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Abstract

A positive integer n is said to be cyclic if every group of size n is cyclic. Using
Erdős’s 1948 asymptotic formula for the counting function of cyclic numbers, we
show that the mean m(c, n) and the variance v(c, n) of the first n cyclic numbers
obey limn→∞ v(c, n)/(m(c, n))2 = 1/3, illustrating Taylor’s law of fluctuation scal-
ing. Under the Riemann Hypothesis, we prove that, if cn is the nth cyclic number,

then cn+1 − cn = o
(√

pn log pn
)
= o

(√
n log3/2 n

)
as n → ∞, which is a stronger

analogue of Cramér’s estimate for prime gaps. By analogy with Firoozbakht’s con-

jecture for primes, we conjecture that c
1/n
n > c

1/(n+1)
n+1 for every positive integer n

excluding n = 1, 2, 3 and 5; and that c
1/(n−1)
n > c

1/n
n+1 for every positive integer n

excluding n = 1; and that for every positive integer k, there exists a positive integer

N(k) such that, for all n > N(k), c
1/(n+k)
n > c

1/(n+k+1)
n+1 .

1. Introduction

A cyclic number is a positive integer n such that there exists only one group of size n,

up to isomorphism. Cyclic numbers (sequence A003277 in the On-Line Encyclopedia

of Integer Sequences [11], OEIS) provide a group-theoretic generalization of prime

numbers (OEIS A000040), since every prime number is a cyclic number. Szele [13]

proved that a positive integer n is a cyclic number if and only if gcd(n, φ(n)) = 1,

where gcd is the greatest common divisor and φ(n) is Euler’s totient function (the

number of positive integers up to n that are relatively prime to n).
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Because cyclic numbers generalize prime numbers, we aim to shed light on the

relationships among cyclic and prime or composite numbers (OEIS A002808). First,

we find the asymptotic behaviors of the mean and the variance of the first n cyclic

numbers, prime cyclic numbers, and composite cyclic numbers. Second, for the gaps

between cyclic numbers, we prove, under the Riemann Hypothesis, an analogue of

an estimate for prime gaps due to Cramér [5]. Our concluding section proposes

several conjectures inspired by Firoozbakht’s conjecture about primes and prime

gaps.

Cyclic numbers generalize prime numbers from both a group-theoretic perspec-

tive and a number-theoretic perspective. Hence, given an established or conjectured

group-theoretic or number-theoretic property of primes, it is natural to ask whether

a corresponding result holds for cyclic numbers, and vice-versa. For example, prop-

erties of cyclic numbers often involve modular equivalences: cyclic numbers are

natural numbers n satisfying ϕ(n)ϕ(n) ≡ 1 (modn); and Michon conjectured that

any divisor of a Carmichael number (which is a composite number k such that

ak−1 ≡ 1 (mod k) for every a coprime to k: OEIS A002997) is odd and cyclic (OEIS

A003277). Do such results and conjectures generalize to primes?

For any positive real x, let the number of primes that do not exceed x be

π(x) :=
∑
p≤x

p prime

1. (1)

We say that π(·) is the counting function of the primes (OEIS A000720). The prime

number theorem (PNT) states that

π(n) ∼ n

log n
, n → ∞.

Hadamard [9] and de la Vallée Poussin [14] proved the PNT. Apostol [1] and Bor-

dellès [2] give related background.

Let cn be the nth cyclic number and let the sequence of cyclic numbers be

c := (cn)n∈N = (1, 2, 3, 5, 7, 11, 13, 15, . . .). By analogy with (1), we define the cyclic

number counting function as the number of cyclic numbers that do not exceed x:

A(x) :=
∑
m≤x

m cyclic

1.

Let γ be the Euler–Mascheroni constant. In 1948, Erdős [6] proved that

A(n) ∼ ne−γ

log log log n
, n → ∞, (2)

and Pollack [12] proved a general power-series expansion of A(n) with the first three

terms

A(n) ∼ ne−γ

log log log n

(
1− γ

log log log n
+

γ2 + π2/12

(log log log n)2
+ · · ·

)
, n → ∞.
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From (2), it follows that

cn ∼ eγn log log log n, (3)

lim
n→∞

cn+1

cn
= 1,

lim
n→∞

n

cA(n)
= 1,

lim
n→∞

logA(n)

log n
= 1.

Using MATLAB, we computed the 1,164,951 cyclic numbers less than 4 × 106,

namely, 1, 2, 3, 5, 7, 11, 13, 15, 17, . . . , and their 1,164,950 gaps, namely, 1, 1, 2,

2, 4, 2, 2, 2, . . . . We then calculated the counting function of the cyclic numbers

A(n) := #{cm | cm ≤ n for n = 1, . . . , 4× 106}
= {1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, . . . , }.

For n as large as 4× 106, the ratio of the counting function A(n) to Erdős’s asymp-

totic expression in (2) slightly exceeds 1/2, and the ratio of the counting function

A(n) to Pollack’s asymptotic expression in (1) slightly exceeds 0.3. This slow conver-

gence leads us to consider both statistical and number-theoretic methods to study

the growth of cyclic numbers.

Less seems to be known about the composite cyclic numbers (15, 33, 35, 51,

65, 69, 77, 85, 87, 91, . . .) (all but the first element of the sequence of non-prime

cyclic numbers, OEIS A050384) or the sequence (1, 1, 2, 2, 4, 2, 2, 2, 2, 4, . . .)

of gaps between consecutive cyclic numbers (cf. OEIS A097884) or the sequence

(18, 2, 16, 14, 4, 8, . . .) of gaps between consecutive composite cyclic numbers.

2. Asymptotic Moments, Variance Function, and Taylor’s Law of Cyclic
Numbers

Definition 1. For positive real x, let pc(x) be the counting function of prime cyclic

numbers. Let cc(x) be the counting function of composite cyclic numbers.

Obviously A(x) = pc(x) + cc(x) + 1. Also, pc(x) = π(x) as all prime numbers

are cyclic numbers.

Lemma 1. The asymptotic equivalences A(x) ∼ cc(x) ∼ xe−γ/ log log log x hold as

x → ∞.

Proof. Because π(x)/A(x) ∼ (x/ log x)/(xe−γ/ log log log x) → 0 as x → ∞, we

have A(x) ∼ cc(x) ∼ xe−γ/ log log log x.
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Define R1 := [1,∞). A function R : R1 → R1 is defined to be regularly varying

(at infinity) if it is positive, measurable on R1, and, for every λ ∈ R+ := (0,∞),

the limit

g(λ) := lim
x→∞

R(λx)

R(x)
∈ R+

exists and is finite and nonzero [3]. For every regularly varying function R, g(λ)

takes this power-law form for some ρ ∈ R (see [7]):

g(λ) = λρ. (4)

The exponent ρ in (4) is often called the index of the regularly varying function R.

Throughout, the kth moment of the first n cyclic numbers {c1, . . . , cn} is defined

as

µ′(c, n, k) := n−1[ck1 + · · ·+ ckn].

Their mean is defined as

m(c, n) := n−1[c1 + · · ·+ cn] = µ′(c, n, 1)

and their variance as

v(c, n) := (n− 1)−1[(c1 −m(c, n))2 + · · ·+ (cn −m(c, n))2]

=
n

n− 1
(µ′(c, n, 2)− µ′(c, n, 1)2).

Theorem 1. The counting functions A(n), π(x), pc(x), cc(x) are regularly varying

with index 1. Hence the following statistical properties of cyclic numbers are equally

valid for the prime cyclic numbers and the composite cyclic numbers.

The relation

lim
n→∞

v(c, n)

(m(c, n))b
=


∞, if b < 2;
1
3 , if b = 2;

0, if b > 2

(5)

holds. For all k ∈ N, as n → ∞,

µ′(c, n, k) ∼ ckn
k + 1

.

Moreover, the relations

m(c, n) = µ′(c, n, 1) ∼ cn
2
, v(c, n) ∼ c2n

12

hold. For j, k ∈ N, the jth and the kth moments are related asymptotically by

µ′(c, n, k) ∼ (j + 1)k/j

k + 1
(µ′(c, n, j))k/j .
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Figure 1: An illustration of the behavior of the variance and the mean for cyclic
numbers.

In particular, for all k ∈ N, the moment µ′(c, n, k) asymptotically obeys a generalized

TL (as defined in [8]):

µ′(c, n, k) ∼ 2k

1 + k
(m(c, n))k as n → ∞.

Proof. We calculate, for every λ ∈ R+ := (0,∞),

g(λ) := lim
n→∞

A(λn)

A(n)
= lim

n→∞

λne−γ

log log log(λn)

ne−γ

log log logn

= λ.

Hence A(n) is regularly varying with index 1. The prime-counting function π(x)

was shown to be regularly varying with index 1 in [4]. The remainder of the theorem

follows immediately from a more general result on integer sequences with regularly

varying counting functions [3, Theorem 1].

Example 1. We illustrate Taylor’s law for cyclic numbers (Figure 1), which plots

the ordered pairs (log10 of the mean m(c, n), log10 of the variance v(c, n)) of the

first N cyclic numbers for N = 22, 23, 24, . . . , 219, 220, 1164951 (solid black ×). Ac-

cording to (5), we should have (red dotted line) v(c, n) ∼ (1/3)m(c, n)2, hence

log10 v(c, n) ∼ log10(1/3) + 2 · log10 m(c, n), where log10(1/3) ≈ −0.4771. Fitting

a straight line to (log10 m(c, n), log10 v(c, n)) by ordinary least squares yields a

very close approximation (solid black line). Evidently the mean and the variance of

the first cyclic numbers converge rapidly to the power-law relationship posited by

Taylor’s law.
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3. Gaps between Consecutive Cyclic Numbers

Let gn = pn+1−pn denote the nth prime gap. Cramér [5] proved that the Riemann

Hypothesis (RH) implies that

gn = O(
√
pn log pn). (6)

We prove an analogue of (6) (Equation (7) below) for cyclic number gaps. This

result strengthens Cramér’s result in that, for gaps of cyclic numbers, we use “little-

o” in place of the “big-O” notation in Cramér’s result for primes. This result further

links cyclic and prime numbers.

Theorem 2. For the first difference or gap dn := cn+1 − cn of consecutive cyclic

numbers, the RH implies

dn = o (
√
pn log pn) . (7)

Proof. There are n cyclic numbers not exceeding cn, by definition. Those cyclic

numbers are either prime or non-prime. The non-prime cyclic numbers consist of

the cyclic composite numbers and the integer 1. Define J (n) as the number of

non-prime cyclic numbers not exceeding cn. Also, we set I(n) := n− J (n), giving

us the number of prime cyclic numbers not exceeding cn. Finally, define Cn as the

nth non-prime cyclic number. Then

cn =

{
pI(n), if cn is prime;

CJ (n), if cn is non-prime.
(8)

According to (8), the difference cn+1 − cn falls into one of four cases: (i) the

gap cn+1 − cn is of the form pI(n+1) − pI(n), so that cn+1 − cn = gI(n); (ii) the

gap cn+1 − cn is of the form pI(n+1) − CJ (n), so that cn+1 − cn < gI(n); (iii) the

gap cn+1 − cn is of the form CJ (n+1) − pI(n), so that cn+1 − cn < gI(n); or (iv)

the gap cn+1 − cn is of the form CJ (n+1) −CJ (n), in which case the integer CJ (n) is

composite, and, since the greatest prime number strictly less than CJ (n) is pπ(CJ (n)),

we have that cn+1 − cn < gπ(CJ (n)).

The PNT and the asymptotic formula (2) due to Erdős [6] imply that, loosely

speaking, for large real x there are far fewer prime cyclic numbers not exceeding x

than non-prime cyclic numbers not exceeding x and that, more precisely, asymp-

totically

#{m ≤ x : m is non-prime and cyclic} ∼ xe−γ

log log log x
. (9)

The asymptotic equivalences in (3) and (9) then give J (n) ∼ n. Since I(n) =

J (n)− n, the algebra of limits implies that

lim
n→∞

I(n)
n

= lim
n→∞

J (n)

n
− lim

n→∞

n

n
= 0,
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hence I(n) = o(n). The equivalence in (9) also gives that

Cn ∼ eγn log log log n,

so that

CJ (n) ∼ eγn log log log n,

which implies, by the PNT, that

π
(
CJ (n)

)
∼ eγn log log log n

log n
.

Hence

lim
n→∞

π
(
CJ (n)

)
n

= 0,

π
(
CJ (n)

)
= o(n).

Define

K(n) :=


I(n), if cn+1 − cn = pI(n+1) − pI(n) or pI(n+1) − CJ (n) or

CJ (n+1) − pI(n);

π(CJ (n)), otherwise.

Since I(n) = o(n) and π(CJ (n)) = o(n), we have that

K(n) = o(n).

Defining f(n) :=
√
n log3/2 n, we can, under the RH, rewrite Cramér’s estimate in

(6) as

gn = O (f(n)) .

Recalling our notation dn := cn+1 − cn for cyclic gaps, we have shown that

dn ≤ gK(n).

So, Cramér’s estimate, again under the RH, implies that

dn = O (f(K(n))) .

Hence there are (absolute) constants M and n0 such that for all n ≥ n0,

0 ≤ dn ≤ Mf(K(n)).

Then

0 ≤ dn
f(n)

≤ M

√
K(n)

n

(
logK(n)

log n

)3/2

, (10)
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and K(n) = o(n) implies that

lim
n→∞

√
K(n)

n
= 0.

Again since K(n) = o(n), this gives us that for all ε > 0 there exists Nε such that

for all n ≥ Nε, the bounds 0 < log(K(n))
logn < 1 + log ε

logn hold, and we let ε > 1. So,

using the above upper bound (10) for dn/f(n) as n → ∞, we have
√
K(n)/n → 0,

and (logK(n)/(log n))3/2 is eventually bounded above and below by finite values,

i.e., so that

lim
n→∞

dn
f(n)

= 0,

or

dn = o(f(n)),

which (by the PNT) is equivalent to dn = o
(√

pn log pn
)
.

The A(x) cyclic numbers that do not exceed positive real x specify A(x)−1 gaps

between consecutive cyclic numbers, so that, as a function of x, the mean of the

gaps between consecutive cyclic numbers that do not exceed x is

d1 + · · ·+ dA(x)−1

A(x)− 1
=

cA(x) − c1

A(x)− 1
∼

cA(x)

A(x)
∼ eγ log log logA(x).

4. Conclusion

The equivalences summarized in Table 1, based on Theorem 1, illustrate some statis-

tical relations among prime, cyclic, and composite numbers. Because the counting

functions of prime, cyclic, and (it may easily be shown) composite numbers are all

regularly varying with index 1, the first n entries of each sequence asymptotically

obey the equivalent relations shown in the table. For future research, we introduce

some open problems concerning cyclic numbers.

statistic prime composite cyclic

mean pn

2
A002808(n)

2
cn
2

kth moment
pk
n

k+1
A002808k(n)

k+1
ckn
k+1

variance
p2
n

12
A0028082(n)

12
c2n
12

Table 1: Statistics associated with prime, composite, and cyclic numbers.

In 1982, Firoozbakht conjectured that, if pn is the nth prime starting from p1 =

2, p2 = 3, . . ., then (pn)
1/n is a decreasing function of increasing n = 1, 2, . . ..
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Kourbatov [10] states a strict inequality

pk+1 < (pk)
1+1/k (11)

as equivalent to Firoozbakht’s conjectured inequality, which therefore must assert

that (pn)
1/n is a strictly decreasing function of increasing n = 1, 2, . . .. Kourbatov

shows that if Firoozbakht’s conjecture is true, then pk+1−pk < (log pk)
2− log pk−1

for all k > 9 (pk ≥ 29). Thus, Firoozbakht’s conjecture is potentially informative

about prime gaps. Kourbatov also shows that, conversely, if pk+1−pk < (log pk)
2−

log pk − 1.17 for all k > 9, then Firoozbakht’s conjecture is true. In his numerical

studies, Firoozbakht’s conjecture holds for all primes pk < 4× 1018.

Kourbatov [10] noted that (11) would imply Cramér’s conjecture gn = O(log2 pk),

which is much stronger than Cramér’s result (6) under the RH. We have proved an

analogue for cyclic gaps of (6). As all prime numbers are cyclic numbers, we propose

three conjectures of Firoozbakht type for cyclic numbers c1 = 1, c2 = 2, c3 = 3, c4 =

5, . . ..

Conjecture 1. For every positive integer n excluding n = 1, 2, 3 and 5,

c1/nn > c
1/(n+1)
n+1 .

The four exceptions are 1 < 21/2, 21/2 < 31/3, 31/3 < 51/4, and 71/5 < 111/6.

Conjecture 2. For every positive integer n excluding n = 1,

c1/(n−1)
n > c

1/n
n+1.

The only exception is c1 = 1 < c2 = 2.

Conjecture 3. For every k∈ N, there exists N(k)∈ N such that, for all n > N(k),

c1/(n+k)
n > c

1/(n+k+1)
n+1 .

In particular, if k = 1 or k = 2, then N(k) = 5; and if k = 3 or k = 4, then

N(k) = 11.

We verified all three conjectures for the 1,164,951 cyclic numbers less than 4×106,

and Conjecture 3 for k = 1, 2, 3, 4. Conjecture 1 strikes us as more surprising

than Conjecture 2 because the first prime number is the second cyclic number, so

for the primes among the cyclic numbers Conjecture 1 is stronger (gives tighter

inequalities) than Firoozbakht’s conjecture. For example, Conjecture 1 gives c
1/6
6 =

111/6 ≈ 1.4913 > c
1/7
7 = 131/7 ≈ 1.4426 whereas Firoozbakht’s conjecture gives

p
1/5
5 = 111/5 ≈ 1.6154 > p

1/6
6 = 131/6 ≈ 1.5334.
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