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Abstract

Alaca and Altiary established an explicit formula for the number of representations
of a positive integer by the forms 22 + y? + 1022 4+ 10w? and 222 + 2y% + 522 + 5w?.
Also, Alaca established an explicit formula for the number of representations of a
positive integer by the forms 322 + 3y? + 522 + 5w?, 22 + 3% + 1522 + 15w? and
22 + 3y? + 522 + 15w?. The theory of modular forms was used to obtain these
formulas. This article aims to give an elementary proof of these five formulas which
is completely free from the theory of modular forms.

1. Introduction

Fermat made the statement that “Every integer is a square number or a sum of
two or three or four square numbers”. This statement of Fermat motivated Euler,
Gauss, Lagrange, Lorentz, Dirichlet, Jacobi, Ramanujan, Mordell, Hardy, Siegel,
and many other mathematicians to work on the representation of integers as sums
of squares. Jacobi was the first mathematician who gave the following explicit
formula to find the number of representations of integers as a sum of two squares
and four squares respectively:

r2(n) = 4[d1,4(n) — d34(n)]
and
ra(n) =8 Z d,
i

where r;(n) denotes the number of representations of a positive integer as a sum
of k square numbers and d; 4(n) denotes the number of positive divisors of n which
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are congruent to ¢ modulo 4. Simple proofs of Jacobi’s results can be found in [§]
and [9]. Let n, ¢y, ca,c3,¢4 € N. Then N(cq,c2,c3,c4;n) and o(n) are defined by
N(Clv €2, C3, C4; TL)

= card {(:vl,xg,x37x4)/n =122 + o2l + 03:10% tead i €7,1<i < 4} ,

and

sum of divisors of n  if n € Z*
o(n) = .
0 otherwise.

Recently, Alaca and Altiary [2] established the following explicit formulas for
the number of representations of an integer by the quaternary quadratic forms
22 +y? + 1022 + 10w? and 222 + 2y? + 522 + 5w?.

Theorem 1.1 (Alaca and Altiary [2]). Let n € N. Then

(i) N(1,1,10,10; n) zgo(n) _ ga(n/2) 4 4U(n/4) 10 o(n/5) — Ea(n/g)
~ Fon/10) + Fo(n/20) - @ o(n/40) + by (n)
+ Sba(n) + by()
and
(1) N (2,2,5,5:n) zga(n) _ ga(n/g) + ;la(n/él) 10 s ny5) — Ea(n/s)
10 20 80
~ S o(n/10) + o(n/20) — So(n/10) - gbl( n)
+ gbg (n) — 4bs (n),
where
e =n(kr) = ¢= [[(1—d*"), lal <1,
MmNt = Z bi(n)q",
ninzo = Z ba(n)q",
and

5 2 )
N4710710 n
_—= = E bs(n)q".
72137720

n=1
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They employed the theory of modular forms to prove the formulas of Theorem
1.1. Also, Alaca [1] established the following explicit formulas for the number of
representations of an integer by the quaternary quadratic forms 322 +3y%+5224+5w?,
2?2 + 3% 4+ 1522 + 15w?, and 22 + 3y? + 522 + 15uw?.

Theorem 1.2 (Alaca [1]). Let n € N. Then

(i) N(1,1,15, 15:n) = go(n) - %J(n/Q) + go(n/él) ~ 20(n/3)
+do(n/6) — 80(n/12) + %a(n/E)) - ?a(n/l())
+ ?U(H/QO) — 100(n/15) 4+ 200(n/30) — 400 (n/60)

+ % (a1(n) — 2a5(n) + dag(n) + 4as(n) + 8as(n)) ,

(i) N(3,3,5,5:0) = 20(n) — 30(n/2) + S0(n/4) ~20(n/3)
+ 4o (n/6) — 8a(n/12) + ?0(71/5) _ ?a(n/lO)
+ %Oo(n/zo) — 100(n/15) + 200(n/30) — 400(n/60)
+ 2 (Bax(n) ~ Man(n) — 20as(n) + das(n) + Sas(n)),

and

(i4) N(1,3,5,15;n) = %(J(n) —20(n/2) +4o(n/4) + 30(n/3)
—60(n/6) + 120(n/12) — 50(n/5) + 100(n/10)
—200(n/20) — 150(n/15) + 300 (n/30) — 600 (n/60))
+ gal(n) + az(n) + 6as(n),

where
o0
mnsnsms = »_ ai(n)g",
n=1
o0
Mmemionso = »_ az(n)q",
n=1

o
N4M12720760 = Z az(n)q",
n=1

o0
nanstenio = »_ as(n)q",
n=1
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and

oo
Te110712720 = Z as(n)q".
n=1

She employed the theory of modular forms to prove Theorem 1.2. The aim of this
article is to prove Theorem 1.1 and Theorem 1.2 by using classical techniques which
are completely free from the theory of modular forms. We organize this article in
four sections. In the next section, we recall the necessary preliminary results that
are required to prove our main results. In Section 3, we prove Theorem 1.1, and in
Section 4, we prove Theorem 1.2.

2. Preliminaries

The complete elliptic integral of the first kind is denoted by K (k) and is defined by

dé k| < 1.

V1-k2sin2 ¢’

We call k& the modulus and k' = /1 — k? the complementary modulus of K (k). Set
a=k,B3=08y=13,and =13 Let ¥ =1 k2, I} =\/1-13, I, =/1-12,
and l5 = /1 —[3. Suppose that the equality

K() _ K(l)

"R~ K @1)

K(k) =

ST

holds for some positive integer n. The relation between o and 8 induced by the
Equation (2.1) is called a modular equation of degree n. The multiplier connecting
« and B, denoted by m is defined as

_a _ KW
z K(V/B)

and we also say that § has degree n over a.. Also, suppose that the equalities

K() _ K@) KK _ K1) K(K) _ K(})
nRE T K@ ™M KE — Ko W ey = 1)

hold for positive integers n and ny. Then, the relation induced among «, 5, v and §
by the above is called a modular equation of composite degree nny. In Chapter 16 of
his second notebook [12, p. 197], Ramanujan defined the following theta functions.

@)= > ¢ = (-4 (@* ) (2.2)

n=-—oo

S 2. .2
bl = 3 gt = i) (2.3)
! ,;)q (¢54%)
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s n(3n—1)
Ja) = Y (DT = (@),
n=-—oo
and
x(9) = (—4:¢%) o,
where (a;¢)oo = [] (1 —ag™), with |¢| < 1.
n=0

For convenience, we set

fo=f(=¢") = (@" 4", (2.4)
where n is any positive integer. It is easy to see that
3 i 13 fifa
0(q) = 535, ¢(—a) = 7, (@) = 2, d(—q) = =,
fifi 2 fi f2
i 12 (2.5)
—q) = —, and = =2
x(=q) T x(q) Fiha
The Fisenstein series P, of weight-2 is defined by
P, =P(q"):=1— 24§: bt 24ia(k)qk (2.6)
! . il gt k=1 ' .

Setting n = 1 and then changing ¢ to —¢ in Equation (2.6), one can easily see that
P(—q) =—P, +6P, —4P;. (27)

On pages 230 and 247 of his second notebook [12], Ramanujan recorded the following
modular equations of degree 3 and 15, respectively,

{aB) +{1-a)1-p)}i =1 (2.8)
and
{aBy8}® +{(1 —a)(1 = B)(1 —)(1 — 6)}*
+25 {afyd(1 — a)(1 - B)(1 —7)(1 - 8)}% = 1. (2.9)

Many years before Ramanujan, the modular equation (2.8) was discovered by Leg-
endre [11]. For proofs of the Equations (2.8) and (2.9), one may refer to [5, pp.
232, 394]. On page 245 of his second notebook Ramanujan recorded certain theta
function identities, two among them being

o(0)e(q"®) — (¢*)e(q°) = 2qf2fs0x(a*)x(d°) (2.10)

and
e(@)p(a"®) + (¢*) () = 2fs frox(a)x(¢"). (2.11)
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Proofs of the identities (2.10) and (2.11) can be found in [5, pp. 395-396] and [4].
On page 211 of his second notebook [12], Ramanujan has recorded the following
Eisenstein series identities.

P — 2P, = —16q9*(¢*) — ¢*(q) (2.12)

and
Py — 4Py = —3¢%(q). (2.13)

For proofs of the Eisenstein series identities (2.12) and (2.13), one may refer to [5,
pp. 127-128] and [13]. From the Eisenstein series identities (2.12) and (2.13), we
obtain

—P; + 3P, — 2Py = 24q¥* (¢%). (2.14)

Changing ¢ to —¢ in Equation (2.13) and then using Equation (2.7), we find that
—P, 4+ 6P, — 8P, = —3p*(—q). (2.15)

From Entries 3(iii) and 3(iv) in Chapter 17 of Ramanujan’s second notebook [12],
we have
—Py + Py + 3P3 — 3P = 249*(q)v°(¢°) (2.16)

and
Py — 4Py — 3P3 + 12P5 = 6p°(—q)p*(—¢°). (2.17)

Proofs of the identities (2.16) and (2.17) can be found in [5, pp. 223-226] and
[14]. Cooper and Ye [7] established the following Eisenstein series identity using the
theory of modular forms:

f3 13 fifis
2175 1213
An elementary proof of Equation (2.18) which is completely free from the theory
of modular forms is found in [6]. In Chapter 16 of his second notebook [12, p. 198,

Entry 24], Ramanujan recorded several theta function identities which have been
proved by Berndt [5, pp. 40-41]. Two among them are

P, +3P; —5P; — 15P;5 = —16 + 16

+8q¢f1f3f5f15- (2.18)

©*(q) — ©*(—q) = 8q¥*(q*) (2.19)

and
¥ (a) + ¢ (—a) = 2¢0%(¢?). (2.20)
From Equations (2.19) and (2.20), we obtain

©*(q) = ©*(q%) + 4qv*(¢*). (2.21)
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Kang [10] has proved the following three identities using theta function identities,
the first two of which are due to Ramanujan [12, p. 234].

©*(q) — ¢*(¢°) = 4ax(9)x(¢®)V*(—¢°), (2.22)

20Nk 205\ _ 2@
©°(q) —5¢7(q°) = —4f5 TR (2.23)

and (=q)
vH0) = 5a*(a") = 17 5 (2.24)

We make use of the following theorem due to Berndt [5, pp. 385-389] for our proof.

Theorem 2.1 (Berndt [5]). Let A = (ad)}, A' = {(1—a)(1—06)}%, B = (89)%,
B = {(1—5)(1—5)}%, and t = (M) , where B, 7, 6 have degree 3,5,15,

=

Z1215
respectively, over . Then

(5%%15fuvf>i241+w
ad(l —a)(1-9)

&=

a?6%(1 — a)?(1 — 6)? -1
(zwu—mu—w ) =271,

{aB18(1 — a)(1 = B)(1 - 7)1 - )} =27 F =2,

.u""

1(1 1—¢2
4 t2
1—1)(1—¢?
AA/:( )( )’
4t
B* B* }4+5t245t—1
T T
A% A B2 -5t 1
B2 B 2
and
1+ t2)(¢? -1
ﬁ+5i5:( +t2)(t* + 3t ).
Z15 Z1 t

The following theorem plays an important role in transforming a theta function
into a modular equation and vice versa.

Th 2.2 (R jan [5,12]). Iflz| <1, K = | =2 K/ — [___d
eorem (Ramanujan | D. If |z| of\/m bf

q:eﬂ;{ , and z = %K, then

1—(1—z)sin? ¢
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e(q) = V=,
p(—q) = V(1 — )7,
o(—*) = Vz(1 — )5,
U(q) =/ 32(zq)5,

Y(q?) = $v/z(xq)1,
Fla) = Va2 {a(1 - 2)q} 7"
f(=aq) = V2278 (1 — )5 (2q) 1,
F=q*) = vz273 {a(1 - 2)q} 2,

and

3. Proof of Theorem 1.1

In this section, we first prove the following three lemmas, which play a key role in
proving Theorem 1.1.

Lemma 3.1. We have

©*(0)¢* (") + 50 (1*)*(¢°) = ¥ (¢®) + 59" (¢") + 4qv* (¢?)

5 2
2047 (q'0) + 16623 £3, — 16721000 3.1
I§ f2f20
Proof. Multiplying both sides of Equation (2.21) by ¢?(¢'?), we obtain
*(0)0*(@'%) = ¢*(@*)¢”(a"°) + 4q9?(¢")0*(¢"7).- (3.2)

Changing ¢ to ¢° in Equation (2.21) and then multiplying throughout by 5x2(¢?),

we obtain
50%(¢*)°(¢°) = 5¢%(a*) ¢ (¢"%) + 20¢°©* (¢*)¥* (¢*°). (3.3)
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Adding Equations (3.2) and (3.3), we obtain
¢*(0)0*(a"%) +50°(4*)9°(4°) = 60%(¢*)0*(¢"%) + 4q¥*(a")¢*(¢"°)
+200°0* (¢*)V*(¢*).  (3.4)
Changing ¢ to ¢ in Equation (2.22) and ¢ to ¢* in Equation (2.24) and then
multiplying the resulting identities, we find that
a*(q)¢*(@'%) +5¢°* (@) (¢®) = qv(¢®) + 5¢°¢* (¢")
f2fiofl
[ f2f20

Employing Equation (3.5) in the right side of Equation (3.4), we obtain

—4q? (3.5)

©*(0)9°(0'%) + 5% (*)9*(@°) = 60°(¢*)*(¢"0) + 4qv* (¢%) + 20¢° ¢ (¢'7)
f2fiofi
f2faf0

Multiplying Equation (2.22) with Equation (2.23), and then rearranging the terms
in the resulting identity, we obtain

—164¢> (3.6)

60%(0)0°(¢°) = ©*(q) + 59 (") + 1643 [T, (3.7)

The identity (3.7) can also found in [3]. Replacing ¢ by ¢* in Equation (3.7), and
then using the resulting equation in the right side of Equation (3.6), we obtain the
required result. O

Lemma 3.2. We have
120%(9)9”(¢'%) + 120%(¢*)¢*(¢°) = ¢*(q) + 59 (¢°) + 49" (¢%) + 200" (¢"°)
—p*(—q) — 59" (—¢°) + 3243 [T
+644° 7 3. (3.8)
Proof. From Equation (2.20), it follows that
0*(—¢°) = 20°(¢"°) — ¥*(¢°) (3.9)
and
P(—0) = 26°(®) - ¢*(a). (3.10)
Multiplying Equations (3.9) and (3.10), we obtain

P’ (—)*(—¢°) = 4% (¢*)*(¢"°) + ©*()¢*(¢°) — 2% (@)% (¢"") — 2902(612)@?((15)-)
311
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Multiplying the Equation (3.11) throughout by six and rearranging the terms in
the resulting identity, we obtain

120° ()0 (") + 120%(¢*)¢* (¢°) = 249%(¢*)* (") + 60°(9)* ()
—60*(—q)¢*(—4°). (3.12)

Changing ¢ to —¢ and ¢? in Equation (3.7), and then using the resulting identities
and Equation (3.7) in the right side of Equation (3.12), we obtain Equation (3.8).

O
Lemma 3.3. We have
—1
PP (0") = o [Pl — Py+ 2Py + 5P5 — 8Ps — 5Pyg + 10Py — 40P40}
10 5,0 8 9,0, o [ f10f3
+= +c tag2lal10Jh0 (543
3 qf3 f1o 3q fifa q f82f2f20 ( )
and
—1
P = 55 [Pl — Py + 2Py + 5P — 8P — 5Pjg + 10Py — 40P40}
2 040 [ 8 9.0 2 [ f10f3
_z 42 _ygplifolio gy
3Qf2f10 3q fif q f82f2f20 ( )

Proof. Multiplying Equation (3.1) throughout by twelve, and then subtracting the
resulting identity from Equation (3.8), we obtain

X (*)e* () :é (" (—a) + 5™ (—¢°) — ¢*(q) — 5™ (¢°) + 8™ (¢*) + 400" (¢™°)
2 8 2 fiof
+ 48qY* (¢%) + 240¢°Y* (¢"°)) — Safifiy + P fifa — 44 520
3 3 s faf0
(3.15)

Employing Equations (2.13), (2.14), and (2.15) in the left side of Equation (3.15),
we obtain Equation (3.14). Using Equation (3.15) in Equation (3.1), we obtain

L

10
) 48

©*(9)¢*(q (50" (q) + 259" (¢°) — 59* (—q) — 250 (—¢°) + 8¢ (¢?)
+40p*(¢'%) — 48¢y* (¢%) — 240¢°y* (¢*°)) + ?quz fio
fi)floféfo

f2fafa0

Employing Equations (2.13), (2.14), and (2.15) in the left side of Equation (3.16),
we obtain Equation (3.13). O

8
+§q2fff220 +4¢? (3.16)
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Proof of Theorem 1.1 (i). Equating the coefficients of ¢" in Equation (3.13), we
obtain the required result. O

Proof of Theorem 1.1 (ii). Equating the coefficients of ¢™ in Equation (3.14), we
obtain the required result. O

4. Proof of Theorem 1.2

In this section, we first prove the following six lemmas, which play an important

role in proving Theorem 1.2.
Lemma 4.1. We have
2 L+ 3)(t*+3t—1
¥’ (9)¢°(a"") = 3F(a) = \/212325215( )(6t2 ),

where

F(q) = qfr f3fsf15 — 26 fafs fio 30 + 46 fafi2 f20 foo
+4qf3f5f6 10 + 847 fo fio.f12 f20, (4.2)

z1, 23, 25, 215, and t are as in Theorem 2.1.

Proof. Employing Theorem 2.2 in the left side of Equation (4.1) and after some
simplification, we find that

¢ (@)9*(a"°) — %F(q)
= sys — 5 27 VEEeEEs {asa(1 — )(1 - B)(1 —7)(1 - §)}
{10 - @)1 =A== 9} + {asye)*}
2 % 27 Eizzs s {aBro(1 — a)(1 - B)(1 - 7)(1 - §)} 72
+2z525 {B7(1 - B) (L -} {{0-BA- P + {81} }]. (43)
Using Equation (2.9) in the right side of Equation (4.3), we obtain
¢ (@)9* (") = SF(q)
= sy1s — 2 [27F A {aBad(1 - a)(1 - H)(1 - 2)(1 - §)}
x{1- 28 {aBrd(1 - )1 - H)(1L =) - )}
=2 % 27 Ezszs e {aByo(1 - a)(1 - B)(1 - 7)(1 - §)} 2
12225 {B1(1 = A1 -} {{0L =B -} + (B} }]. (49

-
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Applying Theorem 2.1 to express the right side of Equation (4.4) in terms of the
parameter t, we find that

X (@)*(¢"°) — %F(Q)

= 2y [ - o) 0

4t 2t
1 1+t)(1—1t?)
B

This identity reduces to Equation (4.1), completing the proof. O

Lemma 4.2. We have
1
PP (0) = —3 [Pl — 2Py — 3P + 4P, + 5P5 + 6P — 10Pyg

—12Pyy — 15Py5 + 20Pag -+ 30P3 — 60P60}

+§ <Qf1f3f5f15 — 262 fafo f10f30 + 44* fa f12.f20 foo
+4qf3f5f6f10 + 8q2f6f10f12f20)~ (4.5)

Proof. From Equations (2.16) and (2.17), we have

Py — 2P, —3P3 + 4P, +5P5 + 6Ps — 10P1g — 12P12 — 15P15 + 20Py0 + 30P30 — 60 P50
= (P1 — P, —3P; + 3P6) — (P2 — 4P, — 3P + 12P12)
+5(Ps — Pio — 3Pi5 + 3P30) — 5 (Pio — 4P20 — 3P30 + 12Ps0)

= —24q0° (0)¥*(¢%) — 6¢° (—¢*)*(—q°) — 5 x 24¢°¥* (¢°)¥*(¢"°)

—5x 6¢°(—q"*)¢*(—¢).
(4.6)

Applying Theorem 2.2 in Equation (4.6), we obtain
Pr — 2P, —3P3 + 4P,y +5Ps + 6FPs — 10P19 — 12P12 — 15 P15 + 20 P20 + 30P30 — 60Fs0
1 1 1
=—-6 [2123 {aB}t 4+ z123{(1 — a)(1 — B)}* + bzsz15 {7} %

+525215 {(1 —7)(1 - 8)} 7 }
(4.7)

Employing Equation (2.8) in Equation (4.7), we find that
Py — 2P, —3P3 + 4Py + 5P5 + 6P — 10P1g — 12P15 — 15P15 + 20P>9 + 30P30 — 60 P50

= —621215 <z73 =+ 5§> .
Z15 zZ1

(4.8)
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Using Theorem 2.1 in the right side of Equation (4.8), we obtain

Py — 2P, —3P3 +4P, +5P5 + 6Ps — 10P1g — 12P12 — 15P15 + 20Py0 + 30P30 — 60 P50

14+t2) (2 +3t—1
:736\/,21232'5215( * )(Gt;g )

(4.9)
Employing Lemma 4.1 in Equation (4.9), we have
Py — 2P, —3P3s + 4Py +5Ps + 6P — 10P19p — 12P12 — 15 P15 + 20 P2 + 30P30 — 60Fs0
= —36[0*(@)0*(a"") ~ 2(afsfafsfis — 26 fafofrofoo
+4q" fafr2f20 foo + 4qf3 f5 fo fro + 8q2f6f10f12f20)]-
This completes the proof. O

Lemma 4.3. We have

af (@) f(@®)F(@®)F(a"®) = afifsf5 15 + 2a° f2fo fi0 f30 + 4q* fafi2 f20 foo-

Proof. Upon multiplying by {a3vd(1 — a)(1 — 8)(1 —v)(1 — 6)}2714 throughout Equa-
tion (2.9), we obtain
{0890} {(1 = 0)(1 = B = 7)1 = 9)}F + {afye}¥
X {(1=a)(1 = B)(1 =1 =8} +25 {aBys(1 —a)(1 = B)(1 —7)(1 — &)}

— {aBys(1 —a)(1 — B)(1 —7)(1 = §)}* .
(4.10)

Transforming the modular equation (4.10) in terms of theta functions using Theo-
rem 2.2, we find that

af (@) f(@®) F(@®)F(a"®) = afifsf5 15 + 2a° f2fo Fi0 f30 + 4q* fafi2 f20 foo-

This completes the proof. O
Lemma 4.4. We have
¥ (a°)¢*(@°)
1

- [Pl — 9Py — 3Py + 4P, + 5P5 + 6P5 — 10Py

—12Pjy — 15Py5 + 20Pag -+ 30P3g — GOPGO}

*g (5Qf1f3f5f15 + 14¢% f2 fo fiof30 + 20¢* faf12 f20 fso

—4qf3f5f6 f10 _8q2f6f10f12f20)~ (4.11)
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Proof. From Equations (2.10) and (2.11), we have

(09 (¢"%) = *(*)¢*(¢°) = 44f (@) f(¢*) F (@) F(a*). (4.12)
Employing Lemmas 4.2 and 4.3 in Equation (4.12), we obtain the required result.
O
Lemma 4.5. We have
3 5 15y 3 5.2 a4
0(@)p(q”)p(a)p(q™) 2Qf1f3f5f15 2q° fafe fr0f30 — 64" faf12.f20 f60
1(t*+3t34+6t2—-3t+1
Y G i +1) (4.13)

8 t2

Proof. Employing Theorem 2.2 in the left side of Equation (4.13) and after simpli-
fication, we find that

pla)ola)o(a*)ela'®) — 3afi fsfsfis — 20 Fafofrofso — 60 fafi foo o
= Ve~ x 2 A (afyi(l - )(1- B)(1 - 1)(1 - )}
x ({aByo} +{(1 - a)(1 - B)(1 = 7)(1 - 8)}¥)
— 275 Varzgz s {apd(1 — a) (1= B)(1 =) (1 — )} . (4.14)

Employing Equation (2.9) in the right side of Equation (4.14), we find that

ol

Pa)e (o a)pla'®) — Safifsls is — 26 oo frofon — 66 fafua oo foo

— Ve - 5 x 2} amEas (B - a)(1 - )1 - 7)1 - )}
x (128 {aBy0(1 = a)(1 = B)(1 = 7)(1 - )} )

—275 /2325215 {aByS (1 — a)(1 — B)(1 —4)(1 — 8)} 72 .

N‘H

(4.15)
Applying Theorem 2.1 in the right side of Equation (4.15), we obtain

= = 3
(@) e(a®)e(¢") — §Qf1f3f5f15 —2¢? f2f6.f10f30 — 6¢* faf12f20 foo
1(t' 432 +6t° =3t +1)

8 12
This completes the proof. O
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Lemma 4.6. We have

, 1
2(0)e(d)p(a®) (") = — 15|~ 2P2 +8Ps + 4Py — 5P — 6P + 10Pyg

+12Pjy — 15P,5 — 20 Py + 30 Psg — 60P60]

—I—gqf1f3f5f15 + ¢* fafo fro.f30 + 64" fafiafoofeo. (4.16)

Proof. From Equation (2.18), we have

Py —2P, +3P;+ 4Py — 5P — 6FPs + 10Pyg + 12P15 — 15P;5 — 20P5
+30P39 — 60F50

404 444 444 444
a2 L Fia S fifso 4
16q° f2fe f10f30 — 6455 + 6455 + 32q" fa.f12 f20 fe0- (4.17)
Tiféo T2 /350

Transforming the right side of Equation (4.17) in terms of the variables «, 3, 7,
0,21,23,25, and z15 using Theorem 2.2, then employing Equation (2.9), and finally
transforming in terms of ¢ using Theorem 2.1, we find that

Py +3P; —5P5 — 15P15 — 2(P2 + 3Ps — 5P10 — 15P30) + 4(Ps + 3P12 — 5P20 — 15P%0)

33 +6t2 -3t +1
= —064/ 212325215( P )

(4.18)

Employing Lemma 4.5 in the right side of Equation (4.18), we obtain the required
result. O

Proof of Theorem 1.2 (i). Equating coefficients of ¢™ in Equation (4.5), we obtain

the required result. ([
Proof of Theorem 1.2 (ii). Equating the coefficients of ¢ in Equation (4.11), we
obtain the required result. (I
Proof of Theorem 1.2 (iii). Equating the coefficient of ¢" in Equation (4.16), we
obtain the required result. Il
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