#A20 INTEGERS 25 (2025)

A NOTE ON CONGRUENCES FOR GENERALIZED CUBIC
PARTITIONS MODULO PRIMES

Russelle Guadalupe
Institute of Mathematics, University of the Philippines, Diliman, Quezon City,
Philippines
rguadalupe@math.upd.edu.ph

Received: 7/28/24, Revised: 9/4/24, Accepted: 2/13/25, Published: 2/21/25

Abstract
Recently, Amdeberhan, Sellers, and Singh introduced the notion of a generalized
cubic partition function a.(n) and proved two isolated congruences via modular
forms, namely, a3(7n +4) = 0 (mod 7) and a5(11n + 10) = 0 (mod 11). In this
paper, we provide another proof of these congruences by using classical g-series
manipulations. We also give infinite families of congruences for a.(n) for primes

p#1 (mod 8).

1. Introduction

Throughout this paper, let f,, := [[,~,(1 —¢™") for a positive integer m and a
complex number ¢ with |¢| < 1. Recall that a partition of a positive integer n
is a nonincreasing sequence of positive integers, known as its parts, whose sum is
n. A cubic partition of n is a partition of n whose even parts may appear in two
colors. Let a(n) be the number of cubic partitions of n and set a(0) := 1. Then the
generating function of a(n) is

o

" 1
a(n)q" = —-.
20" =g
Chan [3] showed that a(3n+2) =0 (mod 3) by establishing the remarkable identity
o0 3 £3
Z a(3n+2)q" = Sfifi ,
fifs

n=0

which is an analogue of the identity of Ramanujan [4, pp. 210-213] given by

o f5
> pBn+4)g" =57,
n=0 1

where p(n) is the number of partitions of n.
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Recently, Amdeberhan, Sellers, and Singh [2] introduced the notion of a general-
ized cubic partition of n, which is a partition of n whose even parts may appear in
¢ > 1 different colors. Let a.(n) be the number of such generalized cubic partitions
of n and set a.(0) := 1. Then the generating function of a.(n) is

oo - 1
nz::oac(n)q = 7f1f2671.

Using the theory of modular forms, they proved the following congruences for a.(n)
modulo 7 and 11.

Theorem 1 ([2]). For alln >0,
az(7fn+4) =0 (mod 7), (1)
as(11n+10) =0 (mod 11). (2)
In this paper, we offer another proof of Theorem 1 using classical g-series manip-
ulations. We also provide infinite families of congruences for a.(n) modulo primes

p#1 (mod 8).

The rest of the paper is organized as follows. In Section 2, we present another
proof of Theorem 1 using the identities of Euler and Ramanujan. In Section 3, we

prove two infinite families of congruences for a.(n) modulo primes p # 1 (mod 8)
using another identity of Ramanujan and the result of Ahlgren [1].

2. Another Proof of Theorem 1

Proof. To prove Theorem 1, we recall the identity of Euler [5, (1.7.1)]

oo

fi= ) (Frgr et 3)

n=—oo

and the identity of Ramanujan [5, (10.7.3)]

RS @

By the binomial theorem, we have f; = f{ (mod 7), so from Equations (3) and

n—=——oo

S e = -y = LI
g L1
o Wiz = o s
=L S () em + OO (o 7). (5)
I
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We consider the equation

3m2—|—m+3n2—|—n
2 2

=4 (mod 7),
which is equivalent to
(6m +1)> 4 (6n+1)>=0 (mod 7). (6)

Since 7 = 3 (mod 4), it follows that —1 is a quadratic nonresidue modulo 7. Thus,
the solution of Equation (6) is 6m+1=6n+1=0 (mod 7). Extracting the terms
containing ¢"*** on both sides of Equation (5), dividing by ¢*, and then replacing
q" with ¢, we get Equation (1).

On the other hand, we have fi; = fi' (mod 11), so Equation (4) implies that

o0

Za (n)q" = 1 <i5>2
° N3 fn 2

n=0

(7)

We consider the equation

2 2
STAM L SVTHR 1) (mod 11),
2 2
which is equivalent to

(6m+1)*+ (6n+1)>=0 (mod 11). (8)

Since 11 = 3 (mod 4), we have that —1 is a quadratic nonresidue modulo 11. Thus,
the solution of Equation (8) is 6m + 1 = 6n+ 1 = 0 (mod 11). Extracting the
Hn+10 oy both sides of Equation (7), dividing by ¢'°, and then
replacing ¢*! with ¢, we arrive at Equation (2). O

terms containing ¢

3. Congruences for a.(n) Modulo Primes p Z1 (mod 8)

We now prove two infinite families of congruences for a.(n) modulo primes p # 1
(mod 8). We first give the following result for primes p = 5,7 (mod 8), which
generalizes Equation (1) in Theorem 1.

Theorem 2. Let p = 5,7 (mod 8) be a prime and 0 <1 < p— 1 be a nonnegative
integer with p | 81 + 3. Then for alln >0,

ap—a(pn+1) =0 (mod p). (9)
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Proof. We start with the following identity of Ramanujan [5, (10.7.7)]

5 _ N

f12 _ Z (_1)n(3n+1)q3n2+2n. (10)

n=—oo

With fo, = f§ (mod p), we see from Equations (3) and (10) that

= 1 1 f3
ap-a(n)q" = =7 h
2 AfEt e S
- >
= T Z (_1)m+n(3m + 1)q3m +2m+n(3n+1)/2 (HlOd p).
2p m,n=—oo
(11)
We now consider the equation
1
3m? +2m + % =1 (mod p),
which can be written as
26m +2)2+ (6n+1)2=3(81+3)=0 (mod p). (12)

Since p = 5,7 (mod 8), we see that —2 is a quadratic nonresidue modulo p. Thus,
the solution of Equation (12) is 6m +2=6n+1=0 (mod p). We get 3m+1=0
(mod p), and extracting the terms containing ¢P**! on both sides of Equation (11),
dividing by ¢!, and then replacing ¢” with ¢ yield Equation (9). O

We next prove the analogous result for primes p = 3,7 (mod 8), which may be
seen as a generalization of Equation (2) in Theorem 1.

Theorem 3. Let p > 7 be a prime with p = 3,7 (mod 8). Then for alln > 0,

2 _
ap—6 <pn + 13(le)> =0 (mod p). (13)
Proof. Since fa, = f} (mod p),
S oo = — = 2 (a ) (14
— AT f h

Let

(oo}

w12
ZA(n)q =g

n=0
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Then we have the following identity [1, p. 223]

A (pn + 13(’;;”) = ep?A <Z) , (15)

where p=7,11 (mod 12) is a prime and

1 ifp=7 (mod 8),
€ =
-1 ifp=3 (mod8).

Asp>Tandp=3,7 (mod 8), we know that p = 7,11, 19,23 (mod 24),s0p = 7,11
(mod 12). Thus, applying Equation (15) to Equation (14) yields

s (o B0 i DY L

for any n > 0, completing the proof of Equation (13). O
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