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Abstract

This study explores the application of the complex-type Catalan transform to two

key recurrence sequences: the k-Jacobsthal and the fourth-order Jacobsthal se-

quence JF
n . We investigate the transformed sequences to reveal new structural

properties and relations. Additionally, we analyze the Hankel transforms of these

sequences, and the bounds for the norms of the matrices.

1. Introduction

Recurrence relations and their generalizations are important to the study of number

theory and combinatorics. The Jacobsthal sequence, defined recursively by

Jn = Jn−1 + 2Jn−2, for n ≥ 2,

has been generalized to the k-Jacobsthal sequence, where the recurrence involves

higher powers of the k, and the fourth-order Jacobsthal sequence, a more complex

relation that introduces higher-order terms. In this work, we apply a complex-

type Catalan transform (CTCT) to the k-Jacobsthal and fourth-order Jacobsthal

sequences. The complex-type Catalan transform (CTCT) of the k-Jacobsthal se-

quence C(i)[Jk,n] is given by

C(i)[Jk,n] =

∞∑
j=1

j

2n− j

(
2n− j

n− j

)
ijJk,j ,
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with C(i)[Jk,0] = 0. The generating function of the k-Jacobsthal sequence (Jk,n)n∈N

and the complex Catalan sequence (C
(i)
n )n∈N are given by

g(x) =
x

1− kx− 2x2
,

and

C(i)(x) =
1−

√
1− 4ix

2ix
,

respectively. The motivation for this study stems from the need to uncover deeper

combinatorial and algebraic connections between the Jacobsthal family of sequences

and well-known combinatorial constructs, particularly the Catalan numbers. Addi-

tionally, these results have potential applications in areas like digital communication

and cryptographic systems. A comprehensive collection of these sequences can be

found in the work of Sloane [12]. In recent years, the Catalan transform has at-

tracted significant interest as an effective method for uncovering new properties

and relationships among various integer sequences. This paper aims to provide a

detailed analysis of the utilization of the Catalan transform in the analysis of a

variety of sequences, including the k-Pell, k-Pell–Lucas, k-Jacobsthal, Padavon and

Fibonacci sequences [1], [2], [7], [10], [13], [15], and [21]. Properties of k-Jacobsthal

numbers and its identities are studied by Uygun and Jhala et al. [8] and [9]. From

the pioneering work by Hilton and Pederson in 1991 [5], which laid the foundation

for understanding the applications of Catalan numbers.

The work by Cvetković et al. [14] successfully applied the Catalan and Han-

kel transforms to well-known sequences, such as the Fibonacci numbers, providing

valuable insights into their algebraic properties and generating functions. Building

on this foundation, this paper aims to extend the analysis by applying the com-

plex Catalan transform to other sequence families, specifically the k-Jacobsthal and

fourth-order Jacobsthal sequences. Additionally, we explore the norms of the corre-

sponding matrices and investigate the Hankel transform of these sequences, further

contributing to the understanding of their structural characteristics. The Catalan

transform of integer sequences and k-balancing sequence were studied by Barry [3]

as well as by Patra and Kaabar [6], and data hiding techniques were also analyzed

[32].

Furthermore, [17], [18], [29], and [31] highlight the significance of the Hankel

transform, as elucidated in the works of Rajkovic, Petkovic, and Barry, in the con-

text of the sum of consecutive generalized Catalan numbers. The Catalan transform

in different contexts [19] and [20], ranging from combinatorial analysis to applica-

tions in network impedance [11] and incomplete generalized Jacobsthal polynomials

[16] have also been studied. New classes of Catalan-type numbers are discussed by

Kucukoglu [4]. A study on generalized fourth-order Jacobsthal sequences by Soykan

[22] and Merikoski et al. [23] discussed the spectral and Frobenius norms of a gen-

eralized Fibonacci r-circulant matrix. Solaki and et al. [24], [25], [26], [27], and [28]
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analyzed the bounds for the norms of circulant matrices. Mukhopadhyay et al. [30]

studied the Catalan transform in image steganography.

Sheppard and et al. [33] discussed the applications of the Hankel transform in op-

tical propagation to improve security by encoding secret data or waveforms through

a structured sequence, improving robustness and concealment. In recent studies,

the construction of general forms of ordinary generating functions for various fam-

ilies of numbers and multivariable polynomials has been extensively explored by

Simsek [34]. Additionally, generating functions for reciprocal Catalan-type sums

have been developed, providing insights into linear differentiation equations and p-

adic integral equations by Gun and Simsek [35]. Incorporating Fibonacci sequences

into classical cryptography and steganography techniques, such as Least Significant

Bit (LSB) encoding, has been shown to achieve high Peak Signal-to-Noise Ratio

(PSNR), enhancing data security and image quality in encryption methods given

by Sari et al. [36].

2. Preliminaries

The k-Jacobsthal sequence (Jk,n)n∈N is given by

Jk,n+1 = kJk,n + 2Jk,n−1, for all n ≥ 1,

with initial conditions Jk,0 = 0 and Jk,1 = 1. The first few members of (Jk,n)n∈N

are {0, 1, k, 2 + k2, 4k + k3, k4 + 6k2 + 4, k5 + 8k3 + 12k, k6 + 10k4 + 24k2 + 8, . . .}.
The fourth-order Jacobsthal sequence (JF

n ) is defined as

JF
n = JF

n−1 + JF
n−2 + JF

n−3 + 2JF
n−4, for all n ≥ 4,

with initial conditions JF
0 = 0, JF

1 = 1, JF
2 = 1, JF

3 = 2. The first few num-

bers are {0, 1, 1, 2, 4, 9, 17, 34, 68, 137, 273, 546, 1092, 2185, . . .}. The Catalan number

is defined by

Cn =
1

n+ 1

(
2n

n

)
,

and its generating function is

g(x) =
1−

√
1− 4x

2x
.

The first few Catalan numbers are {1, 2, 5, 14, 42, 132, 429, . . .}. The matrix form of

the Catalan transform of the k-Jacobsthal sequence (Jk,n)n∈N is given by


CJk,1
CJk,2
CJk,3
CJk,4

 =


1 1 0 0 0
2 2 1 0 0
5 5 3 1 0
14 14 9 4 1



Jk,1
Jk,2
Jk,3
Jk,4

 .
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The complex-type Catalan numbers is given by

C(i)
n =

1

n+ 1

(
2n

n

)
in.

The first few complex-type Catalan numbers are {i,−2,−5i, 14, 42i,−132,−429i, . . .}.
The Hankel matrix connected with the given sequence of real numbers is as follows:

Hn =


a0 a1 a2 . . .
a1 a2 a3 . . .
a2 a3 a4 . . .
...

...
...

. . .

 ,

and its Hankel matrix transform is given by

Han = det(ai+j−2),

where 1 ≤ i, j ≤ n+ 1.

In addition, the k-Jacobsthal polynomial is given by

Jk,n+1(x) = kJk,n(x) + 2Jk,n−1(x), for all n ≥ 2,

with initial conditions Jk,0(x) = 0;Jk,1(x) = 1. The first few polynomials are

{0, 1, k, k2+2x, k3+kx, k4+6k2x+4x2, . . .}. If we substitute P1(x) = −k, P2(x) =

−2, and Q0(x) = 0, Q1(x) = 1 in Theorem 13 of [34], we get the Binet formula for

the k-Jacobsthal polynomial.

3. The CTCT of the k-Jacobsthal Sequence (Jk,n)

Theorem 1. The generating function of the CTC sequence (C(i)[Jk,n])

is given by

g(xC(ix)) =
1−

√
1− 4ix

4(i− x)− k + (k − 2i)
√
1− 4ix

.

Proof. The generating function of the k-Jacobsthal sequence (Jk,n)n∈N is

g(x) =
x

1− kx− 2x2
,

and the CTC sequence is

C(i)(x) = C(ix) =
1−

√
1− 4ix

2ix
.
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Then

g(xC(ix)) =
xC(ix)

1− kxC(ix)− 2(xC(ix))2

=
1−

√
1−4ix
2i

1− k
(
1−

√
1−4ix
2i

)
− 2

(
1−

√
1−4ix
2i

)2 . (1)

Simplifying the above equation we get that, (C(i)[Jk,n]) is given by

g(xC(ix)) =
1−

√
1− 4ix

4(i− x)− k + (k − 2i)
√
1− 4ix

.

Theorem 2. For n ≥ 1 and k ≥ 2, we have

[Jk,n+1]
2 − Jk,n.Jk,n+2 = (−2)n .

Proof. By definition of the k-Jacobsthal sequence, (Jk,n)n∈N ,

[Jk,n+1]
2 − Jk,n.Jk,n+2 = (kJk,n + 2Jk,n−1)

2 − Jk,n.(kJk,n+1 + 2Jk,n)

= (k2 − 2)[Jk,n]
2
+ 4Jk,n−1(kJk,n + Jk,n−1)− kJk,n.Jk,n+1.

For different values of n ≥ 1 and k ≥ 2, we get (−2)n.

The first few terms of the sequence C(i)[Jk,n] consist of polynomials in k:

C(i)[Jk,1] =

1∑
j=1

j

2− j

(
2− j

1− j

)
ijJk,j = i,

C(i)[Jk,2] =

2∑
j=1

j

4− j

(
4− j

2− j

)
ijJk,j = i− k,

C(i)[Jk,3] =

3∑
j=1

j

6− j

(
6− j

3− j

)
ijJk,j = −ik2 − 2k,

C(i)[Jk,4] =

4∑
j=1

j

8− j

(
8− j

4− j

)
ijJk,j = k3 − 3ik2 − k − i,

C(i)[Jk,5] =

5∑
j=1

j

10− j

(
10− j

5− j

)
ijJk,j = ik4 + 4k3 − 3ik2 + 2k,

C(i)[Jk,6] =

6∑
j=1

j

12− j

(
12− j

6− j

)
ijJk,j = 8i+ 2k + 3ik2 + 6k3 + 5ik4 − k5.
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Using the coefficients of the complex-type Catalan transform of the k-Jacobsthal

sequence (Jk,n)n∈N , we can generate an infinite triangle. The first six rows of this

triangle are given in Table 1.

C(i)[Jk,1] i
C(i)[Jk,2] −1 i
C(i)[Jk,3] −i −2 0
C(i)[Jk,4] 1 −3i −1 −i
C(i)[Jk,5] i 4 −3i 2 0
C(i)[Jk,6] −1 5i 6 3i 2 8i

Table 1: Triangle form in first iteration for CTCT of the k-Jacobsthal sequence

We observe that the sequence along the first diagonal, given as (i, i, 0,−i, 0, . . .),

represents the complex-type Catalan transform of the sequence (1, 0, 2, 0, 4, . . .),

and the second diagonal sequence (−1,−2,−1, 2, . . .), represents the complex-type

Catalan transform of the sequence (i, 1, 0, 3, . . .), etc., which can be obtained from

the transform

an =

n∑
k=0

(
k

n− k

)
(−1)kinCi[bk].

The second iteration of the CTCT of the first five k-Jacobsthal numbers,

i.e., (C(i))2[Jk,n], are the polynomials in k.

For example,

(C(i))2[Jk,1] =

1∑
n=1

j

2− j

(
2− j

1− j

)
ijCi[Jk,j ] = −1,

(C(i))2[Jk,2] =

2∑
n=1

j

4− j

(
4− j

2− j

)
ijCi[Jk,j ] = −1− i+ k,

(C(i))2[Jk,3] =

3∑
n=1

j

6− j

(
6− j

3− j

)
ijCi[Jk,j ] = −2− 2i+ (2 + 2i)k − k2,

(C(i))2[Jk,4] = −5− 6i+ (4 + 6i)k − (3 + 3i)k2 + k3,

(C(i))2[Jk,5] = −15i− 14 + (13 + 20i)k − (6 + 12i)k2 + (4 + 4i)k3 − k4.

Using the coefficients of the second iteration of the complex-type Catalan trans-

form of the k-Jacobsthal sequence (Jk,n)n∈N , we can generate an infinite triangle.

The first five rows of this triangle are given in Table 2.

We observe that the first diagonal sequence, (−1,−1− i,−2− 2i,−6i− 5,−14−
15i, . . .), is identified as the complex-type Catalan transform (CTCT) of the se-

quence (i, i, 0,−i, 7−32i, . . .). Similarly, the second diagonal sequence, (1, 2+2i, 4−
6i, 13 + 20i, . . .), is the CTCT of the sequence (−i,−1− 2i, 10 + 8i, 3 + 40i, . . .).

We will now examine the Hankel matrix transform of the sequence C(i)[Jk,n].



INTEGERS: 25 (2025) 7

(C(i))2[Jk,1] −1
(C(i))2[Jk,2] 1 −1− i
(C(i))2[Jk,3] −1 2 + 2i −2− 2i
(C(i))2[Jk,4] 1 −3− 3i 4 + 6i −6i− 5
(C(i))2[Jk,5] −1 4 + 4i −6− 12i 13 + 20i −14− 15i

Table 2: Triangle form in second iteration for CTCT of the k-Jacobsthal sequence

4. Hankel Transform of CTCT of k-Jacobsthal Sequence

Let the Hankel determinant of the CTCT up to the nth term of the k-Jacobsthal

sequence (Jk,n)n∈N be represented by HC(i)[Jk,n]. Then we get the following de-

terminant values:

HC(i)[Jk,0] = det(0) = 0,

HC(i)[Jk,1] =

∣∣∣∣0 i
i i− k

∣∣∣∣ = 1,

HC(i)[Jk,2] =

∣∣∣∣∣∣
0 i i− k
i i− k −2k − ik2

i− k −2k − ik2 −i− k − 3ik2 + k3

∣∣∣∣∣∣ = 0,

HC(i)[Jk,3] = 1,

HC(i)[Jk,4] = 0.

We also establish bounds for the norms of the circulant matrices derived from the

k-Jacobsthal sequence.

Theorem 3. If A = [ai,j ] is an n×n matrix such that ai,j = Jk,n(mod(j−i,n)), then√
Jk,n · Jk,n−1

k
≤ ∥A∥2 ≤ Jk,n · Jk,n−1

k
− 1,

where n ≥ 2, ∥.∥2 is the spectral norm, and k = 1.

Proof. By our definition of A, it is of the form

A =


Jk,0 Jk,1 Jk,2 . . . Jk,n−1

Jk,n−1 Jk,0 Jk,1 . . . Jk,n−2

Jk,n−2 Jk,n−1 Jk,0 . . . Jk,n−3

...
...

...
. . .

...
Jk,1 Jk,2 Jk,3 . . . Jk,0

 .
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Clearly, we have

∥A∥2F = n

n−1∑
s=0

J2
k,s.

Let

D = (di,j) =

{
di,j = Jk,n(mod(j−i,n)), i ≥ j

di,j = 1, i < j
,

and

E = (ei,j) =

{
ei,j = Jk,n(mod(j−i,n)), i ≤ j

ei,j = 1, i > j
,

provided A = D ◦ E. Then

r1(D) = max
i

√∑
j

|di,j |2 =

√√√√n−1∑
t=0

J2
k,t =

√
1 + k2,

and

C1(E) = max
j

√∑
i

|ei,j |2 =

√√√√n−1∑
t=0

J2
k,t =

√
1 + k2.

By taking the Hadamard product, we get√
Jk,n · Jk,n−1

k
≤ ∥A∥2 ≤ 1 + k2 =

Jk,n · Jk,n−1

k
− 1.

Corollary 1. If A = [ai,j ] is an n×n matrix such that ai,j = Jk,n(mod(j+i,n)), then√
Jk,n · Jk,n−1

k
≤ ∥A∥2 ≤ Jk,n · Jk,n−1

k
− 1

where n ≥ 2, ∥.∥2 is the spectral norm, and k = 1.
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5. The CTCT of the Fourth-Order Jacobsthal Sequence JF
n and its Han-

kel Transform

The first few terms of the CTCT of the fourth-order Jacobsthal sequence are

(C(i))[JF
1 ] = i,

(C(i))[JF
2 ] = i− 1,

(C(i))[JF
3 ] = −2,

(C(i))[JF
4 ] = −i− 1,

(C(i))[JF
5 ] = 5i+ 2,

(C(i))[JF
6 ] = 31i− 3.

The first few terms of the second iteration of the CTCT of the fourth-order Jacob-

sthal sequence JF
n , i.e., (C(i))2[JF

k ], are given by

(C(i))2[JF
1 ] = 1,

(C(i))2[JF
2 ] = −i,

(C(i))2[JF
3 ] = 0,

(C(i))2[JF
4 ] = −1,

(C(i))2[JF
5 ] = −2i− 9,

(C(i))2[JF
6 ] = −21i− 36.

Let the Hankel determinant of the CTCT up to the nth term of the fourth-order Ja-

cobsthal sequence (JF
n )n∈N be represented by HC(i)[JF

n ]. Then we get the following

determinant values:

HC(i)[JF
1 ] = det(i) = 1,

HC(i)[JF
2 ] =

∣∣∣∣ i i− 1
i− 1 −2

∣∣∣∣ = 0,

HC(i)[JF
3 ] =

∣∣∣∣∣∣
i i− 1 −2

i− 1 −2 −i− 1
−2 −i− 1 5i+ 2

∣∣∣∣∣∣ = −18− 15i.

We also establish bounds for the norms of the circulant matrices derived from the

fourth-order Jacobsthal sequence.



INTEGERS: 25 (2025) 10

Theorem 4. If A = [ai,j ] is an n× n matrix such that ai,j = JF
k(mod(j−i,n)), then√

JF
k · JF

k−1

k
≤ ∥A∥2 ≤

JF
k · JF

k−1

k
, for all k ≥ 2.

where ∥.∥2 is the spectral norm.

Corollary 2. If A = [ai,j ] is an n× n matrix such that ai,j = JF
k(mod(j+i,n)), then√

JF
k · JF

k−1

k
≤ ∥A∥2 ≤

JF
k · JF

k−1

k
, for all k ≥ 2.

where ∥.∥2 is the spectral norm.

To compare the growth rates of the sequences as n increases, one can analyze

the ratio of consecutive terms. The recurrence relation is given by

Jk,n+1 = kJk,n + 2Jk,n−1, for all n ≥ 2,

with initial conditions Jk,0 = 0 and Jk,1 = 1. For the fourth-order Jacobsthal

sequence, this involves examining ratios such as Jk,n+1/Jk,n and JF
n /JF

n+1. In com-

putational contexts, such as algorithm performance, sequences with slower growth

rates may offer advantages.

6. Applications

The k-Jacobsthal sequence, when incorporated into the Q-matrix framework of size

p× p, provides a robust foundation for cryptographic systems. Embedding variable

shifts governed by a non-linear progression significantly reduces the predictability

of ciphertext patterns. Constructing the Q-matrix of size p × p with entries from

the k-Jacobsthal sequence

Qs
p =


Jk,s+p−1 Jk,s+p−2 + · · ·+ Jk,s · · · Jk,s+p−2

Jk,s+p−2 Jk,s+p−3 + · · ·+ Jk,s−1 · · · Jk,s+p−3

...
...

. . .
...

Jk,s+1 Jk,s + · · ·+ Jk,s−(p−2) · · · Jk,s
Jk,s Jk,s−1 + · · ·+ Jk,s−(p−1) · · · Jk,s−1

 ,

strengthens encryption significantly. This makes it harder for attackers to predict

shifts or deduce patterns from the ciphertext and provides enhanced cryptographic

strength compared to conventional approaches, such as those using Fibonacci se-

quences [36]. Similarly, the CTCT of the k-Jacobsthal sequence in the Q-matrix

encryption and decryption process demonstrates superior performance compared to

the Fibonacci sequence.
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7. Conclusion

We investigated the complex-type Catalan transform of k-Jacobsthal sequences and

fourth-order Jacobsthal sequences, deriving their generating functions and norms.

Furthermore, we defined and analyzed their Hankel transforms, revealing important

properties that contribute to the understanding of these sequences. Our results pro-

vide new insights into their algebraic and combinatorial structures, with potential

applications in number theory, cryptography, and signal processing.
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