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Abstract

Recently, Amdeberhan, Sellers, and Singh introduced the notion of a generalized
cubic partition function ac(n) and proved two isolated congruences via modular
forms, namely, a3(7n + 4) ≡ 0 (mod 7) and a5(11n + 10) ≡ 0 (mod 11). In this
paper, we provide another proof of these congruences by using classical q-series
manipulations. We also give infinite families of congruences for ac(n) for primes
p ̸≡ 1 (mod 8).

1. Introduction

Throughout this paper, let fm :=
∏

n≥1(1 − qmn) for a positive integer m and a

complex number q with |q| < 1. Recall that a partition of a positive integer n

is a nonincreasing sequence of positive integers, known as its parts, whose sum is

n. A cubic partition of n is a partition of n whose even parts may appear in two

colors. Let a(n) be the number of cubic partitions of n and set a(0) := 1. Then the

generating function of a(n) is

∞∑
n=0

a(n)qn =
1

f1f2
.

Chan [3] showed that a(3n+2) ≡ 0 (mod 3) by establishing the remarkable identity

∞∑
n=0

a(3n+ 2)qn = 3
f3
3 f

3
6

f4
1 f

4
2

,

which is an analogue of the identity of Ramanujan [4, pp. 210–213] given by

∞∑
n=0

p(5n+ 4)qn = 5
f5
5

f6
1

,

where p(n) is the number of partitions of n.
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Recently, Amdeberhan, Sellers, and Singh [2] introduced the notion of a general-

ized cubic partition of n, which is a partition of n whose even parts may appear in

c ≥ 1 different colors. Let ac(n) be the number of such generalized cubic partitions

of n and set ac(0) := 1. Then the generating function of ac(n) is

∞∑
n=0

ac(n)q
n =

1

f1f
c−1
2

.

Using the theory of modular forms, they proved the following congruences for ac(n)

modulo 7 and 11.

Theorem 1 ([2]). For all n ≥ 0,

a3(7n+ 4) ≡ 0 (mod 7), (1)

a5(11n+ 10) ≡ 0 (mod 11). (2)

In this paper, we offer another proof of Theorem 1 using classical q-series manip-

ulations. We also provide infinite families of congruences for ac(n) modulo primes

p ̸≡ 1 (mod 8).

The rest of the paper is organized as follows. In Section 2, we present another

proof of Theorem 1 using the identities of Euler and Ramanujan. In Section 3, we

prove two infinite families of congruences for ac(n) modulo primes p ̸≡ 1 (mod 8)

using another identity of Ramanujan and the result of Ahlgren [1].

2. Another Proof of Theorem 1

Proof. To prove Theorem 1, we recall the identity of Euler [5, (1.7.1)]

f1 =

∞∑
n=−∞

(−1)nqn(3n+1)/2 (3)

and the identity of Ramanujan [5, (10.7.3)]

f5
1

f2
2

=

∞∑
n=−∞

(−1)n(6n+ 1)qn(3n+1)/2. (4)

By the binomial theorem, we have f7 ≡ f7
1 (mod 7), so from Equations (3) and

(4),

∞∑
n=0

a3(n)q
n =

1

f1f2
2

≡ 1

f7
· f

5
1

f2
2

· f1

≡ 1

f7

∞∑
m,n=−∞

(−1)m+n(6m+ 1)q(3m
2+m)/2+(3n2+n)/2 (mod 7). (5)
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We consider the equation

3m2 +m

2
+

3n2 + n

2
≡ 4 (mod 7),

which is equivalent to

(6m+ 1)2 + (6n+ 1)2 ≡ 0 (mod 7). (6)

Since 7 ≡ 3 (mod 4), it follows that −1 is a quadratic nonresidue modulo 7. Thus,

the solution of Equation (6) is 6m+1 ≡ 6n+1 ≡ 0 (mod 7). Extracting the terms

containing q7n+4 on both sides of Equation (5), dividing by q4, and then replacing

q7 with q, we get Equation (1).

On the other hand, we have f11 ≡ f11
1 (mod 11), so Equation (4) implies that

∞∑
n=0

a5(n)q
n =

1

f1f4
2

≡ 1

f11
·
(
f5
1

f2
2

)2

≡ 1

f11

∞∑
m,n=−∞

(−1)m+n(6m+ 1)(6n+ 1)q(3m
2+m)/2+(3n2+n)/2 (mod 11).

(7)

We consider the equation

3m2 +m

2
+

3n2 + n

2
≡ 10 (mod 11),

which is equivalent to

(6m+ 1)2 + (6n+ 1)2 ≡ 0 (mod 11). (8)

Since 11 ≡ 3 (mod 4), we have that −1 is a quadratic nonresidue modulo 11. Thus,

the solution of Equation (8) is 6m + 1 ≡ 6n + 1 ≡ 0 (mod 11). Extracting the

terms containing q11n+10 on both sides of Equation (7), dividing by q10, and then

replacing q11 with q, we arrive at Equation (2).

3. Congruences for ac(n) Modulo Primes p ̸≡ 1 (mod 8)

We now prove two infinite families of congruences for ac(n) modulo primes p ̸≡ 1

(mod 8). We first give the following result for primes p ≡ 5, 7 (mod 8), which

generalizes Equation (1) in Theorem 1.

Theorem 2. Let p ≡ 5, 7 (mod 8) be a prime and 0 ≤ l ≤ p− 1 be a nonnegative

integer with p | 8l + 3. Then for all n ≥ 0,

ap−4(pn+ l) ≡ 0 (mod p). (9)
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Proof. We start with the following identity of Ramanujan [5, (10.7.7)]

f5
2

f2
1

=

∞∑
n=−∞

(−1)n(3n+ 1)q3n
2+2n. (10)

With f2p ≡ fp
2 (mod p), we see from Equations (3) and (10) that

∞∑
n=0

ap−4(n)q
n =

1

f1f
p−5
2

≡ 1

f2p
· f

5
2

f2
1

· f1

≡ 1

f2p

∞∑
m,n=−∞

(−1)m+n(3m+ 1)q3m
2+2m+n(3n+1)/2 (mod p).

(11)

We now consider the equation

3m2 + 2m+
n(3n+ 1)

2
≡ l (mod p),

which can be written as

2(6m+ 2)2 + (6n+ 1)2 ≡ 3(8l + 3) ≡ 0 (mod p). (12)

Since p ≡ 5, 7 (mod 8), we see that −2 is a quadratic nonresidue modulo p. Thus,

the solution of Equation (12) is 6m+ 2 ≡ 6n+ 1 ≡ 0 (mod p). We get 3m+ 1 ≡ 0

(mod p), and extracting the terms containing qpn+l on both sides of Equation (11),

dividing by ql, and then replacing qp with q yield Equation (9).

We next prove the analogous result for primes p ≡ 3, 7 (mod 8), which may be

seen as a generalization of Equation (2) in Theorem 1.

Theorem 3. Let p ≥ 7 be a prime with p ≡ 3, 7 (mod 8). Then for all n ≥ 0,

ap−6

(
pn+

13(p2 − 1)

24

)
≡ 0 (mod p). (13)

Proof. Since f2p ≡ fp
2 (mod p),

∞∑
n=0

ap−6(n)q
n =

1

f1f
p−7
2

≡ 1

f2p
· f

7
2

f1
(mod p). (14)

Let
∞∑

n=0

A(n)qn :=
f7
2

f1
.
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Then we have the following identity [1, p. 223]

A

(
pn+

13(p2 − 1)

24

)
= ϵp2A

(
n

p

)
, (15)

where p ≡ 7, 11 (mod 12) is a prime and

ϵ =

{
1 if p ≡ 7 (mod 8),

−1 if p ≡ 3 (mod 8).

As p ≥ 7 and p ≡ 3, 7 (mod 8), we know that p ≡ 7, 11, 19, 23 (mod 24), so p ≡ 7, 11

(mod 12). Thus, applying Equation (15) to Equation (14) yields

ap−6

(
pn+

13(p2 − 1)

24

)
≡ A

(
pn+

13(p2 − 1)

24

)
≡ 0 (mod p)

for any n ≥ 0, completing the proof of Equation (13).
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