h)!h!

n!

n!
√
π

(n+ 1/2)!

1

n+ 1
= h! (−1− h)!

(
H−1/2 −Hh−1/2

)
,

from which Identity (19) follows upon using Lemma 2 and the Euler reflection

formula:

(−r)! (r − 1)! =
π

sin(πr)
, r ̸∈ Z.

Identities (17) and (18) are special cases of (19) at h = 0 and h = 1/2. Note that

in deriving Identity (17), we used L’Hospital’s rule:

lim
h→0

Hh−1/2 −H−1/2

sin(πh)
= lim

h→0

ψ (h+ 1/2)− ψ (1/2)

sin(πh)

= lim
h→0

ψ(1) (h+ 1/2)

π cos(πh)
=
π

2
.

Corollary 2. If h is a non-negative integer, then

∞∑
n=h

(
2(n−h)
n−h

)(
n
h

)(
2(n+1)
(n+1)

)
(n+ 1)

2
= (−1)h

Hh + 2 ln 2

(h+ 1)
(
2(h+1)
h+1

) −
h−1∑
n=0

(−1)n−h
(
h
n

)(
2(h−n)
(h−n)

)(
2(n+1)
n+1

)
(n+ 1)

2
.

(20)

Proof. Write h + 1/2 for h in Identity (19) and use the fact that if n and h are

non-negative integers, then

(
n

h+ 1/2

)
=

22n+2

π (h+ 1)


(
n
h

)(
2(n−h)
n−h

)−1(2(h+1)
h+1

)−1
if n ≥ h,

(−1)h−n
(
2(h−n)
h−n

)(
h
n

)−1(2(h+1)
h+1

)−1
if n ≤ h,

(21)
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since (
n

h+ 1/2

)
=

{
n!

(n+1/2)!(n−h−1/2)! if n ≥ h,
n!

(n+1/2)!(−(h−n)−1/2)! if n ≤ h.

Theorem 9. If h is a non-negative integer, then

∞∑
n=h

(
2(n−h)
n−h

)(
n
h

)(
2(n+1)
n+1

) On−h

(n+ 1)
2 = − (−1)

h ζ (2)−H
(2)
h

2 (h+ 1)
(
2(h+1)
h+1

) + (−1)
h Hh + 2 ln 2

(h+ 1)
(
2(h+1)
h+1

)Oh+1

−
h−1∑
n=0

(−1)
n−h (h

n

)(
2(h−n)
h−n

)(
2(n+1)
n+1

) Oh−n

(n+ 1)
2 .

(22)

Proof. Differentiate Identity (19) with respect to h to obtain

∞∑
n=0

22n (Hn−h −Hh)(
n
h

)(
2(n+1)
n+1

)
(n+ 1)2

=
π2 cos(πh)

4 sin2(πh)

(
Hh−1/2 −H−1/2

)
− π

4 sin(πh)

(
ζ(2)−H

(2)
h−1/2

)
.

Now write h+ 1/2 for h and use Lemma 1 and Identities (20) and (21).

Note that when h = 0 we get

∞∑
n=0

On

(n+ 1)(2n+ 1)
= −π

2

12
+ 2 ln 2,

which in view of Identity (8) also gives

∞∑
n=0

1

(n+ 1)(2n+ 1)2
=
π2

4
− 2 ln 2.

When h = 1 we see that

∞∑
n=1

On−1

(n+ 1)(2n+ 1)(2n− 1)
=
π2

36
− 8

9
ln 2 +

7

18
.

Theorem 10. If m is a positive integer, then

∞∑
n=0

22n

(n+ 1)
(
n+m
m

)(
2(n+m)
n+m

) =
m

4

3 ζ(2)− 4O
(2)
m−1(

2(m−1)
m−1

) . (23)

In particular, we have
∞∑

n=0

22n

(n+ 1)2
(
2(n+1)
n+1

) =
π2

8
.
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Proof. Arrange Identity (6) as

∞∑
n=0

Γ (n+ 1− h)

(n+ 1)Γ(n+ 1 + z)
= Γ(−h) (Hz−1 −Hz+h−1)

1

Γ(z)

and take the limit as h approaches zero, using

lim
h→0

Γ(−h) (Hz−1 −Hz+h−1) = lim
h→0

Γ(−h) (ψ(z)− ψ(z + h))

= ψ(1)(z) = ζ(2)−H
(2)
z−1,

to obtain
∞∑

n=0

n!

(n+ 1)Γ (n+ 1 + z)
=

1

Γ (z)

(
ζ (2)−H

(2)
z−1

)
.

Now replace z with z − 1/2 and use

Γ (r + 1/2) =

(
r − 1/2

r

)
r!
√
π, (24)

to obtain

∞∑
n=0

1

(n+ 1)
(
n+z
z

)(
n+z−1/2

n+z

) =
z(

z−3/2
z−1

) (ζ (2)−H
(2)
z−3/2

)
, (25)

which is valid for z ∈ C \ Z− such that 2z ̸∈ Z−, z ̸= 0 and z ̸= 1/2. Finally set

z = m, a positive integer, in Identity (25) and use(
p− 1/2

p

)
=

(
2p
p

)
22p

; (26)

which gives Identity (23) on account of Lemma 1.

Theorem 11. If m is a positive integer, then

∞∑
n=0

22nOn+m

(n+ 1)
(
n+m
m

)(
2(n+m)
n+m

)
=
m

4

(
2(m− 1)

m− 1

)−1 (
7 ζ(3)− 8O

(3)
m−1 +Om−1(3 ζ(2)− 4O

(2)
m−1)

)
.

(27)

In particular, we have

∞∑
n=0

22nOn+1(
2(n+1)
n+1

)
(n+ 1)2

=
7

4
ζ(3).
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Proof. Differentiate Identity (25) with respect to z to obtain

∞∑
n=0

Hn+z−1/2

(n+ 1)
(
n+z−1/2

n+z

)(
n+z
z

) =
z(

z−3/2
z−1

) (ζ (2)−H
(2)
z−3/2

) (
Hz−3/2 −Hz−1

)
+

2z(
z−3/2
z−1

) (ζ (3)−H
(3)
z−3/2

)
+
zHz−1(
z−3/2
z−1

) (ζ (2)−H
(2)
z−3/2

)
and, hence, Identity (27) holds by using Lemma 1 and Identity (26).

Theorem 12. If m is a positive integer, then

∞∑
n=0

Cn(
n+m
n

)(
2(n+m)
n+m

) =
m

2

(Hm−1 − 2Om−1 + 2 ln 2)(
2(m−1)
m−1

) . (28)

Proof. Set h = 1/2 , write z − 1/2 for z in Identity (6) and use Identity (24) to

obtain
∞∑

n=0

(
n−1/2

n

)
(n+ 1)

(
n+z−1/2

n+z

)(
n+z
z

) =
2z(

z−3/2
z−1

) (Hz−1 −Hz−3/2

)
, (29)

from which Identity (28) follows after setting z = m, a positive integer, and using

Identity (26) and Lemma 1.

Theorem 13. If m is a positive integer, then

∞∑
n=0

CnOn+m(
n+m
m

)(
2(n+m)
n+m

) =
m

4

(
2(m− 1)

m− 1

)−1(
H

(2)
m−1 + 2 ζ(2)− 4O

(2)
m−1

+ 2Om−1 (Hm−1 − 2Om−1 + 2 ln 2)
)
.

(30)

Proof. Differentiate Identity (29) with respect to z, obtaining

∞∑
n=0

(
n−1/2

n

)
Hn+z−1/2

(n+ 1)
(
n+z−1/2

n+z

)(
n+z
z

) =
2z(

z−3/2
z−1

) (H(2)
z−1 −H

(2)
z−3/2 −

(
Hz−1 −Hz−3/2

)2)
+

2zHz−1(
z−3/2
z−1

) (
Hz−1 −Hz−3/2

)
,

from which Identity (30) follows.

Remark 2. When m = 1 in Theorem 13 we recover Identity (8).
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