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Abstract

We establish a local to global principle for higher moments over holomorphy rings
of global function fields and use it to compute the higher moments of rectangular
unimodular matrices and Eisenstein polynomials with coefficients in such rings.

1. Introduction

A classical problem in number theory is to compute the natural density of subsets

of the integers. The natural density of a subset A ⊆ Zd is given by considering

the number of points in A ∩ [−H;H)d, normalizing it by (2H)d - the number of

points in the whole “box” [−H;H)d - and then taking H → ∞. A convenient tool

to compute such densities in special situations was developed in [16, Lemma 20]. If

the set A can be characterized locally in the sense that A =
⋂

p(Zd ∩ Up) for some

defining sets Up ⊆ Zd
p (which is the case if A is defined by equations modulo prime

powers), then under certain conditions the natural density of A can be expressed

in terms of the Haar measures of the Up. One would naturally expect that such a

local to global principle for natural density should hold for any global field. Indeed,

a similar result was established for number fields in [1, Proposition 3.2]. Finally,

the case of global function fields was covered in [7, Theorem 2.1].
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One should think of the natural density as a substitute for a finite Haar measure

on the integers. It then becomes natural to ask whether one can make sense of the

notion of expected value (or any higher moment). If Up ⊆ Zd
p are again the defining

sets of our set in Zd, then the expected value is defined as

lim
H→∞

∑
a∈[−H;H)d

|{p : p prime, a ∈ Up}|
(2H)d

.

This means, for the elements in the box [−H;H)d we count the number of defining

sets in which it is contained, average over the total number of points in the box,

and let the side length of the box go to infinity. This notion was considered in [5]

for Eisenstein polynomials.

One can make a similar definition of expected value over the ring of algebraic

integers of number fields or for higher moments. In [11, 12], a local to global

principle for higher moments over number fields was established based on a local to

global principle for natural densities [1, 16]. In [8] the notion of natural density for

holomorphy rings of global function fields was introduced (slightly different from

the one in [14]), where the boxes are replaced by Riemann-Roch spaces (see Section

2 for precise definitions). For local to global principles for densities over global

Dedekind domains, we direct the interested reader to [3]. In this paper we will

prove a local to global principle for higher moments over global function fields and

show how to use this tool for some interesting examples.

This paper is organized as follows. In Section 2 we recall the local to global

principle for the natural density in global function fields as introduced in [7]. In

Section 3 we will prove our main theorem, the local to global principle for higher

moments over function fields, and in Section 4 we will apply it to some examples

(coprime pairs, affine Eisenstein polynomials, and rectangular unimodular matrices,

all with coefficients in the holomorphy ring of some global function field).

2. Preliminaries

In this section we recall the basic definitions and results from [7]. We follow the

terminology of [17] for function fields and related concepts.

Let F be a global function field, that is, a finite extension F/Fq(X), where Fq

denotes a finite field with q elements. We denote by OP a valuation ring of F , having

maximal ideal P . Such an ideal is called a place of the corresponding function field.

The set of all places of F will be denoted by PF . If ∅ ̸= S ⊊ PF and t ∈ N, we
define

St = {P ∈ S : deg(P ) ≥ t}. (1)
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Moreover, we write OS to denote the holomorphy ring of S,

OS =
⋂
P∈S

OP .

The easiest example of a holomorphy ring is Fq[x], as this consists of the intersection

of all the valuation rings of Fq(x) different from the infinite place (see [17, Section

1.2]). We denote by Div(F ) the set of divisors of F , i.e. the free abelian group on

the set PF . Furthermore, for D =
∑

P∈PF
nPP ∈ Div(F ) we define vP (D) = nP .

The support of D, supp(D), is defined as the finite subset of PF for which vP (D) is

non-zero. For D, D̃ ∈ Div(F ) we write D ≤ D̃ if and only if vP (D) ≤ vP (D̃) for all

P ∈ PF . Note that this defines a partial order on Div(F ). Moreover, we will write

D ≥ 0 whenever vP (D) ≥ 0 for all P in PF . Let

Div+(F ) = {D ∈ Div(F ) | D ≥ 0}.

For S ⊆ PF , let DS be the subset of divisors of Div+(F ) having support contained

in the complement of S.

Let (aD)D∈DS
⊆ R then, for a ∈ R, we write

lim
D∈DS

aD = a

if for every ε > 0 there exists Dε ∈ DS such that, for all D ∈ DS with D ≥ Dε, one

has |a − aD| < ε. Similarly one defines lim supD∈DS
aD and lim infD∈DS

aD. For

further information on Moore–Smith convergence, see [4, Chapter 2].

We define the upper density for A ⊆ Od
S as

ρS(A) := lim sup
D∈DS

|A ∩ L(D)d|
qℓ(D)d

,

where L(D) is the Riemann-Roch space attached to the divisor D and ℓ(D) =

dimFq
(L(D)). Analogously, one can give a notion of lower density ρ

S
by replacing

the limit superior by the limit inferior. Whenever these two quantities coincide, we

define the density of A as ρS(A) = ρ
S
(A) = ρS(A).

This definition of density coincides with the classical definition,

lim
d→∞

|A ∩ {f ∈ Fq[x] : deg(f) ≤ d}|
|{f ∈ Fq[x] : deg(f) ≤ d}|

,

when OS = Fq[x] (that is, F = Fq(x) and S is all the places except the infinite

place). This was used in [14] to compute the density of square-free, multivariate

polynomials with coefficients in Fq[x]. A similar notion of density was used in [15]

for homogeneous polynomials.

For a valuation ring OP , let us denote by ÔP its completion. As F is a global

function field, ÔP admits a normalized Haar measure, which we denote by µP . By
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abuse of notation, we will denote the product measure on ÔP also by µP . For

U ⊆ Ôn
P we denote by ∂U the boundary of U with respect to the P -adic metric.

In [7], extending [14], the following local to global principle for densities over

global function fields was established.

Theorem 1 ([7, Theorem 2.1]). Let d be a positive integer, S be a proper, nonempty

subset of PF , St as defined in Equation (1) and OS the holomorphy ring of S. For

any P ∈ S, let UP ⊆ Ôd
P be a Borel-measurable set such that µP (∂UP ) = 0. Suppose

that

lim
t→∞

ρS({a ∈ Od
S | a ∈ UP for some P ∈ St}) = 0. (2)

Let π : Od
S −→ 2S be defined by π(a) = {P ∈ S : a ∈ UP } ∈ 2S. Then

(i)
∑
P∈S

µP (UP ) is convergent.

(ii) Let Γ ⊆ 2S. Then ν(Γ) := ρS(π
−1(Γ)) exists and ν defines a measure on 2S.

(iii) The measure ν is concentrated on finite subsets of S. In addition, if T ⊆ S is

finite we have

ν({T}) =

(∏
P∈T

µP (UP )

) ∏
P∈S\T

(1− µP (UP )). (3)

In the same paper, the following variant of Ekedahl’s sieve was proved as a tool

to verify assumption (2).

Theorem 2 ([7, Theorem 2.2]). Let F be a global function field and S be a proper,

nonempty subset of PF . Let OS be the holomorphy ring of S. Furthermore, let

f, g ∈ OS [x1, . . . , xd] be coprime polynomials. Then

lim
t→∞

ρS
(
{y ∈ Od

S : f(y) ≡ g(y) ≡ 0 mod P for some P ∈ St}
)
= 0. (4)

Remark 1. Note that in [7] the theorem is only stated for sets S having finite

complement; however, the assumption is not needed in the proof. An alternative

proof was sketched in [14, Theorem 8.1].

The next corollary follows from Theorem 1. It relates the density of the defining

sets to their Haar measures and will play a crucial role in the proof of our main

theorem.

Corollary 1. Let F be a global function field with full field of constants equal to

Fq. Let d be a positive integer, S be a proper, nonempty subset of PF , and OS



INTEGERS: 25 (2025) 5

the holomorphy ring of S. Let P1, ..., Pn ∈ S be distinct and for j = 1, ..., n, let

UPj
⊆ Ôd

Pj
be a Borel-measurable set with µPj

(∂UPj
) = 0. Then

ρS

 n⋂
j=1

(
UPj ∩ Od

S

) =

n∏
j=1

µPj (UPj ). (5)

Proof. Define VP = UP for P ∈ {P1, . . . , Pn} and VP = ∅ otherwise. Then (VP )P∈S

satisfies the assumption of Theorem 1 and Equation (5) corresponds to (3) with

T = {P1, . . . , Pn}.

3. Higher Moments

If Od
S carried a Haar measure, we could consider a random element a ∈ OS and

define the expected number of places P ∈ S such that a ∈ UP . The next definition

is the analogue notion of expected value, respectively higher moments, in the case

where we only have the natural density.

Definition 1. Let F be a global function field with full field of constants equal to

Fq. Let n and d be positive integers, ∅ ̸= S ⊊ PF . Suppose UP ⊆ ÔP . Then we

define the n-th moment of the system (UP )P∈S to be

µn = lim
D∈DS

∑
a∈L(D)d

|{P ∈ S | a ∈ UP }|n

qℓ(D)d
(6)

if it exists. We call µ1 the expected value of the system (UP )P∈S .

Our main theorem gives an easy way to compute higher moments for a large

class of systems.

Theorem 3. Let d and n be positive integers. Let F be a global function field with

full field of constants equal to Fq, S be a proper, nonempty subset of PF , and OS be

the holomorphy ring of S. For each P ∈ S, let UP ⊆ Ôd
P be a measurable set such

that µP (∂(UP )) = 0. Let St := {P ∈ S | deg (P ) ≥ t}. If

lim
t→∞

ρS
(
{a ∈ Od

S | a ∈ UP for some P ∈ St}
)
= 0 (7)

is satisfied, and for some α ∈ [0,∞) there exist absolute constants c′, c, c̃ ∈ Z, such
that for all D ∈ DS with deg(D) ≥ c̃ and for all a ∈ L(D)d one has that∣∣{P ∈ S | deg(P ) > c′ deg(D)α, a ∈ UP ∩ L(D)d

}∣∣ < c (8)

and that there exists a sequence (vP )P∈S ⊆ R>0, such that for all m ∈ {1, . . . , n}
and all deg(P1), . . . ,deg(Pm) ≤ c′ deg(D)α with Pj ∈ S pairwise distinct one has



INTEGERS: 25 (2025) 6

that ∣∣∣∣∣∣
m⋂
j=1

UPj ∩ L(D)d

∣∣∣∣∣∣ ≤ qℓ(D)d
m∏
j=1

vPj , (9)

∑
P∈S

vP converges, (10)

then it follows that

µn = lim
D∈DS

∑
a∈L(D)d

|{P ∈ S | a ∈ UP }|n

qℓ(D)d

exists and µn < ∞.

For l ∈ N≥1 we denote by

{
n
l

}
the number of partitions of the set {1, . . . , n}

with exactly l subsets. Then we have the formula

µn =

n∑
l=1

{
n
l

} ∑
P1,...,Pl∈S

∀i<j∈{1,...,l}, Pi ̸=Pj

l∏
m=1

µPm
(UPm

). (11)

Remark 2.

1. Let (UP )P∈S , (ŨP )P∈S be systems satisfying the assumptions of Theorem 3

for a moment r. If µP (UP ) = µP (ŨP ) and we have another system (VP )P∈S

such that UP ⊆ VP ⊆ ŨP , then the r-th moment of (VP )P∈S exists too and

is given by Equation (11).

2. The coefficient

{
n
l

}
in Equation (11) is the Stirling number of the second

kind and can be computed as follows:{
n
l

}
=

1

l!

l∑
k=0

(−1)k
(
l

k

)
(l − k)n.

3. One could weaken the assumptions (8), (9), and (10). Namely, it would be

enough to assume that for every D ∈ DS , there exists D̃ ∈ DS with D̃ ≥ D

such that for all D′ ∈ DS with D′ ≥ D̃, the Conditions (8), (9), and (10) hold

true. The statement could be proved using the same ideas as in the proof

below.

4. We could also include the case α = ∞, meaning that we could drop assumption

(8) and require instead that (9) and (10) hold for all places in S.
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Proof of Theorem 3. We fix S throughout the proof, and write O, ρ, and D in place

of OS , ρS , and DS , respectively. For a ∈ Od and P ∈ PF , we define

τ(a, P ) =

{
1, a ∈ UP ,

0, a /∈ UP .

For M ∈ N, we have

∑
a∈L(D)d

( ∑
P∈S

τ(a, P )

)n

qℓ(D)d
=

n∑
j=0

(
n

j

)
Rj(M,D),

where for all j ∈ {0, . . . , n}, we define

Rj(M,D) :=
∑

a∈L(D)d

( ∑
P∈SM

τ(a, P )

)n−j ( ∑
P∈S, deg(P )<M

τ(a, P )

)j

qℓ(D)d
.

First we show that, for all j ∈ {0, . . . , n− 1}, the term Rj(M,D) is negligible for

M going to infinity. We define

la,D :=
∣∣{P ∈ S | deg(P ) > c′ deg(D)α, a ∈ UP ∩ L(D)d

}∣∣ .
Then by Assumption (8) there exist c, c̃ > 0 such that for all a ∈ Od and all D ∈ D
with deg(D) ≥ c̃ we have la,D ≤ c. We define

Θn(M,D) := q−ℓ(D)d
∑

a∈L(D)d

( ∑
P∈SM

τ(a, P )

)n

.

Thus, for M ≥ c̃, we can express qℓ(D)dΘn(M,D) as

n∑
i=0

(
n

i

) ∑
a∈L(D)d:

a∈
⋃

P1,...,Pn∈SM

n⋂
j=1

UPj

∣∣∣∣{(Pj)
n
j=1 ∈ Sn :

M < deg(Pk) ≤ c′ deg(D)α if 1 ≤ k ≤ i
c′ deg(D)α < deg(Pk) if i < k ≤ n

}∣∣∣∣

≤
n∑

i=0

(
n

i

) ∑
a∈L(D)d:

a∈
⋃

P1,...,Pn∈SM

n⋂
j=1

UPj

ln−i
a,D

∣∣{(Pj)
i
j=1 ∈ Si : M < deg(Pj) < c′ deg(D)α}

∣∣

≤

∣∣∣∣∣L(D)d ∩
⋃

P∈SM

UP

∣∣∣∣∣+
n∑

i=1

(
n

i

)
cn−i

∑
(P1,...,Pi)∈Si

M<deg(P1),...,deg(Pi)≤c′ deg(D)α

|L(D)d ∩
i⋂

j=1

UPj |.
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Using Assumption (9), we further have that

Θn(M,D) ≤ cn
|L(D)d ∩

⋃
P∈SM

UP |

qℓ(D)d

+

n∑
i=1

i∑
j=1

2i
(
n

i

)
cn−i

∑
(P1,...,Pj)∈Sj

M<deg(P1),...,deg(Pj)<c′ deg(D)α

(
j∏

k=1

vPk

)

≤ cn
|L(D)d ∩

⋃
P∈SM

UP |

qℓ(D)d

+

n∑
i=1

i∑
j=1

2i
(
n

i

)
cn−i

( ∑
P∈SM

vP

)j

.

This implies that

lim sup
D∈D

Θn(M,D) ≤ cnρ

(
Od ∩

⋃
P∈SM

UP

)

+

n∑
i=1

i∑
j=1

2i
(
n

i

)
cn−i

( ∑
P∈SM

vP

)j

.

Thus, we get from Equations (7) and (10) that

lim
M→∞

lim sup
D∈D

Θn(M,D) = 0. (12)

Using Hölder’s inequality, we obtain, for j ∈ {1, . . . , n− 1},

Rj(M,D) ≤ Θn(M,D)(n−j)/nRn(M,D)j/n.

Hence, if we can show that lim
M→∞

lim
D∈D

Rn(M,D) exists, then we get, for all j ∈
{0, . . . , n− 1},

lim
M→∞

lim sup
D∈D

Rj(M,D) = 0,

and thus, µn exists as well and we have

µn = lim
M→∞

lim
D∈D

Rn(M,D).

In order to show that lim
M→∞

lim
D∈D

Rn(M,D) exists, we need to evaluate expressions

of the form

lim
D∈D

|L(D)d ∩
⋂n

j=1 UPj
|

qℓ(D)d
.



INTEGERS: 25 (2025) 9

We would like to use Corollary 1, however, this only applies if the places are

pairwise distinct. For l ∈ N≥1, we denote by

{
n
l

}
the number of partitions of

{1, . . . , n} which contain exactly l subsets. Note that {P1, . . . , Pn} = {Q1, . . . , Ql}
with Q1, . . . , Qk pairwise distinct if and only if

{1, . . . , n} =

l⊔
k=1

{j ∈ {1, . . . , n} : Pj = Qk}.

Thus, we get

Rn(M,D) =
∑

P1,...,Pℓ(τ)∈S

deg(P1),...,deg(Pl(τ))<M

|L(D)d ∩
n⋂

j=1

UPj
|

qℓ(D)d

=

n∑
l=1

{
n
l

} ∑
P1,...,Pl∈S

deg(P1),...,deg(Pl)<M
∀i<j∈{1,...,l(τ)}, Pi ̸=Pj

|L(D)d ∩
l⋂

j=1

UPj
|

qℓ(D)d
.

As all the sums are finite, we can pull the limit over the divisors inside of the sums

and get, with Corollary 1,

lim
D∈D

Rn(M,D) =

n∑
l=1

{
n
l

} ∑
P1,...,Pℓ(τ)∈S

deg(P1),...,deg(Pl(τ))<M

∀i<j∈{1,...,l(τ)}, Pi ̸=Pj

ρ

l(τ)⋂
j=1

UPj ∩ Od



=

n∑
l=1

{
n
l

} ∑
P1,...,Pl∈S

deg(P1),...,deg(Pl)<M
∀i<j∈{1,...,l(τ)}, Pi ̸=Pj

l∏
j=1

µPj
(UPj

).

Taking M → ∞ yields Equation (11). Using Condition (10) and the crude estimate{
n
l

}
≤ nn, one gets

µn ≤ nn+1

(
1 +

∑
P∈S

µP (UP )

)n

< ∞.

Remark 3. We briefly compare this with the results in [11, 12]. There, an alterna-

tive definition of expected value (respectively, higher moment) was used. Namely,

under the same assumptions for (UP )P∈S as in Definition 1, they define

I = {a ∈ Od
S | a ∈ UP for infinitely many P ∈ S} (13)
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and L(D)dI := L(D)d \ I. Then they define the n-th moment of the system (UP )P∈S

to be

lim
D∈DS

∑
a∈L(D)dI

|{P ∈ S | a ∈ UP }|n

qℓ(D)d
, (14)

if it exists. Let us call this the renormalized n-th moment.

This means that they consider, in our language, the moments of the sets (UP \
I)P∈S . The restriction to the complement of I prevents the moment from being

infinity in a trivial fashion. The rationale in [11, 12] is that the moment of a random

variable with respect to a probability measure does not change when altered on a null

set. Furthermore, for system (UP )P∈S satisfying Condition (2), one can show that

the set I of elements which lie in infinitely many sets UP has density zero (see the

lemma below). Hence, the renormalized moment should be seen as a renormalized

version of the more natural Definition 1. If (UP )P∈S satisfies Condition (7), (UP \
I)P∈S satisfies all the conditions of Theorem 1 and I is closed in all ÔP for P ∈ S,

then the n-th moment of (UP \I)P∈S coincides with the renormalized n-th moment.

This happens for all the examples we have worked out in Section 4.

Lemma 1. Let F a global function field with full field of constants equal to Fq, d

a positive integer, S be a proper, nonempty subset of PF , St as defined in Equation

(1), and OS the holomorphy ring of S. For any P ∈ S, let UP ⊆ Ôd
P be Borel-

measurable and I defined as in Equation (13).

1. For all P ∈ S, we have

µP (UP \ I) = µP (UP ).

2. If (UP )P∈S satisfies Condition (7), then

ρS(I) = ρS({a ∈ Od
S | a ∈ UP for infinitely many P ∈ S}) = 0.

Proof. For the first part we note that F is a finite extension of Fq(x) and therefore

countable. Thus, I ⊆ OS ⊆ F is countable too. Recall that µP is a Haar measure

and hence, µP (I) = 0.

If a ∈ I, then for any integer t, a ∈ UP for some P ∈ St, that is

I ⊆ {a ∈ Od
S | a ∈ UP for some P ∈ St}

for all positive integer t. So we have

ρS(I) ≤ lim
t→∞

ρS{a ∈ Od
S | a ∈ UP for some P ∈ St} = 0,

where the last equality follows from Equation (7). Thus, we have ρS(I) = 0 as

desired.
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4. Applications

In this section, we will verify the assumptions of Theorem 3, i.e., compute all higher

moments, for various examples that were considered in the existing literature.

4.1. Coprime n-Tuples

In this subsection we will compute all higher moments of coprime n-tuples. Here a

coprime n-tuple denotes an n-tuple such that all entries are coprime over a specified

ring. The computation of the natural density of coprime pairs over the integers is

classical and goes back to Mertens [6] and Césaro [2] in the 1870’s.

The densities of coprime n-tuples over holomorphy rings have been calculated in

[8]. Previously this has also been considered over Fq[x] in [18]. We now compute

all corresponding higher moments over holomorphy rings.

Theorem 4. Let F be a global function field with full field of constants equal to Fq.

Let n ≥ 2 be a positive integer. Let ∅ ≠ S ⊊ PF and let OS be the holomorphy ring

of S. Define the system UP = (P ÔP )
n \ {0} for each P ∈ S. Then all moments

exist and are given by Equation (11), where

µP (UP ) = q−n deg(P ). (15)

Proof. We show that the system satisfies the assumptions of Theorem 3. We first

check that Condition (7) is satisfied using Theorem 2. Consider the polynomials

f(x1, x2, . . . , xn) = x1 and g(x1, x2, . . . , xn) = x2. Then for positive integers t,

define

St(f, g) = {a ∈ On
S | f(a) ∈ P and g(a) ∈ P for some P ∈ St}

= {(a1, a2, . . . , an) ∈ On
S | a1 ∈ P and a2 ∈ P for some P ∈ St}.

Note that At = {a ∈ Od
S | a ∈ UP for some P ∈ St} is a subset At ⊂ St(f, g). Thus,

by Theorem 2, we have

lim
t→∞

ρS(At) ≤ lim
t→∞

ρS(St(f, g)) = 0.

So limt→∞ ρS(At) = 0.

Next we check that Condition (8) is satisfied. Let α = 1. Fix a = (a1, a2, . . . , an) ∈
L(D)n \ {(0, . . . , 0)}. As a ̸= (0, . . . , 0), we can without loss of generality assume

that a1 ̸= 0. Now by [17, Theorem 1.4.11], we have∑
P∈S

deg(P )vP (a1) = −
∑

P∈PF \S

deg(P )vP (a1).
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Recall that x ∈ L(D) implies that vP (x) ≥ −vP (D). So we have for D ∈ DS∑
P∈S

deg(P )vP (a1) = −
∑

P∈PF \S

deg(P )vP (a1)

≤
∑

P∈PF \S

deg(P )vP (D)

≤ deg(D).

For any constant c′ > 0, we obtain∑
P∈S

deg(P )>c′ deg(D)

deg(P )vP (a1) ≤
∑
P∈S

deg(P )vP (a1) ≤ deg(D).

Since P \ {0} = {x ∈ F | vP (x) ≥ 1} and a1 ̸= 0, we have

c′ deg(D) · |{P ∈ S : deg(P ) > c′ deg(D), a ∈ UP ∩ L(D)n}| ≤ deg(D).

Together with the observation that (0, . . . , 0) is not contained in any Up, we obtain,

for all a ∈ L(D)n,

|{P ∈ S : deg(P ) > c′ deg(D), a ∈ UP ∩ L(D)n}| ≤ 1

c′
.

Hence, Condition (8) is satisfied for any choice of c′ > 0.

Now we verify Conditions (9) and (10). Let P1, . . . , Pr ∈ S be pairwise distinct

places. Then we get for D ∈ DS

L(D) ∩
r⋂

j=1

(PjOPj ) = L(DP1,...,Pr ),

where DP1,...,Pr
is defined by

vP̃ (DP1,...,Pr
) =

{
−1 if P̃ ∈ {P1, . . . , Pr},
vP̃ (D) otherwise.

If deg(P1), . . . ,deg(Pr) ≤ c′ deg(D), then we obtain

deg(DP1,...,Pr ) = deg(D)−
r∑

j=1

deg(Pj) ≥ deg(D)− rc′ deg(D) = (1− rc′) deg(D).

Hence, if we pick 0 < c′ < 1
r , then we can use the Riemann-Roch theorem [17,

Theorem 1.4.17 (b.)] and obtain that there exists a constant C > 0 depending only
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on F and c′ such that for all D ∈ DS with deg(D) ≥ C, we have

ℓ(DP1,...,Pr
) = deg(DP1,...,Pr

) + 1− g = deg(D) + 1− g −
r∑

j=1

deg(Pj)

= ℓ(D)−
r∑

j=1

deg(Pj),

where g is the genus of F . Thus, we obtain for deg(D) ≥ C

|L(D) ∩
r⋂

j=1

Pj | = |L(DP1,...,Pr )| = qℓ(D)
r∏

j=1

q− deg(Pj).

Hence, there exists a constant C > 0 such that for all D ∈ DS with deg(D) ≥ C and

all pairwise distinct places P1, . . . , Pr ∈ S with deg(P1), . . . ,deg(Pr) ≤ 1
2r deg(D),

we have

|L(D) ∩
r⋂

j=1

Pj | = qℓ(D)
r∏

j=1

q− deg(Pj). (16)

Thus, we get

|L(D)n ∩
r⋂

j=1

UPj
| = |L(D) ∩

r⋂
j=1

Pj |n = qnℓ(D)
r∏

j=1

q−n deg(Pj).

So for each P ∈ S, we choose vP = q−n deg(P ), which satisfies Condition (9). The se-

ries
∑

P∈S q−n deg(P ) is dominated by the Zeta function Z(q−n) =
∑

P∈PF
q−n deg(P ).

For n ≥ 2, the Zeta function converges by [17, Proposition 5.1.6], hence Condition

(10) is satisfied. Thus, we can invoke Theorem 3. Note that (P ÔP )
n is a subgroup

of Ôn
P and singletons are null sets, so (15) holds true as

µP ((P ÔP )
n \ {0}) = µP ((P ÔP )

n) = |Ôn
P /(P ÔP )

n|−1 = q−n deg(P ).

4.2. Affine Eisenstein Polynomials

In this subsection, we will compute all higher moments of affine Eisenstein poly-

nomials. The affine Eisenstein polynomials over holomorphy rings can be used to

study totally ramified extensions, see [7] and the references therein for more details.

In said paper, the density of affine Eisenstein polynomials is also computed (see [7,

Theorem 3.6]). The density of the shifted/affine Eisenstein polynomials over num-

ber fields have been computed in [9] and the higher moments over number fields

have been considered in [11]. For this section we will by abuse of notation identify

polynomials of degree d with the corresponding (d+ 1)-tuple of coefficients.
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Let ∅ ̸= S ⊊ PF and P ∈ S. A polynomial f(x) ∈ OS [x] of degree d, say

f(x) =
∑d

j=0 ajx
j , is said to be P -Eisenstein if

ad /∈ P, a0 /∈ P 2 and ai ∈ P for all i ∈ {0, . . . , d− 1}.

In addition, f(x) is said to be Eisenstein if there exists P ∈ S such that f(x) is

P -Eisenstein. We define for P ∈ S

UP =
(
P ÔP \ P 2ÔP

)
×
(
P ÔP

)d−1

×
(
ÔP \ P ÔP

)
. (17)

This will be the system for Eisenstein polynomials in OS [x] as UP ∩Od+1
S represents

exactly the P -Eisenstein polynomials.

Next we introduce shifted Eisenstein polynomials. For P ∈ S we say f(x) ∈
OS [x] is a shifted P -Eisenstein polynomial if there exists t ∈ OS such that f(x+ t)

is a P -Eisenstein polynomial.

For t ∈ ÔP we denote by σt the map

σt : Ôd+1
P → Ôd+1

P , f(x) 7→ f(x+ t). (18)

We define for P ∈ S

VP =
⋃

t∈OS

σt(UP ). (19)

This yields a system for shifted Eisenstein polynomials as VP ∩Od+1
S represents the

shifted P -Eisenstein polynomials.

For a commutative ring R, A =
(

α β
γ δ

)
∈ GL2×2(R) and f(x) ∈ R[x] of degree d

we define

(f ∗A)(x) = (γx+ δ)df

(
αx+ β

γx+ δ

)
∈ R[x].

Let P be a prime ideal in R. We call f(x) ∈ R[x] affine P -Eisenstein if there

exists A ∈ GL2×2(R) such that (f ∗ A)(x) ∈ R[x] is P -Eisenstein. Furthermore, a

polynomial f(x) ∈ OS [x] is called affine Eisenstein if there exists P ∈ S such that

(f ∗A)(x) is affine P -Eisenstein.

It turns out that only particular affine transformations are needed to realize all

affine Eisenstein polynomials. The following lemma is a consequence of [7, Corollary

3.4].

Lemma 2. Let F be a global function field, ∅ ≠ S ⊊ PF and P ∈ S.

(a) Let σt denote the shift introduced in (18) and UP as in (17). Let s, t ∈ OP .

Then the following are equivalent:

(i) σs(UP ) ∩ σt(UP ) ̸= ∅
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(ii) σt(UP ) = σs(UP )

(iii) s− t ∈ P .

(b) Let f ∈ OS [x] be a polynomial of degree d ≥ 2. Then the following are

equivalent:

(i) f(x) is affine P -Eisenstein

(ii) There exists t ∈ OS such that f(x + t) is P -Eisenstein or xdf(1/x) is

P -Eisenstein.

(c) Let f ∈ OS [x] be a polynomial of degree d ≥ 2, such that xdf(1/x) is P -

Eisenstein. Then f(x) is not a shifted P -Eisenstein polynomial.

Proof. We start with the proof of part (a). As σ−1
t σs = σs−t, we can without loss

of generality assume that s = 0. Clearly we have σt(UP ) = UP for t ∈ P . Hence,

(c) ⇒ (b) ⇒ (a) holds true.

Let us now assume that f(x) ∈ σt(UP )∩UP . Write f(x) =
∑d

j=0 ajx
j . As f(x) ∈

UP , we get ad−1 ≡ 0 (mod P ÔP ) and ad is invertible (mod P ÔP ). However,

f(x) ∈ σt(UP ) and thus, looking at the constant coefficient of f(x+ t), we get that

adt
d ≡

d∑
j=0

ajt
j ≡ 0 (mod P ÔP )

as a0, . . . , ad−1 ∈ P . Hence, we get t ∈ (P ÔP ) ∩ OP = POP .

Moving onto the proof of part (b), clearly we have (b) ⇒ (a). For the other di-

rection we recall that, by [7, Corollary 3.4], for every affine P -Eisenstein polynomial

f(x), either xdf(1/x) is P -Eisenstein, or there exists t ∈ OP such that f(x + t) is

P -Eisenstein. We are left to prove that we can choose t ∈ OS . Let GP be a set

of representatives in OP of OP /P and let HP be a set of representatives in OS of

OS/(P ∩ OS). By 1.(c) we can write⊔
t∈HP

σt(UP ) =
⋃

t∈OS

σt(UP ) ⊆
⋃

t̃∈OP

σt̃(UP ) =
⊔

t̃∈GP

σt̃(UP ).

Now using 1. and the fact that |HP | = |OS/(P ∩ OS)| = |OP /P | = |GP | we get⊔
t∈HP

σt(UP ) =
⋃

t∈OS

σt(UP ) =
⋃

t̃∈OP

σt̃(UP ) =
⊔

t̃∈GP

σt̃(UP ), (20)

which yields the claim.

For part (c), notice that If f(x) =
∑d

j=0 ajx
j is a shifted P -Eisenstein poly-

nomial, then ad /∈ P . However, if xdf(1/x) =
∑d

j=0 ad−jx
j is P -Eisenstein, then

ad ∈ P .
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For every P ∈ S, we define

inv : Ôd+1
P → Ôd+1

P , f(x) 7→ xdf(1/x).

For P ∈ S, let VP be as in (19); then we define

WP = VP ∪ inv(UP ). (21)

This yields a system for affine Eisenstein polynomials as WP ∩Od+1
S represents affine

P -Eisenstein polynomials by Lemma 2.

Now we are ready to compute the higher moments of the Eisenstein polynomials,

the shifted Eisenstein polynomials and the affine Eisenstein polynomials.

Theorem 5. Let F be a global function field with full field of constants given by Fq.

Let d ≥ 3 be a positive integer. Let ∅ ≠ S ⊊ PF and let OS be the holomorphy ring

of S. Define the systems (UP )P∈S , (VP )P∈S, and (WP )P∈S as in Equations (17),

(19) and (21), respectively. Then all moments exist for all three of these systems

and are given by Equation (11), where

µP (UP ) =

(
1− q− deg(P )

)2
qd deg(P )

(22)

for the system (UP )P∈S,

µP (VP ) =

(
1− q− deg(P )

)2
q(d−1) deg(P )

(23)

for the system (VP )P∈S and

µP (WP ) =
(1− q− deg(P ))2

(
1 + qdeg(P )

)
qd deg(P )

(24)

for the system (WP )P∈S.

Proof. First we note that UP is clopen and that inv and σt are homeomorphisms,

and thus VP and WP are clopen too. Hence, the boundary of each of those sets is

empty. Next, we compute µP (UP ), µP (VP ) and µP (WP ). Clearly we have

µP (UP ) =
(
1− µP (P ÔP )

)
µP (P ÔP )

d−1
(
µP (P ÔP )− µP (P ÔP )

2
)

=
(
1− q− deg(P )

)
q−(d−1) deg(P )

(
q− deg(P ) − q−2 deg(P )

)
=

(1− q− deg(P ))2

qd deg(P )
.
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Using Equation (20) and the fact that shifts preserve the measure, we obtain

µP (VP ) = |OS/(P ∩ OS)|µP (UP ) =

(
1− q− deg(P )

)2
q(d−1) deg(P )

.

Again using Equation (20) and Lemma 2 (c) we get

WP = inv(UP ) ⊔
⊔

t∈HP

σt(UP ).

As the shifts and inv preserve the measure, we get

µP (WP ) = (1 + |GP |)µP (UP ) = (1 + qdeg(P ))
(1− q− deg(P ))2

qd deg(P )
.

We are only checking the Conditions (7), (8), (9), (10) for the system (WP )P∈S

corresponding to affine Eisenstein polynomials. The estimates for (UP )P∈S and

(VP )P∈S follow similarly due to the inclusions UP ⊆ VP ⊆ WP .

Let P ∈ S, D ∈ DS , and suppose f ∈ WP ∩ L(D)d+1. Either xdf(1/x) ∈
UP ∩ L(D)d+1 or f(x) ∈ VP ∩ L(D)d+1. For any c′ > 0 we have

|{P ∈ S | deg(P ) > c′ deg(D), f ∈ WP ∩ L(D)d+1}|
≤|
{
P ∈ S | deg(P ) > c′ deg(D), f ∈ VP ∩ L(D)d+1

}
|

+ |{P ∈ S | deg(P ) > c′ deg(D), xdf(1/x) ∈ UP ∩ L(D)d+1}|
=: I + II.

Note that the coefficients of xdf(1/x) are just a permutation of the coefficients of

f(x) and hence, II ≤ I. Thus, it is enough to estimate I.

Let f ∈ VP ∩ L(D)d+1 and denote by Disc(f(x)) the discriminant of f(x). We

first consider the case Disc(f(x)) ̸= 0. Let b ∈ OS be such that f(x + b) ∈ UP .

Since the discriminant is invariant under a shift, Disc(f(x)) = Disc(f(x+b)). As the

discriminant is the Sylvester matrix of the resultant of f(x+ b) and (f(x+ b))′, we

get Disc(f(x)) ∈ P as all but the leading coefficients of f(x+ b) and (f(x+ b))′ are

elements of P . Furthermore, as f ∈ L(D) and the discriminant is a homogeneous

polynomial of degree d(d− 1) in the coefficients of f , we have Disc(f(x)) ∈ L(d(d−
1)D). Hence, we obtain by the same reasoning as for the coprime n-tuples in the

proof of Theorem 4,

|{P ∈ S | deg(P ) > c′ deg(D), f ∈ VP ∩ L(D)d+1}|
≤ 2|{P ∈ S | deg(P ) > c′ deg(D),Disc(f(x)) ∈ P ∩ L(d(d− 1)D)}|

≤ 2d(d− 1)

c′
.

Now suppose Disc(f(x)) = 0. Then f(x) is inseparable. Therefore, we can write

f(x) = g(xpk

) for some k ∈ N, where g(x) is separable. Hence Disc(g(x)) ̸= 0. By
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assumption there exists some b such that f(x+ b) is P -Eisenstein and thus, we get

that

f(x+ b) = g((x+ b)p
k

) = g(xpk

+ bp
k

)

is P -Eisenstein. Hence, g(x+ bp
k

) is P -Eisenstein. Thus, we can apply the previous

argument for g and obtain

|{P ∈ S | deg(P ) > c′ deg(D), f ∈ VP ∩ L(D)d}|

≤ |{P ∈ S | deg(P ) > c′ deg(D), g ∈ VP ∩ L(D)d/p
k

}|

≤ 2d(d− 1)

c′
.

Next we are going to verify Conditions (9), (10). For this we fix some moment

0 ̸= n ∈ N.
As for coprime pairs we choose α = 1 and c′ = 1

2n . We estimate the size of inter-

sections of WP1 ,WP2 , . . . ,WPn for distinct P1, . . . , Pn with deg(Pj) ≤ 1
2n deg(D) for

j ∈ {1, 2, . . . , n}. As before D ∈ DS with deg(D) ≥ C for some constant C depend-

ing only on n, d. Let f ∈
⋂n

i=1 WPi for each Pi, then either f(x+ ti) is Pi-Eisenstein

for some ti ∈ OS , or x
df(1/x) is Pi-Eisenstein. If f(x+ ti) is Pi-Eisenstein then we

have

ad(x+ ti)
d + ad−1(x+ ti)

d−1 + · · ·+ a0 = a′dx
d + a′d−1x

d−1 + · · ·+ a′0

for some a′d, a
′
d−1, . . . , a

′
0 ∈ OS . Thus, we can express a′d−1, a

′
d−2, a

′
d−3 as functions

of ad−3, . . . , ad and ti:

a′d−1 = ad−1 +

(
d

1

)
tiad

a′d−2 = ad−2 +

(
d− 1

1

)
tiad−1 +

(
d

2

)
t2i ad

a′d−3 = ad−3 +

(
d− 2

1

)
tiad−2 +

(
d− 1

2

)
t2i ad−1 +

(
d

3

)
t3i ad.

As f(x+ ti) is Pi-Eisenstein, we get

ad−1 +

(
d

1

)
tiad ≡ 0 (mod Pi)

ad−2 +

(
d− 1

1

)
tiad−1 +

(
d

2

)
t2i ad ≡ 0 (mod Pi)

ad−3 +

(
d− 2

1

)
tiad−2 +

(
d− 1

2

)
t2i ad−1 +

(
d

3

)
t3i ad ≡ 0 (mod Pi).
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Therefore, given ad and ti, from the first equation, ad−1 (mod Pi) is fixed and we

denote it by ad−1(ad, ti). Using the other equations, we also get that ad−2 and ad−3

are uniquely determined modulo Pi by ad and ti and we denote the corresponding

elements modulo Pi by ad−2(ad, ti) and ad−3(ad, ti) respectively. If xdf(1/x) is

Pi-Eisenstein then we must have ad−1, ad−1, ad−3 ∈ Pi as d ≥ 3.

We partition P1, P2, . . . , Pn into Q1, Q2, . . . , Qn−k and S1, S2, . . . , Sk, where k ∈
{0, n} are valid choices. Suppose xdf(1/x) is Eisenstein with respect to Q1, Q2, . . . ,

Qn−k and f(x) is shifted Eisenstein with respect to S1, S2, . . . , Sk. We count the

number of such f for a given partition. The restriction on xdf(1/x) implies that

ad−1 and ad−2 both are in Q1, Q2, . . . , Qn−k. Then, since f is shifted Eisenstein

with respect to each Si, for each Si there exists some ti such that f(x + ti) is Si-

Eisenstein. This implies that the coefficients of f satisfy the following system of

equations:

ad−1 = ad−1(ad, ti) (mod Si)

ad−2 = ad−2(ad, ti) (mod Si)

ad−3 = ad−3(ad, ti) (mod Si) (25)

ad−1 = 0 (mod Qm)

ad−2 = 0 (mod Qm)

for each Si for all i ∈ {1, . . . , k} and each Qm with m ∈ {1, . . . , n − k}. Using the

Chinese Remainder Theorem and the fact that Pi ∩ OS and Pj ∩ OS are coprime

for Pi ̸= Pj (by [17, Proposition 3.2.9.]), we see that the coefficients ad−1, ad−2

are uniquely determined in OS/(OS ∩
⋂k

i=1 Si ∩
⋂n−k

m=1 Qm) and ad−3 is uniquely

determined in OS/(OS ∩
⋂k

i=1 Si), once we have fixed ad ∈ L(D) and ti ∈ OS/Pi.

This readily implies that

|{a ∈ L(D)d+1 : f(x) ∈
k⋂

i=1

VPi
, xdf(1/x) ∈

n−k⋂
m=1

UQm
}|

≤ |L(D)| · q
∑k

i=1 deg(Si) · |L(D) ∩
k⋂

i=1

Si ∩
n−k⋂
m=1

Qm|2 · |L(D) ∩
k⋂

i=1

Si| · |L(D)|d−3

= |L(D)|d+1
n∏

j=1

q−2 deg(Pj),

(26)

where we have used for the first inequality that ad ∈ L(D), a0, . . . , ad−4 ∈ L(D)

and that we can restrict ourselves to |OSi
/Si| = qdeg(Si) choices for ti by Lemma 2.

Equation (16) allows us to pass to the third line of Equation (26). Summing over
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all possible partitions, we get

|L(D)d+1 ∩
n⋂

j=1

WPj | ≤ 2nqℓ(D)(d+1)
n∏

j=1

q−2 deg(Pj).

Since
∑

P∈PF
q−2 deg(P ) is dominated by the Zeta function Z(q−2), and since Z(q−2)

converges (see [17, Proposition 5.1.6.]),
∑

P∈PF
q−2 deg(P ) converges too.

4.3. Rectangular Unimodular Matrices

In this subsection we compute all higher moments of rectangular unimodular ma-

trices over function fields. Rectangular unimodular matrices have already been

considered in the literature in similar situations. Namely, their density over num-

ber fields was calculated in [13]; their density over function fields was done in [7, 10],

and their expected value over rationals was established in [12].

Let us recall the definition of rectangular unimodular matrices over a Dedekind

domain. Let D be a Dedekind domain and n,m ∈ N with n < m. A matrix

M ∈ Matn×m(D) is called rectangular unimodular, if and only if M mod P has

full rank for all non-zero prime ideals P of D [13, Proposition 3]. This is equivalent

to saying that the matrix has a basic minor which is not contained in P ÔP , where

a basic minor of a matrix is the determinant of a square submatrix of maximal size.

Note that rectangular unimodular matrices in the case n = 1 correspond to coprime

pairs. We will use Theorem 3 and ideas of [12] to compute all higher moments of

rectangular unimodular matrices.

Theorem 6. Let n,m be positive integers such that n < m and F be a global

function field with full field of constants equal to Fq and ∅ ≠ S ⊊ PF . For any

P ∈ S, let VP be the set of matrices in Matn×m(ÔP ) for which the ideal generated

by its basic minors is contained in P ÔP , and let I be the set of matrices contained

in infinitely many VP . We define UP = VP \ I.
Then the system (UP )P∈S satisfies the conditions of Theorem 3, and the higher

moments are given by Equation (11), where

µP (UP ) = 1−
n−1∏
i=0

(
1− q−deg(P )(m−i)

)
. (27)

Proof. Equation (27) holds true due to the computation in the proof of [7, Theorem

4.4] and the fact that µP (VP ∩ I) = 0 (by Lemma 1). We are left to check that the

assumptions of Theorem 3 are satisfied.

We start by noting that VP is clopen and I is closed, and hence µP (∂UP ) ≤
µP (I) = 0 by Lemma 1. Condition (7) is satisfied as shown in [7, Theorem 13]. We

want to show Condition (8) is satisfied for α = 1. When M ∈ UP , by definition,
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there exist some n×n submatrix A such that det(A) ̸= 0. As M ∈ UP ∩L(D)n×m,

we have A ∈ L(D)n×n. Thus,

vP (det(A)) = vP

(∑
σ∈Sn

sgn(σ)

n∏
i=1

Ai,σ(i)

)

≥ min
σ∈Sn∏n

i=1 Ai,σ(i) ̸=0

vP

(
n∏

i=1

Ai,σ(i)

)

≥ −nvP (D).

This implies, as for coprime n-tuples, that for D ∈ DS we have∑
P∈S

deg(P )vP (det(A)) = −
∑

P∈PF \S

deg(P )vP (det(A))

≤
∑

P∈PF \S

deg(P )nvP (D)

≤ ndeg(D).

Hence, we get for for any constant c′ > 0,∑
P∈S

deg(P )≥c′ deg(D)

deg(P )vP (det(A)) ≤
∑
P∈S

deg(P )vP (det(A)) ≤ n deg(D).

Since 0 ̸= det(A) ∈ P ÔP , and P = {x ∈ F | vP (x) ≥ 1}, we have

c′ deg(D)|{P ∈ S : deg(P ) > c′ deg(D),M ∈ UP ∩ L(D)n×m
I }| ≤ ndeg(D).

Hence Condition (8) is satisfied for any c′ > 0.

Now we check Conditions (9) and (10). For each A ∈ L(D)
n×n

such that 0 ̸=
det(A) ∈

⋂r
i=1 Pi, by definition, there exists M ∈

⋂r
i=1 UPi

∩L(D)I
n×m

containing

A as a submatrix. There are at most
(
m
n

)
|L(D)|nm−n2

such choices per matrix M .

So, we have

|
r⋂

i=1

UPi
∩ L(D)I

n×m| ≤
(
m

n

)
|L(D)|nm−n2

|{A ∈ L(D)
n×n | 0 ̸= det(A) ∈

r⋂
i=1

Pi}|.

Fix an arbitrary D ∈ DS . Define ϕ1 to be the inclusion map Matn×n(L(D)) →
Matn×n(OS), and denote the quotient map Matn×n(OS) → Matn×n(OS/

⋂r
i=1 Pi) by

ϕ2. Let ϕ = ϕ2 ◦ ϕ1. As {A ∈ L(D)
n×n | 0 ̸= det(A) ∈

⋂r
i=1 Pi} is a subset of
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Matn×n(L(D)), we get

|{A ∈L(D)
n×n | 0 ̸= det(A) ∈

r⋂
i=1

Pi}|

≤ |{B ∈ Matn×n(OS/
r⋂

i=1

Pi) | det(B) = 0}| · |ker(ϕ)|

= |{B ∈ Matn×n(OS/
r⋂

i=1

Pi) | det(B) = 0}| · |L(D) ∩
r⋂

i=1

Pi|n
2

.

Recall that Pi ∩ OS and Pj ∩ OS are distinct maximal ideals in OS for Pi ̸= Pj

(see [17, Proposition 3.2.9.]) and therefore, by the Chinese Remainder Theorem,

the following is an isomorphism of OS-modules:

π : Matn×n(OS/
r⋂

i=1

Pi) →
r∏

i=1

Matn×n(OS/Pi),(
ajk +

r⋂
i=1

Pi

)
1≤j,k≤n

7→ ((ajk + P1)1≤j,k≤n, . . . , (ajk + Pr)1≤j,k≤n) .

Clearly we have that det(ajk +
⋂r

i=1 Pi) ≡ 0 (mod
⋂r

i=1 Pi) if and only if det(ajk +

Pi) ≡ 0 (mod Pi) for all i ∈ {1, . . . , r}. Therefore,

|{B ∈ Matn×n(OS/
r⋂

i=1

Pi) | det(B) = 0}| =
r∏

i=1

|{Bi ∈ Matn×n(OS/Pi) | det(Bi) = 0}|.

We know that the quotient ring OS/Pi is isomorphic to Fqdeg(Pi) (see [17, Proposition

3.2.9.]). Hence, we have

|{Bi ∈ Matn×n(OS/Pi) | det(Bi) = 0}| = |Matn×n(Fqdeg(Pi)) \GLn×n(Fqdeg(Pi))|

= qdeg(Pi)n
2

−
n−1∏
k=0

(qdeg(Pi)n − qdeg(Pi)k)

≤ 2nqdeg(Pi)n(n−1).

By Equation (16), there exist a constant C > 0 such that for all D ∈ DS with

deg(D) ≥ C, we have

|L(D) ∩
r⋂

i=1

Pi| = qℓ(D)
r∏

j=1

q− deg(Pj).
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Now, combining everything, we have

|
r⋂

i=1

UPi ∩ L(D)n×m|

≤
(
m

n

)
q(nm−n2) deg(D)qℓ(D)n2

r∏
j=1

q−n2 deg(Pj)
r∏

i=1

(
2nqdeg(Pi)n(n−1)

)
= C ′qnmℓ(D)

r∏
j=1

q−n deg(P )

for a constant C ′ > 0 depending only on n,m. Observe that
∑

P∈PF

q−n deg(P ) is the

Zeta function Z(q−n). By [17, Proposition 5.1.6.], it converges when n > 1. The

case n = 1 corresponds to coprime m-tuples and is covered by Theorem 4.
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