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Abstract

Let n be a positive integer. A repetend is the recurring sequence of L digits when
m/n is written in some base b coprime to n. Consider all bases less than n which
have identical repetend length L, and write their repetends as rows of a matrix (a
repetend table). If m = 1, we prove that, with certain exceptions, the multiset of
integers in one column (corresponding to position within the repetends) is equal to
the multiset for another column, and determine the number P (L) of such pairings
– this depends on L but not on n. Denoting those general column matches as
“Class A”, we also demonstrate two further classes B and C of column matches
under special, but infinitely occurring, conditions. Most of the theorems rely on a
closed form expression for each repetend digit, the “Repetend Digit Formula”, which
appears to be new. This expression also allows us to present a much shorter proof
of some results of Lewittes. An interesting side result from research into “sporadic”
column matches is a new number-theoretic result, namely a new formula for the
number of elements of given order in Z∗

n. There is one appendix, which gives details
of a novel hybrid residue number system which we used to compute with n between
26.5 and 65.5 bits in size.

1. Introduction

The patterns emerging from expressing the reciprocal of positive integers as a re-

curring decimal have produced much literature over time spanning three centuries.

Many of the papers concentrate on the sums of subdivisions within the recurrence,

known as Midy’s theorem [10] of 1836, with various generalizations starting with

Ginsberg – see Section 5 for a table of other papers considered. Most of these au-

thors do not use the term “repetend” to denote the recurring digits, yet it is present

in the Oxford Dictionary and dates back at least to Heal [7] in 1887.
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Our study here is of properties of repetends of the same number but written in the

differing bases which give identical lengths of the repeated sequences of digits. These

properties include some fascinating relationships between subsets of their digits.

This provides a new area of research which is complementary to the interesting

studies on Midy sums.

A key innovation is a formula for calculating any repetend digit independently

of the others, in contrast to the sequential nature of the long division algorithm.

This allows tests of equality of repetend digits to be performed, enabling proofs of

the major features in this paper. It also allows a much shorter proof to be given,

in Section 5, of one of Lewittes’s [8] theorems.

The following four definitions help to provide a structure for the succeeding

analysis.

• Given a positive integer n (sometimes called a modulus), a base is any positive

integer which is coprime to n.

• A small base is any base less than the modulus n.

• Given a base b and a positive integer m which is less than and coprime to n,

the repetend is the minimal set of recurring digits in m/n when written in base b.

• The repetend length, denoted by L, is the number of digits in the repetend.

This research has been motivated by the second author, who has been fascinated

by repetends since at least 1990. For the m = 1 case, he carried out a search on

all numbers n up to 1000 and each L < n, and recorded a number of interesting

statistics and features, most notably linkages between repetends on different bases

whereby one repetend digit column can equal a different column as a multiset –

leading to the “matched column sets” phrase in the title. These features are de-

scribed in Theorem 2, with proofs by the first author, mainly using standard group

theory on Z∗
n, the group of integers coprime to n with multiplication as the group

operation. During the period of joint research, the second author found two fur-

ther instances of matched column sets (Classes B and C, the original being Class

A), whose proofs were more difficult (Theorems 4 and 6). Also, the first author

noticed and proved a further feature regarding the rows of the repetend tables (see

Theorem 3).

The Class A instances of the matching columns feature give rise to an infinite se-

quence of integers denoted P (L), which is the number of pairs of matching columns,

dependent on L but not n. We have proved numerous results about P (L), such

as severe restrictions on solutions to P (L) ≡ 0 mod 3 and even more severe on

P (L) ≡ 3 mod 6; these are the subject of a follow-on paper in preparation.

In theory there could exist undiscovered algebraic instances of matched columns

outside of Classes A, B and C, or even totally sporadic instances. Section 6 first

uses a combination of algebra and computation to exclude specific cases, where

the algebra includes Theorem 10 which provides a new formula for the number
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of elements of given order in Z∗
n. It then uses probabilistic number theory on

the remaining cases, to estimate the likelihood that sporadic instances exist. The

resulting estimate is less than two in a million.

The Class B paired columns require events of heuristic probability 2−m to occur,

and for some values of m which are still computationally feasible, the size of the

successful moduli exceed a natural limit of 226.5 below which they are computable

with straightforward arithmetic. So to compute with these larger moduli we devised

algorithms using a novel hybrid residue number system, and this is described in

Appendix A.

2. Theory behind the Features

We derive some general theory first, before the first feature is proved in Lemma 3.

All logarithms (written log(.)) in this paper are natural logarithms. Also we use

the convention that x = y mod n means that 0 ≤ x < n, whereas x ≡ y mod n is a

congruence which implies nothing about the size of x or y.

If r is the repetend considered as an integer in base bL, then we may write a

fundamental equation

m/n =

∞∑
i=1

rb−iL. (1)

The relationship between b, L, and n is described in the following result.

Lemma 1. The order (or index) of the element b in the group Z∗
n is L, also

typically denoted by ordn(b).

Proof. In Equation (1), the sum is an infinite geometric sum equal to r/(bL − 1),

and hence after cross-multiplying,

m(bL − 1) = nr

which implies, since gcd(m,n) = 1, that

bL ≡ 1 mod n.

Any L satisfying this equation gives a repetend of L digits, but L is defined as the

minimum value for this to hold, so L = ordn(b). □

Note that the order of Z∗
n is ϕ(n) and so by Lagrange’s Theorem L must divide

this number.

We now introduce the following notation which will apply throughout the paper.

Notation. Given a base b and an integer x coprime to L, we denote by bx the

small base bx mod n = bx mod L mod n, and by rx the repetend for m/n as an
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integer in base bLx , so that the left to right base L digits are rx,0 . . . rx,L−1, with

rx =

L−1∑
j=0

rx,jb
L−1−j
x .

Note that b1 = b if and only if b is a small base. Also note that we use the

index 0 for the first base b digit, whereas the cited papers tend to use 1, that being

natural because the first digit is the coefficient of b−1. However, the equations in

Lemma 5 and Theorem 2 prove to be simpler if the first index is chosen to be 0, and

starting with 0 facilitates mod L arithmetic on the repetend indices. The following

defines when bx has order (i.e., repetend length) L, as proved in the text following

Equation (3) in Lewittes [8].

Lemma 2. The base bx has order L if and only if gcd(x, L) = 1.

Lemma 3 For any modulus n, the number of small bases with repetend length L > 2

is even.

Proof. Since L − 1 is coprime to L, by Lemma 2, for any small base b of order L

there exists another small base bL−1 with that order. If these two bases are unequal

then the bases are paired and therefore the number of them is even. The condition

that they be unequal is, by Lemma 1, that bL−1 = b−1 ̸= b mod n, or b2 ̸= 1 mod n,

which is true for b of order L > 2. □

Example 1. The modulus n = 37 has one small base (36) with L = 2, two bases

(10 and 26) with L = 3, two bases each with L = 4 and 6, four bases with L = 12,

six bases each with L = 9 and 18, and twelve bases with L = 36.

Since this example has prime n, it may be noticed that in each case the number

of small bases is ϕ(L) – see the book by Gallian [3, Theorem 4.4] for details.

Lemma 4. If Z∗
n is cyclic then the number of small bases which have repetend

length L is ϕ(L).

We shall need the following theorem which is due to Gauss and is proved in, for

example, Ore [11].

Theorem 1. The group Z∗
n is cyclic if and only if n equals 2, 4, pm, or 2pm, where

p is any odd prime and m is any positive integer.

Corollary 1. If n is prime, and there is one small base which produces a repetend

length L, then there are ϕ(L) − 1 other bases with that length, where ϕ is Euler’s

totient function.

Proof. Since n is prime, Theorem 1 implies that the group is cyclic and then the

result follows from Lemma 4. □
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Example 2. Modulus n = 11 has 4 = ϕ(5) small bases with repetend length L = 5.

These are: 3(repetend 1/11 = 0.002113), 4(1/11 = 0.011314), 5(1/11 = 0.021145),

9(1/11 = 0.073249). This accords with Lemma 4.

We now study the generation of base b repetend digits rj by long division of m by

n. The following lemma is vital to the proofs of many theorems below, yet it seems

to be novel in the literature on repetends (see Section 5 for more information).

Note that to compute the quotients rj in the long division, the lemma also

computes the remainders cj+1 < n.

Lemma 5. If m/n = Ek =
∑k−1

i=0 rib
−i−1 + ck/(nb

k) for k = 0, . . . ,∞, then a

solution to this is

cj = mbj mod n, rj = (bcj − cj+1)/n = ⌊bcj/n⌋ for each j ≥ 0.

Proof. We claim that the equation bcj/n = rj + cj+1/n holds. It may be derived

either by appealing to the well known long division algorithm in which the quotients

and remainders are derived successively by multiplying the preceding remainder c

by b and then dividing by n, or formally by simple manipulation of the equation

Ej+1 = Ej .

Sincem/n = E0 = c0/n, then c0 = m. Then by choosing rj in the equation above

to be the integer part of bcj/n, each cj+1 ∈ {0, . . . , n− 1}. Also, by multiplying the

equation by n, we have bcj = rjn+ cj+1, so cj+1 = bcj mod n.

Since c0 = m, then cj = mbj mod n by induction. Then the solution for the r’s

is

rj = bcj/n–cj+1/n = ⌊bcj/n⌋ ∈ {0, . . . , b− 1}.

□

Note also that if m = 1, then cj = bj according to the prior notation for bj . The

first form of rj above will prove crucial for proving various results below.

Further below we shall present matrices of repetends with common m/n but to

different bases bx. If we let B = bx, since By = byx mod n = bxy mod n = bxy mod L,

then in Lemma 5, the replacements b→ B → bx make bj become bxj , so

rx,j = (bxcxj − cx(j+1))/n = ⌊bxcxj/n⌋. (2)

We call this the repetend digit formula (or RDF for short), noting that if m = 1

then c can be replaced by b.

The following corollary explains a feature which is noticeable when n and L are

both prime, namely a correspondence between the remainders and the small bases.

Corollary 2. If n and L are both prime, and if m = 1 or m is a base with that

repetend length, then the set of the remainders cj (excluding 1) is identical to the

set of all the bases for that length.
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Proof. By Theorem 1 Z∗
n is cyclic, so b in Lemma 5 generates the unique cyclic

subgroup of order L. By assumption, m is in that subgroup and therefore equal to

bu for some u. Then each cj = mbj = bu+j , and apart from cL−u = 1 is a small

base of order L. Thus the set of remainders cj excluding 1 is the same as the set of

small bases bj . □

Corollary 3. For a given position in the repetend, if a base is repeatedly increased

by n, then the digit there increases each time by a constant which is less than n.

Proof. If b = an + s with 0 < s < n then rj = ⌊scj/n + acj⌋ = ⌊scj/n⌋ + acj by

Lemma 5, where cj ≡ m(an+s)j ≡ msj mod n. So for each increment by 1 of a, the

repetend digit rj increases by cj < n (thereby giving an arithmetic progression). □

Example 3. Illustrating Corollary 3, in Table 1 the four given repetends of 1/7,

including the classic 0.142857... for base 10, have values within each column j which

increase by 3j mod 7 = 1, 3, 2, 6, 4, 5, respectively, as j runs from 0 to 5.

j
a b 0 1 2 3 4 5
0 3 0 1 0 2 1 2
1 10 1 4 2 8 5 7
2 17 2 7 4 14 9 12
3 24 3 10 6 20 13 17

Table 1: The repetends of 1/7 to bases 3, 10, 17, 24

We now consider the “matched column sets” feature, which consists of relation-

ships between repetends from different bases, starting with an example calculation.

Example 4. Use Equation (2) to compute r2,5 for n = 29, m = 1, L = 7, b1 = 7:

x = 2, b2 = 20, j = 5, xj = 3 mod 7, c3 = 24, r2,5 = ⌊20·24/29⌋ = ⌊16.5517⌋ = 16.

That value 16 can be seen in Row 2, Column 5 of Table 2. Using the notation,

with ‘a’ to represent 10 etc., the repetends from Rows 1 and 2 are 0.0145536... and

0.0dfh4gb..., respectively. Table 3 similarly gives data for n = 31, L = 15.

Now the “matched column sets” feature is the rather remarkable observation

that in numerous cases the multiset of integers in one column (say j) is identical

to the multiset in another column (say i). This can be seen in Table 2, where the

columns which match are 2 with 4 and 3 with 5; in Table 3 the column matches are

2:8 and 7:13.

Yet the columns are permutations of each other rather than being identical, and

this is somewhat remarkable because the bases, which constrain the size of the

elements in each row, are different. So, for example, the 5 in Column 4 of Table 2

is necessarily less than b1 = 7, but is matched by the 5 in Column 2, which is only

forced to be less than b4 = 23.
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j
x bx 0 1 2 3 4 5 6
1 7 0 1 4 5 5 3 6
2 20 0 13 15 17 4 16 11
3 24 0 19 20 16 13 5 19
4 23 0 18 5 12 15 19 19
5 16 0 8 13 3 13 12 11
6 25 0 21 13 19 20 17 6

Table 2: rx,j for n = 29, m = 1, b = 7, L = 7, ϕ(L) = 6, column matches 2:4, 3:5

j
x bx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 7 0 1 4 0 3 1 0 6 2 1 5 4 3 4 2
2 18 0 10 8 2 5 14 9 5 4 1 2 16 4 11 11
4 14 0 6 4 7 3 2 3 8 8 1 11 4 0 12 9
7 28 0 25 8 3 17 4 14 12 18 1 22 16 7 6 9
8 10 0 3 2 2 5 8 0 6 4 5 1 6 1 2 9

11 20 0 12 18 1 5 16 2 11 12 5 3 4 10 6 9
13 19 0 11 12 4 17 3 1 4 5 9 15 6 2 8 11
14 9 0 2 5 4 5 7 2 2 8 1 1 4 0 5 2

Table 3: rx,j for n = 31, b = 7, m = 1, L = 15, ϕ(L) = 8, matches 2:8, 7:13

The explanation for this feature of matched column sets, as in the title of this

paper, is given in Theorem 2 below, and the specification of which pairs of columns

match lies in the following lemma.

Lemma 6. If m = 1, and x and j are coprime to L, then rxj,1/j = rx,j, where

subscripts are computed mod L.

Proof. The inverse of j mod L exists because j is coprime to L, and Equation (2)

with cy = by (as m = 1) implies

rxj,1/j = ⌊bxjbxj(1/j)/n⌋ = ⌊bxjbx/n⌋ = rx,j . □

Thus it is columns j and j−1 mod L which match.

Remark 1. This relationship is easy to see in Tables 1 and 2; but our original

research counted columns 1-up instead of 0-up, which made the relationship harder

to spot!

Theorem 2. Let n be an integer, B be the set of small bases giving a repetend

length L for 1/n, and A be the matrix whose rows are the repetend digits rj of 1/n
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for each base b ∈ B, with column index j and 0 ≤ j < L. Then if j is coprime

to L and j2 ̸≡ 1 mod L, column j matches distinct column 1/j mod L. If L is the

product of 2e and f distinct odd prime powers then the number of pairs of matched

columns is P (L) = (ϕ(L)− 2f+g(e))/2 where g(e) = max(0,min(2, e− 1)). Further,

the final column (L− 1) possesses pairs of identical repetend digits.

Proof. Consider any row labelled by its base b = b1 ∈ B. The digit in column j of

this row is r1,j , which by Lemma 6 and the assumptions on j, equals rj,1/j in the

distinct column 1/j mod L and the row labelled by bj = bj1 mod n. Hence there is

a 1-1 match between the digits in the distinct columns j and 1/j mod L.

The number of pairs of matching columns is half the number of eligible j values.

Excluded from these are the square roots of unity mod L which form a group

to whose order each of the f odd prime divisors of L contributes a factor of 2,

and a divisor 2e contributes the factor 1, 1, 2, and 4, respectively, for the cases

e = 0, e = 1, e = 2, e ≥ 3. Hence the number of matching pairs of columns is

P (L) = (ϕ(L)− 2f+g(e))/2 where g(e) = max(0,min(2, e− 1)). (3)

Finally, if j = L − 1 = −1 mod L, then 1/j = 1/(−1) = −1 = j mod L, so by

Lemma 6, r1,L−1 = rL−1,L−1. Thus column L − 1 has pairs of equal repetend

digits. □

P (L), the number of paired columns for any given repetend length L, is an infinite

sequence whose properties could be of interest. It is the subject of a paper currently

in preparation, which contains interesting information about P (L), such as proofs

that its range excludes “most” 3 mod 6 integers.

Remark 2. If the matrix A in Theorem 2 is restricted to the rows corresponding

to the cyclic subgroup formed by increasing powers of a single base b, then the last

column is palindromic. This is visible in Tables 2 and 3. Example 7 is the only

one with proper subgroups, and shows how the column matching and palindromic

feature occur within the subgroups.

Example 5. In Theorem 2 take n = 29, L = 7, b1 = 7, j = 5, so 1/j = 3 mod 7,

which shows that Columns 5 and 3 of Table 2 match. Take x = 4, so xj = 6 mod 7,

then r4,5 = r6,3 = ⌊b4b6/29⌋ = ⌊23·25/29⌋ = 19. For the number of paired columns,

L = 2071, so f = 1 and e = 0, and since ϕ(L) = 6, we have P (L) = (6− 2)/2 = 2.

Example 6. In Theorem 2 take n = 31, L = 15, b1 = 7, j = 7, so 1/j = 13 mod 15,

which shows Columns 7 and 13 of Table 3 match. Take x = 7, so xj = 4 mod 15,

then r7,7 = r4,13 = ⌊b7b4/31⌋ = ⌊28·14/31⌋ = 12. For the number of paired columns,

L = 203151, so f = 2 and e = 0, and since ϕ(L) = 8, we have P (L) = (8−4)/2 = 2.

Note that in Table 3, in addition to the palindromic Column 14 from Theorem

2, Columns 4 and 11 are also interesting, each having just three unique entries out
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of the eight possible. Part of the explanation is that 42 = 112 = 1 mod 15. So in

Column 4, rx,4 = ⌊bxbx4/31⌋ = ⌊b4xb1x/31⌋ = ⌊b4xb(4x)4/31⌋ = r4x,4. That explains

why the eight values are split into four pairs. The reason why 5 occurs four times

instead of twice is that b3 = 343 = 2 mod 31, so if y = x+ 3 then by = 2bx, leading

to, for example, r8,4 = ⌊b8b2/31⌋ = ⌊10 · 18/31⌋ = ⌊20 · 9/31⌋ = ⌊b11b14/31⌋ = r11,4.

The next example illustrates some features in the case of non-cyclic Z∗
n.

Example 7. In Table 4 there are 24 bases of order 5 which split into 6 distinct

multiplicative subgroups of order 4. Columns 2 and 3 match, and it can be seen

that the matching digits occur within each subgroup.

b r0 r1 r2 r3 r4
16 0 0 14 14 5

256 0 238 80 14 229
246 0 220 14 76 229
86 0 26 76 80 5
31 0 3 15 10 8

136 0 67 35 15 45
91 0 30 10 23 45
71 0 18 23 35 8
56 0 11 22 33 45

111 0 44 89 22 67
166 0 100 33 133 67
221 0 177 133 89 45

b r0 r1 r2 r3 r4
26 0 2 11 23 19
126 0 57 92 11 115
251 0 229 23 183 115
201 0 146 183 92 19
36 0 4 25 23 25
196 0 139 136 25 129
181 0 119 23 125 129
191 0 132 125 136 25
81 0 23 69 41 43
236 0 202 125 69 121
141 0 72 41 74 121
146 0 77 74 125 43

Table 4: The 24 repetends for n = 275 = 52 · 11 with L = 5

The next example was chosen for two reasons: to use the “nice” base 10, and to

have L = 25 which is the only value to achieve P (L) = 9 (and as mentioned earlier

is a rare 3 mod 6 value of P (L)). Consequently, n has to be quite large, both a

divisor of 1025−1 and with 10 of full order 25, and from Table 9 of [13] the smallest

such is the prime 21401.

This choice was serendipitous in the sense that it led to the discovery of a new

feature of matching digits across rows (as opposed to columns). It was noticed

because of the presence of unusually small numbers in each row, even when the

limit, the value of the base, is quite large.

Example 8. With the parameters as in Table 5, the 20 = ϕ(25) bases 10i mod n

with 5 ∤ i are 10, 100, 1000, 10000, 15554, 5733, 14528, 16874, 18122, 10012, 14516,

16754, 6122, 18418, 12972, 1314, 2994, 8539, 21187, 19261. The smallest value

outside Column 0 has been underlined in each of the Rows 3 to 24, and an example

of a large matching pair is shown in italics in Rows 17 and 18.
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** 00000 00001 02*13 03*17 04*19 00005 06*21 07*18 08*22 09*14 00010 11*16 12*23

01 00000 00000 00000 00000 00004 00006 00007 00002 00006 00007 00008 00008 00004

02 00000 00000 00046 00072 00067 00088 00046 00078 00028 00060 00061 00039 00090

03 00000 00046 00726 00788 00467 00828 00606 00139 00900 00004 00672 00678 00846

04 00000 04672 06788 04678 02860 06139 09000 00467 02678 08467 08286 00613 09900

06 00000 11304 07276 09427 13998 10462 13170 13385 15398 07267 13760 04449 06206

07 00000 01535 04488 00802 00267 05071 04933 05159 04166 03888 03520 00026 04520

08 00000 09862 04155 13075 03891 12037 14382 10558 11373 05796 09772 09854 02032

09 00000 13304 10228 00078 14288 10360 07884 11445 06732 12263 13981 15186 11454

11 00000 15345 07230 12302 01112 12190 05184 00084 12291 16309 16032 02535 04854

12 00000 04683 09010 08477 09911 08857 03994 07894 01400 06796 06147 02682 00614

13 00000 09846 00006 11364 00067 12028 00678 04152 06782 12492 09764 08798 10550

14 00000 13116 00782 14418 12176 10286 13209 16586 07838 00007 13882 07828 10155

16 00000 01751 01639 06060 04792 04118 00856 02864 00286 00375 05416 00002 05268

17 00000 15850 14522 00008 11163 16294 00086 01130 15596 00860 11308 08616 08606

18 00000 07862 10984 06061 05175 10748 08806 00006 00796 06068 08725 12842 03710

19 00000 00080 00891 00352 00000 00806 01028 00892 00006 00183 01088 01036 00061

21 00000 00418 02576 02030 02360 02014 00001 01194 01814 02343 02648 02176 00013

22 00000 03407 00524 02442 05791 07554 02287 03990 00003 08453 05242 07348 06684

23 00000 20975 02964 01300 18233 17555 14370 17940 16705 05675 14252 00990 00009

24 00000 17334 19068 07685 02694 11826 01182 11674 16576 05509 15959 15078 13064

** 13*02 14*09 00015 16*11 17*03 18*07 19*04 00020 21*06 22*08 23*12 00024

01 00006 00007 00008 00002 00008 00006 00000 00006 00001 00003 00009 00009

02 00000 00004 00067 00026 00078 00084 00067 00082 00086 00006 00013 00099

03 00782 00860 00613 00990 00000 00467 00267 00884 00678 00286 00061 00399

04 00046 07267 08846 07828 06061 03990 00004 06726 07884 06782 08606 01399

06 00726 12263 12888 02176 00072 10558 12176 09550 00007 04166 10550 00955

07 01639 05675 03856 02682 00352 00002 03891 04750 02287 02678 04854 03475

08 06788 06796 08920 00678 12302 00892 00067 12852 08806 00006 11454 12503

09 14522* 00007 14928 01036 00788 07894 02360 11350 13209 16705 04520 04827

11 10984 08467 15016 00008 08477 17940 14288 11126 13170 15596 00846 14187

12 07276 06068 06734 08616 04678 02864 00467 08296 00046 07838 00004 06791

13 00891 03888 08912 09854 02030 11445 05791 12841 14370 12291 13064 06791

14 04488 02343 14821 15078 11364 00078 04792 11270 01028 11373 06684 14187

16 04155 05509 05072 04449 02442 04152 02860 03758 05184 00028 03710 04827

17 08606 02576 12492 12389 07348 14418 13385 18233 15261 04933 16576 05268

18 10228 00060 07964 08798 09427 11674 11163 11476 00606 01814 10155 03475

19 00524 00375 01162 00613 01300 01130 01112 00883 01182 00796 00614 00955

21 02964 00183 02480 02535 00802 00139 02694 01838 00856 01400 02032 01399

22 07230 05796 05744 00039 00685 01194 05175 07075 03994 06732 06206 00399

23 19068 08453 13008 12842 06060 16586 09911 18743 14382 15398 09900 00099

24 09010 16309 17039 15186 13075 05159 13998 12956 09000 00900 00090 00009

Table 5: n = 21401, L = 25, b1 = 10; leading zeroes used; x ∗ y means the column
is x and is paired with y
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Each smallest value is less than 10, a feature whereby each row has a match with

Row 1, and more generally with any other row, as in the following theorem. Whereas

Theorem 2 requires the numerator m to be 1, for row matching the constraint on

m is less severe, as follows.

Theorem 3. If m is a power of a base, then each pair of rows has an element which

is common to the two rows. Further, in each row there are two adjacent digits, the

first being zero, which are not part of the matching pairs.

Proof. Since m is a power of a base for the repetend length, let the base be b and

m = bu mod n. Then in Lemma 5 cj = bj+u mod n = bj+u by definition, and by

Equation (2) with cxj = bxj+u, we have rx,j = ⌊bxbxj+u/n⌋. To make rx,j equal

ry,i by matching the “opposite” subscripts, we need x = yi + u and y = xj + u.

Since the row numbers x and y are already required to be coprime to L, there is a

solution i = (x− u)/y mod L and j = (y − u)/x mod n.

Now, given a fixed row x, the other row index y may not be 0 nor x. The equation

for j then means it cannot be −u/x mod L nor (x−u)/x = 1+(−u/x) mod L, which

are two adjacent columns. The digit at the first is ⌊bxbx(−u/x)+u/n⌋ = ⌊bx/n⌋ = 0.

□

Example 9. Table 6 shows an example where the numerator m is not unity. The

j
x bx 0 1 2 3 4 5 6
1 7 6a 0 1 4b 5c 5d 3e
2 20 17f 4b 16g 11h 0 13 15i
3 24 20j 16g 13k 5c 19l 0 19
4 23 19m 19l 0 18 5d 12n 15i
5 16 13o 12n 11h 0 8 13k 3e
6 25 21 13o 19m 20j 17f 6a 0

Table 6: rx,j for n = 29, b = 7, m = 25 ≡ b6, L = 7

15 matching digits are subscripted by equal letters, from a to o and ordering left

to right and top to bottom. The four unique digits (following 0 in each case) are

written in bold.

3. Class B: A Second Class of Column Matches

Theorem 2 provides sufficient conditions for column matches to occur. Regarding

necessity, non-systematic computer experiments had suggested that two converses

of Theorem 2 are true. The weaker converse is that a third column cannot match
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the pair of columns j and 1/j, and the stronger converse is that a pair i, j matches

only if ij = 1 mod L. However, a more systematic search contradicted the stronger

converse, by revealing two new classes of column match which we shall call Class B

and Class C (with Class A used for examples under Theorem 2 above). All three

classes are based on algebraic identities, and in fact both Class B and Class C depend

on the cyclotomic polynomial x2 − x + 1 dividing x6 − 1. However, that does not

preclude the possibility of a “sporadic match” in which random numerical close

approximations cause a match. Section 6 presents a heuristic probability model

which suggests that the probability of any sporadic matches is low – less than two

in a million.

The definition of Class B is as follows. Let L = 12a + 6 with a > 0, and n be

a prime power with the prime congruent to 1 mod L. Then a certain proportion

of repetends of 1/n with length L have columns 2a + 1 and 4a + 2 matching and

columns 8a+ 4 and 10a+ 5 matching (as proved later).

Example 10. The smallest Class B example is given in Table 7, with n = 199.

j
x bx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 19 0 1 15 8 16 13 8 14 16 18 17 3 10 2 5 10 4 2
5 141 0 99 127 75 114 110 75 14 123 140 41 13 65 26 30 65 126 17
7 156 0 122 45 72 141 16 72 18 126 155 33 110 83 14 139 83 137 29
11 37 0 6 32 19 33 3 19 26 7 36 30 4 17 3 33 17 10 29
13 24 0 2 21 11 5 4 11 2 6 23 21 2 12 18 19 12 21 17
17 21 0 2 4 11 6 2 11 3 18 20 18 16 9 14 18 9 17 2

Table 7: The six repetends of 1/199 with L = 18

Note that the Class B matching Columns 3:6 and 12:15 have their elements in
exactly the same order, i.e., rx,3 = rx,6. The Class B theorem below explains this.

Remark 3. In Class B, a = 0 could in theory be a valid case, except that L = 6
is closely analyzed in Section 6, where Lemmas 40 and 39 show that for any n,
Columns 1:2 and 4:5 do not match.

Theorem 4 (Class B). Let L = 12a + 6 with a > 0, n be a prime power with the
prime congruent to 1 mod L, and b be a small base giving repetend length L. Let
bi = bi mod n and ki = (bi + bi+L/3 + bi+2L/3)/n. Then if (and only if) ki = 1 for
all i coprime to L, columns 2a+1 and 4a+2 match and columns 8a+4 and 10a+5
match. The proportion of such n’s is conjectured to be 2−s, where

s =

{
ϕ(L)/3 if a ≡ 1 mod 3

ϕ(L)/2 otherwise
·
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Proof. Let d = L/6 = 2a+1, e = 2d. Since b1 = b has order L, bd has order 6 and,
since n is a prime power, is a zero of the 6th cyclotomic polynomial x2−x+1 modulo
n. Hence b2d − bd + 1 = 0 mod n. Then be ≡ b2d ≡ bd − 1 mod n, so be = bd − 1.
Since b−d is the other element of order 6 and b−e is the other element of order 3,
b−e = b−d − 1 in similar fashion and the following analysis for the pair (d, e) also
applies to the pair (−d,−e) ≡ (L− d, L− e) ≡ (10a+ 5, 8a+ 4).

Now let Di = ri,d − ri,e = (bibdi − b(d+1)i − bibei + b(e+1)i)/n, by Equation (2).
Since i is coprime to L and hence to 6, bdi has order 6, so bei = bdi − 1 as above.
Then nDi = bibdi−b(d+1)i−bi(bdi−1)+b(e+1)i = bi−b(d+1)i+b(e+1)i = 0 if and only
if bi+bi+ei < n. The last inference there is true because b(d+1)i ≡ bi + b(e+1)i mod n
is forced, but if the RHS is greater than n then b(d+1)i < n implies Di has to be 1.

Now, since e = L/3, by definition ki = (bi + bi+e + bi+2e)/n, an integer since
bi+bi+e+bi+2e ≡ bi(1+be+b2e) ≡ bi(1+be+b2e) ≡ bi(b

3e−1)/(be−1) ≡ 0 mod n, as
b3e ≡ bL ≡ 1 mod n. Since i is coprime to L, the set {(e+1)i, (2e+1)i} mod L equals
{i + (i mod 3)e, i + (2i mod 3)e} mod L, which is {i + e, i + 2e} mod L. Therefore
ki = (bi + b(e+1)i + b(2e+1)i)/n, and so

Di = (bi − b(d+1)i + b(e+1)i)/n = ki − b(d+1)i/n− b(2e+1)i/n.

SinceDi and ki are both integers and the b∗/n terms are each less than 1,Di = ki−1.
Define a “triple” Ti to be {i, i+ e, i+2e} mod L. Then if Ti1 . . . Tis is a minimal

set of triples which covers all values i coprime to L, then all the Di’s are 0 if and
only if all s of the kij ’s are 1.

This s is the same as in the statement of the theorem, and we now prove the
claim about its value. We need to know how many members of Ti are coprime to
L, given that member i is. If i+ je = i+ jL/3 is not coprime to L, then for some
prime p, p | L, p | i+ jL/3, p ∤ i. So jL/3 ≡ (i+ jL/3)− i ≡ 0− i ̸≡ 0 mod p, so
p ∤ L/3. But since p | L, the only possibility is p = 3 and 9 ∤ L = 6(2a + 1), hence
a ̸≡ 1 mod 3. In this case j ≡ −i/(4a+ 2) mod 3 specifies the unique i+ je mod L
which does not contribute to covering the ϕ(L) values coprime to L. Hence Ti covers
3 values coprime to L if a ≡ 1 mod 3 and 2 otherwise, and the number s of them is
as claimed since there are ϕ(L) values to cover.

The heuristic probability that a random eligible n is in Class B is 2−s for the
following reason. Each ki can take only the values 1 or 2; ki = 1 if and only if
bi+ bi+e < n, since bi+2e is determined by those two values. A heuristic model that
bi and bi+e are independently and uniformly distributed between 2 and n−2 implies
that their sum exceeds n with probability 1/2. Hence, over the set of s independent
triples there is a 2−s heuristic probability that all the ki’s are 1. □

Table 8 displays details of Class B cases for a such that s ≤ 24, ordered by s.
(The first missing a, 14, has s = ϕ(174)/2 = 28.) For each a, the target number H
of hits was chosen to be as large as possible up to 10000 without taking too long to
run, in order to help test the statistics. Up to 5 a’s were run in parallel, consuming
about 11% each of available CPU power on a modern 6-core laptop. (A single run
at a time consumed about 15% CPU.) Therefore the number of prime candidates
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was 2sH. The proportion h/H of actual hits to expected, should be close to 1. In
fact it was always slightly below 1 for 8 ≤ s ≤ 20, but not significantly so against
a Poisson distribution of mean H. The last four rows achieved 6 hits (expected 6);
fortunately the expensive s = 24 runs did not require H to be raised above 1.

It is more efficient not to test for prime power examples, but where we did for
a = 1, the following prime powers exhibited Class B:

372, 1632, 373, 194, 6312, 7572, 9192, 9912, 11172, 374, 1273.

The largest successful n contained in a search starting from zero was 27544840363,
which is a 35-bit number, with modular multiplication in theory requiring use of
numbers up to 70 bits in length. Fast enough computation in ‘R’ was a challenge
whose details are described in Appendix A.

a s H h h/H time smallest largest
1 2 10000 9855 0.985 29.56s 199 3347947
2 4 10000 10156 1.016 2.55m 2131 20175751
3 6 10000 9839 0.984 21.54m 5503 135647989
4 6 10000 10072 1.007 31.64m 12421 208531261
7 8 1600 1584 0.990 29.68m 258211 176238001
5 10 400 384 0.960 20.44m 447877 145087867
6 12 100 90 0.900 25.22m 855271 174542629

10 12 100 97 0.970 28.12m 1529893 269612029
8 16 100 89 0.890 13.68h 20260873 4418602159
9 18 25 23 0.920 14.65h 405145171 4597467241

13 18 25 21 0.840 16.82h 77221999 7552690129
12 20 10 9 0.900 1.35d 430129351 8869214251
16 20 10 9 0.900 1.29d 236180143 11140938271
11 22 3 1 0.333 1.43d 2980689601 2980689601
17 24 1 1 1.000 2.72d 3835537861 3835537861
19 24 1 3 3.000 2.31d 2285793901 27544840363
22 24 1 1 1.000 2.56d 11152477711 11152477711

Table 8: Class B statistics, with a = class B index, s = − log2(hit rate), H = target
number of hits, h = actual number of hits

4. Class C: A Third Class of Column Matches

For this section we introduce some particular notation and constraints which en-
capsulate a third Class (C) of matching columns. In addition, we explain how a
number of pairs of “almost matching” columns arise, labelled Class C̃.

The definition of Class C is as follows. With n and L as specified in Table 9,
there exists a non-Class A pair of matching columns with particular indices d, e.
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Variable Definition
p is a prime congruent to 1 mod 6

j is a positive integer

i is an integer ≥ 2j

n = pi is the modulus

Q = pj , (so 1 mod 6)

a = (Q− 1)/6

L = 6Q is the repetend length

b, B are small bases for which n has repetend length L

l, h are integers arising in B2 = B − 1 + lph mod n proved in Lemma 8

M = lph

d, e are the indices of a pair of matching (or near-matching) columns

y is an integer which is ±1 mod 6

s = y mod 6 with s = ±1, for brevity sometimes written as + or −
ms is a multiplier describing the matching of columns d and e

Ds = n(rmsy,e − ry,d) measures the difference in column d and e digits

(u, v) mod(Q, 6) is the unique number in [0, L) = u mod Q and v mod 6

Table 9: Notation and constraints for Class C

Remark 4. It is evident from the notation in Table 9, with 6 and B2 ≡ B − 1
appearing, that like Class B, Class C instances are possible through the nature of
the 6th cyclotomic polynomial. However, Class B and Class C cannot occur for the
same n, because the former requires that n ≡ 1 mod L, which in the latter requires
that pi ≡ 1 mod 6pj , which implies that p divides pi − 1, which is impossible.

Example 11. This smallest example of Class C/C̃ has p = 7, i = 2, j = 1. The
repetend length is L = 42 and the smallest base for this is b = 3. In the partial
repetend Table 10 we display the pairs of columns d : e = 16 : 4, 10 : 40, and 8 : 19,
first in straight order rx∗ and then in sorted order (denoted by ‘s’ in the column
heading), with second column differences accentuated by underlining.

Columns 16:4 are the pure Class C case, with equal sorted columns. Columns
10:40 also have d ≡ e ≡ 4 mod 6 as explained later, and are a Class C̃ case with
2 differences of +1, 8 of 0, and 2 of -1. Columns 8:19 are another Class C̃ case,
with d = Q+1 as explained later, and have 6 +1 differences (i.e., half of the rows),
which accords with Theorem 8 below.

The background to Class C/C̃ is as follows. In Class A, for any two match-
ing columns there is a linear relationship between the row of one column and the
matching row in the other column. The same is true for Class C, except that
the relationship differs depending on a certain ±1 mod 6 value. Specifically, if ry,d
(almost) matches rx,e, then x = msy mod L where y ≡ s = ±1 mod 6, and the
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x bx 16 4 10 40 8 19 16s 4s 10s 40s 8s 19s
1 3 1 1 0 0 2 2 35 35 42 42 26 26
5 47 22 15 42 35 10 11 30 30 35 35 21 22

11 12 10 2 0 3 7 8 22 22 24 24 20 21
13 10 2 0 6 5 3 4 15 15 22 23 12 13
17 26 8 1 4 23 2 2 15 15 19 18 10 11
19 38 3 30 35 24 1 13 10 10 13 13 7 8
23 40 30 35 13 18 20 21 8 8 6 6 4 4
25 17 15 8 3 13 12 3 3 3 4 5 4 4
29 5 0 3 2 0 4 4 2 2 3 3 3 3
31 45 35 10 22 42 21 2 1 1 2 1 2 2
37 24 15 22 19 1 4 22 1 1 0 0 2 2
41 33 1 15 24 6 26 26 0 0 0 0 1 2

Table 10: Six columns (and sorted columns) of the repetend table for 1/49, L = 42

multiplier depends on s. (Note from the example that y must be coprime to 6 and
p must be a base giving repetend length L.) We now calculate Ds = n(rmsy,e−ry,d)
in the following lemma.

Lemma 7. Let B = by. Then

Ds = bymsbymse − byms(e+1) − bybyd + by(d+1)

= Bms
Bmse −Bms(e+1) −B1Bd +Bd+1.

Proof. This follows from two uses of the Repetend Digit Formula (2) with different
parameters. □

It is clear that the magnitude of Ds is in general dominated by its first and
third terms, which are products of two Bk’s. The second and fourth terms are
instrumental in determining whether there is an exact match, i.e., Ds = 0.

Here is a summary of the remainder of this section. We first prove some basic
results in Lemmas 8 to 11, which lead to the proofs of Class C and C̃ statements
regarding the relationships of e and ms to d which provide small values of Ds.
These only occur when d ≡ ±2 mod 6, and are specified in Lemmas 12, 14 and
15. Theorem 5 then enumerates the Class C/C̃ cases, and Theorem 6 derives the
single special Class C case, i.e., Ds = 0, from Lemma 12. Finally, Theorems 7 and
8 explain why, for four of the Class C̃ cases, the difference Ds/n in the repetend
digits is +1 in half the cases and 0 in the other half.

Lemma 8. Base B satisfies B2 = B−1+M mod n, where M = lph with h = i−j
and l coprime to p. Also, n | QM |M2 (also implying Q |M).
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Proof. The notation implies that B has order 6Q mod n. Let B6 ≡ a mod pi,
so a has order Q = pj . Then 1 ≡ BL ≡ ap

j

mod pi by the notation. Hence
ap

j ≡ 1 mod p, but by Fermat’s Little Theorem and induction, ap
j ≡ a mod p, so

a ≡ 1 mod p. Now we may write a = 1+kph for some h > 0 and k ̸≡ 0 mod p. Then
ap

j ≡ (1+kph)p
j ≡ 1+kph+j mod p2h+j , which is consistent with ap

j ≡ 1 mod pi if

and only if h ≥ i−j, which is ≥ 1. But the order of a implies that ap
j−1 ̸≡ 1 mod pi,

so 1 ̸≡ 1+kph+j−1 mod p2h+j−1 ≡ 1+kph+j−1 mod pi since 2h+j−1 ≥ i+h−1 ≥ i.
Hence h + j − 1 < i, which implies equality in h ≥ i − j above, i.e., h = i − j as
claimed. Now

kph = a− 1 ≡ B6 − 1,

so B mod ph has order dividing 6. But the order must be exactly 6 since 6Q is the
order of B mod pi. Therefore, as in Class B, B satisfies the cyclotomic polynomial
B2−B+1 ≡ 0 mod ph, so B2 = B− 1+ lph mod pi for some integer l. If p | l then
since h < i, ph+1 | B2 −B + 1 | B6 − 1 ≡ kph mod pi, and this contradicts p ∤ k, so
p ∤ l.

For the final result, ph |M by definition, and since j ≤ i/2 ≤ i− j = h, it follows
that pi = ph+j | p2h, and so (pi = n) | (lph+j = QM) | (l2p2h = M2). □

Many of the calculations in this section will make use of Table 11, which is derived
from Lemma 8 in the ring mod n = pi, as follows:

B2 = B − 1 +M,

B3 = B2 −B +BM = −1 +(B + 1)M,

B6 = (−1 + (B + 1)M)2 = 1 −2(B + 1)M,

B6x = (1− 2(B + 1)M)x = 1 −2(B + 1)xM,

B6x+1 = B − 2x(B2 +B)M = B −2(2B − 1)xM,

...

From time to time we shall use without comment the implication from the first
line above that B2M ≡ (B − 1 + M)M ≡ (B − 1)M mod n, and similarly for
C ≡ B−1 mod n.

k B6x+k mod n
0 1− 2(B + 1)xM

1 B − 2(2B − 1)xM

2 B − 1 + (1− 2(B − 2)x)M

3 −1 + (B + 1)(2x+ 1)M

4 −B + (2B − 1)(2x+ 1)M

5 −B + 1 + (B − 3 + 2(B − 2)x)M

Table 11: B6x+k mod n (B of order L = 6Q)
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Lemma 9. Base B satisfies B(B−1,2) mod (Q,6) ≡ B(1−B,2) mod (Q,6) ≡ B−1 mod n.

Proof. By Lemma 8, we have Q | M , so since −1 ≡ 5 mod 6, Table 11 Row 5
implies that B−1 ≡ 1 − B mod Q. Now let (1 − B, 2) mod (Q, 6) = 6x + 2. Then
x ≡ (1 − B − 2)/6 mod Q, and again by Lemma 8, n | QM , so x only needs to be
known modulo Q. Then by Row 2 of Table 11,

B6x+2 ≡ B − 1 + (1− 2x(B − 2))M

≡ B − 1 + (3 + (B + 1)(B − 2))M/3

≡ B − 1 + (3 +B − 1−B − 2)M/3

≡ B − 1 mod n.
□

Lemma 10. If y ≡ s mod 6, then by ≡ bs mod Q.

Proof. Let y = 6x+ s. Then

by = b6x+s = (b6)xbs ≡ bs mod Q,

since b6 ≡ 1 mod M by Row 0 of Table 11, and this is 1 mod Q since Q | M by
Lemma 8. □

Lemma 11. Let d ≡ 2f mod 6 where f = ±1, B = by with y ≡ s = ±1 mod 6,
and ks ≡ (bsfd, f) mod (Q, 6). Then Bks

= Bd + 1.

Proof. We first calculate Bd. Letting d = 6w+2f , note that w ≡ (d−2f)/6 mod Q
is sufficient for the arithmetic involving wM , since n | QM . Let C = Bf , which like
B is an element of order L mod n, and hence satisfying the arithmetic of Table 11.
Now f2 = 1, so B = Cf and

Bd ≡ Bd = Cfd = C6wf+2

≡ C − 1 + (1− 2wf(C − 2))M (by Row 2 of Table 11)

≡ C − 1 + (3− f(C − 2)(d− 2f))M/3

≡ C − 1− ((fd− 2)C − 2fd+ 1)M/3 mod n.

For Bks
, again use B = Cf and recall that bsf ≡ byf ≡ Bf ≡ C mod Q, and then

ks ≡ (Cd, f) mod (Q, 6). Hence Bks = Cfks = C(dfC,1) mod (Q,6) ≡ C6x+1 where
x = (dfC − 1)/6 mod Q, so using Row 1 of Table 11,

Bks
≡ C − 2(dfC − 1)(2C − 1)M/6

≡ C − (2df(C − 1)− (df + 2)C + 1)M/3

≡ C − ((fd− 2)C − 2fd+ 1)M/3 mod n.

Comparing the two calculations, with identical M terms, and knowing that C ̸= 0,
the result follows. □
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In the following, “size constraints” refers to the fact that the sum of -1, 0, or +1
and a number of signed values Bz each of which is greater than 1 and less than n−1,
if known to be 0 mod n, can take only a limited number of values. For example,
Bi +Bj −Bk + 1 is greater than 4− n and less than 2n− 2 and can therefore only
be 0 or n given that it is a multiple of n.

The following lemma specifies certain (d, e) pairs of Class C/C̃ columns.

Lemma 12. Given the conditions of Lemma 11, plus the restriction Q ∤ d, let
dQ ≡ d mod Q and

ms =

{
1 if f = +1, s = −1
ks otherwise,

e ≡

{
k−1
+ mod L if f = +1

(d−1, 4) mod (Q, 6) if f = −1.

If f = +1, dQ ≡ ±1 then Ds = B1 +Bd+1 −Bks
++1 ∈ {0, n}.

If f = −1, then Ds = B1 +Bd+1 −Bd −Bks(e+1) − 1

= B1 +Bd+1 −Bks
−Bks(e+1) ∈ {−n, 0, n}.

Proof. From Lemma 7 with rearranged terms to put the biggest two first,

Ds = Bms
Bmse −B1Bd −Bms(e+1) +Bd+1 (and is a multiple of n). (4)

We shall use the result of Lemma 11 several times without specific reference.

Consider f = −1 first, so ms = ks. Then Bms
= Bd + 1; we shall also show

that Bmse = B1 − 1. Since B = by, Lemma 10 gives B ≡ bs mod Q. Therefore
mse = kse ≡ (bsfd, f)(d−1, 4) ≡ (B−1,−4) ≡ (1 − B, 2) mod (Q, 6)). Then by
Lemma 9, Bmse ≡ B − 1 mod n. Since Bz ≡ Bz mod n and 0 < Bz < n for any z,
it follows that Bmse = B1 − 1 by size constraints. Then Equation (4) becomes

Ds = (Bd+1)(B1−1)−B1Bd−Bms(e+1)+Bd+1 = B1+Bd+1−Bd−Bks(e+1)−1. (5)

as claimed. By size constraints, the only possible multiples of n forDs are−n, 0,+n.

Next consider f = +1. If s = +1 then ms = ks = k+ ≡ e−1 mod L so mse = 1
and, by Lemma 11, Bms

= Bks
= Bd + 1. Hence Equation (4) becomes

D+ = (Bd + 1)B1 −B1Bd −B1+k+
+Bd+1 = B1 +Bd+1 −Bks

++1

as claimed.

But if s = −1, Equation (4) gives D− = B1Be − B1Bd − Be+1 + Bd+1 since
ms = 1 in this case. The constraint that d ≡ ±1 mod Q is now used. This implies
that d is either Q+ 1 or 3Q− 1 (since Q is 1 mod 6), and d ≡ d−1 mod Q. But by
assumption,

e ≡ k−1
+ mod L ≡ (bfd, f)−1 mod (Q, 6) ≡ (b−1d, 1) mod (Q, 6) = k− = ks
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by the definition of ks when f = 1. Now using Lemma 11, Be = Bks
= Bd + 1, so

D− = B1(Bd+1)−B1Bd−Be+1+Bd+1 = B1+Bd+1−Be+1 = B1+Bd+1−Bks
++1

as claimed, since e ≡ k−1
+ = ks+. □

The following results are useful for later analysis.

Lemma 13. If f = ±1 then:

a. B2fQ = BfQ − 1,

b. BfQ +B−fQ = n+ 1,

c. B3fQ = n− 1,

d. Q2 ≡ Q mod L.

Proof. Let C = BfQ, which has order 6 since B has order L = 6Q mod n. Therefore

0 ≡ C6 − 1 ≡ (C − 1)(C + 1)(C2 + C + 1)(C2 − C + 1) mod n.

Just as in Lemma 8, it follows that C2 ≡ C − 1 mod n, so B2fQ ≡ BfQ − 1 mod
n. Part (a) follows from size constraints. Then multiplying this by B−fQ gives
BfQ ≡ 1−B−fQ mod n and then part (b) follows from size constraints. Part (c)
derives from C3 having order 2, and -1 is the unique element of order 2 in this
group.

Finally, L = 6Q so Q(Q− 1) ≡ 0 mod L since 6 | Q− 1; part (d) then follows. □

Lemma 14. Let B = by. If f = ±1 and d ≡ 2fQ, e ≡ fQ mod L, and ms = 1
for both signs of s, then Ds = B1 +Bd+1 −Be+1 ∈ {0, n}.

Proof. By Lemma 7 with ms = 1,

Ds = B1Be −Be+1 −B1Bd +Bd+1

= B1(BfQ −B2fQ) +Bd+1 −Be+1

= B1 +Bd+1 −Be+1 (using Lemma 13(a))

∈ {0, n} (by size constraints). □

We now count all the instances of Class C/C̃ implied by the preceding lemmas.

Theorem 5. Given the definition of P (.) in Theorem 2, the number of Class C
and Class C̃ instances described in this section is P (Q) + 6.

Proof. With f = −1 in Lemma 12, d ≡ 4 mod 6 and e ≡ (d−1, 4) mod (Q, 6). This
provides a pair of columns d, e whose sorted values differ by Ds/n ∈ {−1, 0, 1},
and this small value qualifies as Class C̃. Each distinct pair (d, e) mod 6Q with
fixed value 4 mod 6, and such that d2 ̸≡ 1 mod Q, corresponds to a unique pair,
(d mod Q, d−1 mod Q) of Class A matches with parameter L = Q as studied in
Theorem 2. Therefore the number of pairs is the same, namely P (Q).
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Moving on to the case f = +1, d ≡ ±1 mod Q, this implies that d ≡ 2 mod 6
and hence d is either Q+1 or 3Q−1. For each of these two cases e ≡ k−1

+ mod 6Q is
well defined, and in addition, the Class A match between columns e and e−1 ≡ k+
provides another Class C̃ match with column d. So there are four instances arising
from this case.

Finally, Lemma 14 yields the two instances d = 2Q, e = Q and d = 4Q, e = 5Q.
Therefore the total number of Class C̃/C instances is P (Q) + 6. □

Table 12 provides the details of the six special cases in the above theorem. The
calculations for e in the first four rows of the table, where f = +1, are as follows.
Lemmas 11 and 12 imply that e ≡ k−1

+ ≡ (bd, 1)−1 mod (Q, 6). If d = Q + 1 then
e ≡ (b−1, 1) ≡ (1 − b, 1) mod (Q, 6) or the class A inverse (b1, 1) mod (Q, 6). If
d = 3Q − 1 instead, its value mod Q is negated, so the mod Q part of e is also
negated. Further properties of these cases are studied later.

We have previously asserted that a Class C case exists, and provided Example
11 for it, in which the difference between sorted columns d and e is not just small,
but zero. We now prove the theorem which establishes the d which achieves this.

d e Relevant lemmas
3Q− 1 (b− 1, 1) mod (Q, 6) Lemmas 12, 15

3Q− 1 (−b, 1) mod (Q, 6) Lemmas 12, 15

Q+ 1 (1− b, 1) mod (Q, 6) Lemma 12

Q+ 1 (b, 1) mod (Q, 6) Lemma 12

2Q Q Lemma 14

4Q 5Q Lemma 14

Table 12: Six special Class C̃ cases

Theorem 6 (Class C). If d ≡ (b2, 4) mod (Q, 6) and e ≡ (b4, 4) mod (Q, 6) then
Ds = 0 and the sorted columns d and e are identical.

Proof. We shall assume that d ≡ 4 mod 6 and make use of Rows 2 and 3 of Table 11,
implying that b2 ≡ b− 1, b3 ≡ −1 mod Q.

In the case of s = +1, we shall solve d to make two particular terms in Equa-
tion (5), Ds = B1+Bd+1−Bd−Bks(e+1)− 1, cancel. Size constraints then prevent
the remaining two from adding up to n or −n, implying that D+ = 0. Then we
shall show that two different terms cancel in the s = −1 case.

With s = +1, we use Lemma 11’s result Bk+
= Bd + 1 with f = −1 (the

d ≡ 4 mod 6 case) and solve k+ = d+ 1, so that Bd+1 −Bd − 1 = 0:

d+ 1 = k+ ≡ d/b mod Q, so d ≡ b/(1− b) ≡ b/(−b2) ≡ b2/(−b3) ≡ b2 mod Q.
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Hence, if d ≡ 4 mod 6, then Bd+1 = Bd + 1 if and only if d ≡ b2 mod Q, and then
D+ = B1−Bks(e+1) = 0 because of size constraints. Using Lemma 12 with f = −1
we derive e ≡ (d−1, 4) mod (Q, 6) ≡ (b4, 4) mod (Q, 6) as in the theorem statement.

For s = −1, write C1 = by where y ≡ −1 mod 6. Then letting A1 = C−1 = b−y,
note that −y ≡ +1 mod 6. Therefore A satisfies the same relations as B did in the
+1 mod 6 case. In particular, d ≡ b2 mod Q if and only if Ad+1 = Ad+1 if and only
if C−d−1 = C−d+1. Multiplying by Cd+1 gives 1 ≡ C1+Cd+1, so C1+Cd+1 = n+1.
It follows that D− = C1 +Cd+1 −Cd −Ck−(e+1) − 1 = n−Cd −Ck−(e+1), which is
zero by size constraints.

We note that the value of k− is not used above, but k− ≡ bd ≡ b3 ≡ −1 mod Q.
Despite the “if and only if” clauses, it cannot be concluded that Ds is identically
zero only when d ≡ b2 mod Q (or b4 mod Q if swapped with e), because Equation (5)
could be zero through other means. □

For some of the Class C̃ cases, more can be said on the distribution of the “errors”
between the two near matching columns, in particular for the six cases of Table 12,
where Ds/n can only be 0 or 1. The remainder of this section studies these cases,
and includes a fairly complicated proof that in four cases the 0’s and 1’s are equal
in number.

We deal first with the first two rows of Table 12, having d = 3Q− 1. These cases
have different errors than do the final four, which is why they are placed first, and
the explanation is much simpler.

Lemma 15. If d = 3Q− 1 then Ds = n.

Proof. Let B = by. From Lemma 12, Ds = B1 + Bd+1 − Bks
++1. But d + 1 = 3Q

and B3Q = n − 1 by Lemma 13(c). This term is too large to allow Ds to be zero,
so it must be the only other alternative, n. □

Thus in these two cases, instead of Class A where the sorted columns match
exactly, we have them differing by +1 in every row. The four other cases have
evenly distributed errors, which is explained via the following general theorem on
the difference between two linear functions when reduced modulo a prime power.

Theorem 7. Let Q = pj be a prime power, and let ci(z) = giz+ fi + ei mod Q for
i = 1, 2, with g1, g2, g2 − g1 all coprime to p, and all quantities in ZQ except for
ei ∈ (0, 1), with e1 < e2 and f1 ≤ f2. Then the sign of d(z) = c2(z) − c1(z) takes
the values -1 and +1 an equal number of times over the following sets:

a. {z : 1 ≤ z ≤ Q− 1},
b. {z : 1 ≤ z ≤ Q− 1, p ∤ z} in the case that either f1 ≡ 0 or f1 ≡ f2 mod p.

(Note that case (b) is only relevant if j > 1.)

Proof. Let d(z) = c2(z) − c1(z), which lies in [−Q + 1, Q − 1], and let Z denote
the set of z which are coprime to p. Let the integer Ci(z) = giz + fi mod Q,
which lies in [0, Q − 1]. Since the fractional ei cannot cause wrapping modulo Q,
ci(z) = Ci(z)+ ei. We then let D(z) = C2(z)−C1(z), which lies in [−Q+1, Q− 1],
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so D(z) ≡ (g2 − g1)z + f2 − f1 mod Q. Note that since g2 − g1 is coprime to Q,
this linear function with integer coefficients is invertible modulo Q, so that for any
y ∈ [0, Q− 1] there is a unique z ∈ [0, Q− 1] such that D(z) ≡ y mod Q. Therefore
D(z) = y or y −Q since y +Q ≥ Q > D(z).

Let z0 denote the special case D(z0) ≡ 0 mod Q – in fact D(z0) = 0 because
D(z) ≥ −Q+ 1 > −Q. Now, d(z) = D(z) + e2 − e1, so d(z0) = e2 − e1 > 0.

A further constraint is that since gi is coprime to Q, similar invertibility ensures
that each possible value of Ci(z) ∈ [0, Q− 1] is attained, so

∑Q−1
z=0 Ci(z) =

∑Q−1
y=0 y,

which is independent of i. This implies that
∑Q−1

z=0 D(z) = 0.

Now consider D(z) = y > 0 with 0 ≤ z < Q. As D(z) is invertible, Q− y must
equal D(z′) for some 0 ≤ z′ < Q. Then either D(z′) = −y or D(z′) = −y +Q. In
the former case D(z) +D(z′) contributes y + (−y) = 0 to the overall sum. In the
latter case, D(z) +D(z′) contributes y + (−y + Q) = Q. But in this case, for the
sum to come to 0, this must be counterbalanced by a negative pair D(w) = −u < 0
and D(w′) = u − Q < 0 contributing −Q to the sum. Hence D(z) is 0 at z = z0,
negative for (Q− 1)/2 of the values of z, and positive for the other (Q− 1)/2.

Since d(z) = D(z) + e2 − e1 and 0 < e2 − e1 < 1, its pattern of signs is the same
as for D(z) except for the case z0, where it is the positive value e2 − e1, meaning
that positives exceed negatives by 1. But z = 0 is not in the set of z’s for case (a),
so is excluded, and its value is d(0) = c2(0) − c1(0) = f2 − f1 + e2 − e1 > 0; this
excluded positive reduces their number to equal the negatives.

Thus case (a) has been proved. Case (b) is only relevant if Q is not prime,
i.e., j > 1, and then it has to be proved that the further exclusions p | z are
balanced between positive and negative, so that the non-exclusions also balance.
Let Q′ = Q/p and write these excluded cases p | z as z = z′p for 1 ≤ z′ < Q′. Let
c′i(z

′) = ci(z
′p)/p, noting that c2(z

′p) > c1(z
′p) if and only if c′2(z

′) > c′1(z
′). Now

c′i(z
′) = giz

′ +(fi + ei)/p mod Q′, and this may be written as g′iz
′ + f ′

i + e′i mod Q′

where g′i = gi, f
′
i = ⌊(fi+ei)/p⌋ and e′i = {(fi+ei)/p}, where {.} denotes fractional

part. Now this theorem Case a. can be applied to the ′ quantities Q′, e′i, f
′
i , g

′
i

provided first that 0 < g′1 ̸= g′2 > 0, which is true since g′i = gi, and second that
e′2 > e′1. This latter requires that {(f2 + e2)/p} > {(f1 + e1)/p}. Since 0 < ei < 1,
we have fi + ei mod p = (fi mod p) + ei. Now {x/p} = (x mod p)/p, so e′2 > e′1 if
and only if (f2 mod p) + e2 > (f1 mod p) + e1, and since e2 > e1, this is assured if
either f1 or f2 − f1 is congruent to 0 modulo p. Thus case (b) is proved. □

We now exploit this theorem to prove results on the final four cases of Table 12.
Each of these four has Ds of the form B1 + Bd+1 − Bu ∈ {0, n} for some u, where
B = by. We can write Ds = n+B1 − (n−Bd+1)−Bu. Then since Bu < n,

Ds = n if and only if B1 > n−Bd+1 = (−Bd+1 mod n). (6)

Now, using the notation, let

x = (y − s)/6,

z = x− sa = (y − s)/6− s(Q− 1)/6 = (y − sQ)/6.
(7)
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Note that B = by depends on y and hence on z, which is congruent to 0 mod p
if and only if y ≡ sQ ≡ 0 mod p. But these are excluded values since y must be
coprime to p. So the excluded values of z conform to the restrictions of Theorem
7b. Then write

(−Bd+1 mod n)/M = e1 + f1 + g1z

B1/M = e2 + f2 + g2z
(8)

with all non-negative coefficients. The aim is to prove that these coefficients satisfy
the requirements for Theorem 7. As part of that, the following result is needed.

Lemma 16. Let n be a power of a prime which is congruent to 1 mod 6, and let b
be an integer of order 6 mod n. Then, b ̸≡ 0, 1/2,±1, 2 mod n.

Proof. Since b is of order 6 mod n, it is clearly not 0 or ±1 mod n. If b ≡ 2±1 then
26 = 64 ≡ 1 mod n, so n | 63. Since n ≡ 1 mod 6, the only solution is n = 7. But 2
and 1/2 have order 3 mod n, not 6, a contradiction. □

Theorem 8. For each of the last four rows of Table 12, the sorted column e in
the repetend table has entries which are the same as the sorted column d in half the
cases, and are one less in the other half of cases.

Proof. In the following, recall that subscripts to bases are taken modulo L = 6Q,
and all calculations with bases are implicitly done modulo n.

Since y = 6x+ s by Equation (7), any c gives Bc = byc = b(6x+s)c = b6(z+sa)c+sc,
which can be converted by row sc mod 6 of Table 11 into the form u+ (v + wz)M
with u, v ≥ 0 and u < M . Then u/M + v can be evaluated by setting z = 0,
equivalent to x = sa and y = 6sa+ s = sQ, and from this ek = u/M, fk = v where
k = 1, 2 according to the case being considered. The same is true for any n−Bc in
place of Bc.

First consider e2 in Equation (8); f2 is not actually needed for our purposes,
because f1 turns out to equal either 0 or f2. Now e2 derives from B1 = b6sa+s = bsQ,
which depends only on s. The mod M part of the tabled formula provides e2, and
is (b mod M)/M for s = +1 (at Row 1) and (1 − b mod M)/M for s = −1 (at
Row 5). If either of those values was 0, 1/M, or 2/M , then b would have to be
one of 0, 1, 2,−1 mod M . But since Q |M , the same would be true mod Q, yet by
Lemma 16 those four values of b do not occur. Hence e2 ≥ 3/M for either s.

Next consider e1, f1 as derived from n− Bd+1 and y = sQ in each of the three
cases of d in the final four rows of Table 12, using B = by = bsQ.

• d = Q + 1: n − Bd+1 = n − bsQ(Q+2) = n − bs(Q+2Q) = n − b3sQ = 1 using
Lemma 13(cd). Therefore e1 = 1/M < 3/M ≤ e2, f1 = 0.

• d = 2Q: n − Bd+1 = n − bsQ(2Q+1) = n − bs(2Q+Q) = 1 as above, and
e1 = 1/M < 3/M ≤ e2, f1 = 0.



INTEGERS: 25 (2025) 25

d = Q+ 1 d = 2Q d = 4Q
s g2/2 X2 g1/2 X1 X0 g1/2 X1 X0 g1/2 X1 X0

+1 1− 2b 1/2 −2− 2b −1 ∞ −1− b −1 2 2− b 2 −1
−1 −2 + b 2 −2− 2b −1 0 −1− b −1 1/2 −1 + 2b 1/2 −1

Table 13: g1/2 and g2/2 with the “illegal” values of b = X0, X1, X2

• d = 4Q: −Bd+1 = −bsQ(4Q+1) = −b5sQ = −b−sQ since 6sQ ≡ 0 mod L. But
with y = sQ, B1 = bsQ and so by Lemma 13(b), B1 − (−Bd+1) ≡ 1 mod n,
hence e2 − e1 = 1/M, f2 − f1 = 0, so e1 < e2, f1 = f2.

We have now established that in each of the three cases for d, either f1 or f1− f2 is
0 mod Q and hence 0 mod p, and e1 < e2, as required by Theorem 7b. It remains to
show that p ∤ g1g2(g1 − g2), where gi derives from Equation (8) and Table 11. The
gi values are written in Table 13 as functions of b, and the Xi’s denote values of b
which would make gi = 0 or g1 − g2 = 0 and thereby exclude them from qualifying
for Theorem 7b.

Since all the X values in the table are either∞ or precluded by Lemma 16, there
is no b of valid order which causes p | g1g2(g1 − g2) in any of the cases. Therefore
Theorem 7b applies in all three given cases for d.

We now show how g2 and the d = 2Q case for g1 are derived for the s = −1
row of Table 13; other parts are similar. Note that the g coefficients do not change
under the transformation between x and z = x − sa, so we use x. (Also, as gk
derives from the M coefficients of Table 11, those parts may be reduced mod Q
because n | QM by Lemma 8.)

In the case considered, B1 = by = b6x−1 = b6(x−1)+5 and Row 5 of Table 11 gives
g2 = 2b−4, which is 0 at b = X2 = 2. Now−Bd+1 = −b(6x−1)(d+1) and since−(d+1)
is 3 (mod 6), Row 3 gives −g1 = 2(b+1)(d+1) = 2(b+1)(2Q+1) ≡ 2(b+1) mod Q,
or g1/2 ≡ −1− b mod Q. This is 0 at b = X1 = −1. Then since g1 = g2 if and only
if −2b− 2 = 2b− 4 if and only if b = 1/2 (modQ), X0 = 1/2 follows. □

Example 11 at the beginning of this section can now be seen to illustrate three
things:

• in Columns 8s and 19s: the first case of Theorem 8, with
Q = 7, d = Q+ 1 = 8, b = 3, e ≡ (−2, 1) mod (7, 6) = 19;

• in Columns 16s and 4s: Theorem 6 with
d ≡ (32, 4) mod (7, 6) = 16, e ≡ (34, 4) mod (7, 6) = 4;

• in Columns 10s and 40s: Lemma 12 with
f = −1, d = 10, e ≡ ( 1d , 4) mod (Q, 6) = 40.
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5. The RDF and Contemporary Papers on Midy Sums

The Repetend Digit Formula (RDF) is an example of necessity being the mother of
invention – we needed it to prove various results relating single repetend digits to
each other. In contrast, Midy sums, mentioned in all the papers in the table below,
combine repetend digits, and proofs without the RDF are available. However, we
show here that in at least one case (Lewittes) the RDF enables shorter proofs of
such results, and that some authors came close to discovering the RDF.

First we summarize the generality or otherwise, with respect to modulus, base,
numerator, and number of Midy groups, of seven notable papers listed in date order
– but we do not comment on their varying degrees of complexity. In this section,
to help the reader compare our methods with those of Lewittes, we have chosen to
alter our notation to match that of Lewittes [8], except that we continue to number
from 0 instead of 1. Thus, the fraction is now x/N , the base is B, the repetend
digits are a0, . . . , adk−1, and the Midy sum is of the d groups of k base B digits.

Paper N composite? B ̸= 10? x ̸= 1? d general?
Midy 1836 [10] X X X 2

Ginsberg 2004 [5] X X X 3

Gupta and Sury 2005 [6] X X X ✓

Martin 2007 [9] ✓ X X ✓

Lewittes 2007 [8] ✓ ✓ ✓ ✓

Garcia-Pulgarin and Giraldo 2009 [4] ✓ ✓ ✓ ✓
Dang et al 2021 [2] ✓ X ✓ ✓

Table 14: List of papers on Midy sums

We now prove a theorem in which part (a) is Lewittes [8] Theorem 1 and part
(b) is part of his Theorem 2.

Theorem 9. If x/N =
∑∞

i=0 aiB
−i−1 has repetend length e = dk, then on letting

Aj =

k−1∑
i=0

ajk+iB
k−1−i; Sd(x) =

d−1∑
j=0

Aj ; xj = xBj mod N ; Rd(x) =

d−1∑
j=0

xjk,

we have

a. Sd(x) = Rd(x)(B
k − 1)/N ,

b. if gcd(Bk − 1, N) = 1 then Sd(x) ≡ 0 mod Bk − 1.

Proof. Note that Aj is the jth digit for the repetend in base C = Bk, and that the
period of A is e/k = d, so Ad = A0.

Let cj = xCj mod N , so cj = (xBkj mod n) = xjk. By Lemma 5 with m → x,
n → N , rj → Aj , b → C, the base C digits of the repetend, which must equal Aj
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for j = 0, 1, . . . , d−1, are Aj = Ccj/N−cj+1/N . Now Cd = Bkd = Be = 1 mod N ,
so cd = c0. Then

Sd(x) =

d−1∑
j=0

(Ccj/N–cj+1/N) =
C − 1

N

d−1∑
j=0

cj since cd = c0.

Since C = Bk and cj = xjk, we then have Sd(x) = (Bk − 1)Rd(x)/N , which
proves part (a). For part (b), if N has no factors in common with Bk − 1 then it
divides Rd(x), and so Sd(x) is a multiple of Bk − 1. □

Note that the statement of this theorem takes 7 lines, as does Theorem 1 of
Lewittes, but the proof takes 10 lines versus about 52 lines in Lewittes’ preamble
from the top of page 4 with multi-line equations counted as just one line. The
principal difference in the proofs is the exploitation here of the generality of the
RDF Equation (2) by replacing B with C = Bk.

Regarding hints of the RDF in other papers, our equation for cj in Lemma 5
may effectively be seen at Lewittes [8] Equation (3), but the one for rj is not visible
there. However, Gupta and Sury [6] come somewhat closer: at one point in the
proof of their Theorem 1, with base 10 and prime modulus, they have an unlabelled
equation for U1 . . . Ui which becomes

a0a1 . . . ai−1 = ⌊Bi/N⌋ (9)

when generalized into the present notation and with k set to 1.

Lemma 17. Equation (9) implies the RDF.

Proof. This equation, with i replaced by i+ 1 and reversed, gives

⌊Bi+1/N⌋ = a0 . . . ai = B(a0 . . . ai−1) + ai = B⌊Bi/N⌋+ ai.

Hence ai = ⌊Bi+1/N⌋ − B⌊Bi/N⌋. Now, ⌊Bx/N⌋ = (Bx − Bx)/N for any non-
negative integer x, so

ai = (Bi+1 −Bi+1 −B(Bi −Bi))/N = (BBi −Bi+1)/N

and this is the RDF. □

6. The Probability of Sporadic Column Matches

Sections 2 to 4 introduced and analyzed Classes A, B, and C, of column matches in
repetend tables where the numerator m = 1. A natural question to ask is whether
any column matches outside these classes might occur. In this section we develop a
heuristic probability model for the distribution of repetend digits and the chances
that some specific pair of them might match, and thence that pairs of columns
might match (permuted).
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This leads to an assessment that if the number of rows in the table is less than
four then the probability would be non-negligible. We therefore exclude such cases
by algebraic analysis, which proves quite complex in the case of two rows.

Notation. The following variables are used in this section. Let nr be the number
of rows (small bases of order L mod n) in the repetend table. Let nc = L − P (L)
be the number of columns excluding one from each of the P (L) pairs of Class A
matching columns. In the case nr = 2, let Cj denote the 2-element column j. Let
Ci ∼ Cj denote that columns i and j match, and Ci ̸∼ Cj denote that they do not.
Let Dj = rL−1,j− r1,j and Sj = rL−1,j + r1,j : the second row has index L−1 since
bL−1 ≡ b−1

1 mod n is the second base of order L.

We say that two columns i, j are a “sporadic match” if they do not conform to
Classes A, B, or C from Sections 2-4 and, for each x coprime to L, there is a y also
coprime to L such that rx,j = ry,i, and that the mapping between x and y is 1-1.
This section shows that the heuristic probability of a sporadic match diminishes
rapidly as L increases, but it does not rule out the existence of further special cases
arising from algebraic conditions such as those for Classes B and C.

Lemma 18. Let U and V be distinct bases of order L mod n. Under a heuristic
assumption that U and V are independent random integers uniformly distributed
between 2 and n− 1, the distribution function of the product UV is

P [UV ≤ z] ≃ F (z)

=
z log z+1

3 −
3z
4 + 3

2

(n− 2)2
if z < n,

=
(n− 1

2 )
z

n−1 − 3n+ 15
4 + z log(

(n−1)(n− 1
2 )

z )

(n− 2)2
if z ≥ n.

Proof. First consider z < n. Then U cannot exceed z/2 since V ≥ 2. (Notationally,
we allow real number limits to summations, which later get converted to integers
by floor or ceiling functions.) Then

(n− 2)2P [UV ≤ z] =

z/2∑
u=2

z/u∑
v=2

1

=

z/2∑
u=2

⌊(z/u)− 1⌋.

At this point we approximate the floor function with the obvious smooth func-
tion, and approximate the sum with an integral extending 1/2 past each integer
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summation limit. So

(n− 2)2P [UV ≤ z] ≃
∫ (z+1)/2

3/2

(
z

u
− 3

2
)du

= z log
z + 1

3
− 3z

4
+

3

2
.

(10)

In a similar vein, if z ≥ n, then

(n− 2)2P [UV ≤ z] =

n−1∑
u=2

min(n−1,z/u)∑
v=2

1

=

z/(n−1)∑
u=2

n−1∑
v=2

1 +

n−1∑
z/(n−1)

z/u∑
v=2

1

= (n− 2)⌊z/(n− 1)− 1⌋+
n−1∑

⌈z/(n−1)⌉

⌊z/u− 1⌋

≃ (n− 2)(
z

n− 1
− 3

2
) +

∫ n− 1
2

z/(n−1)

(
z

u
− 3

2
)du

= (n− 2)( z
n−1 −

3
2 ) + z log(

(n−1)(n− 1
2 )

z )− 3
2 (n−

1
2 −

z
n−1 )

= (n− 1
2 )

z
n−1 − 3n+ 15

4 + z log((n− 1)(n− 1
2 )/z).

(11)

Then the approximation to P [UV ≤ z] defined by Equations (10) and (11) is F (z)
as per the lemma statement. □

Lemma 19. The probability density function of F (z) is

f(z) = F ′(z) =
1

(n− 2)2

{
log((z + 1)/3) + 1/4− 1/(z + 1), if z < n

log((n− 1)(n− 1
2 )/z) + 1/(2(n− 1))), if z ≥ n

(12)

Proof. This is a straightforward differentiation of F (z) defined in Lemma 18. □

Lemma 20. The approximate heuristic probability that the repetend digits rx,j and
ry,i are equal is

p =

n−1∑
r=0

g2r , where

gr = nf

(
n

(
r +

1

2

))
. (13)
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Proof. Consider the event that rx,j = r. This implies that nr ≤ bxbxj < n(r + 1),
and by Lemma 18 with U = bx and V = bxj the heuristic probability of this is

F (n(r + 1))− F (nr) ≃ nf(n(r + 1/2)) = gr.

Then the joint probability that rx,j = r and ry,i = r is g2r , so the probability that

rx,j = ry,i is
∑n−1

r=0 g2r . □

From this we derive an estimate of the expected number of pairs of columns
(from a given set) all of whose digits match.

Lemma 21. For any given n and L, let Sd be the heuristic expected number of
sporadic pairs of matching columns out of nc − d columns. Then

Sd =

(
nc − d

2

) nr∏
k=1

(1− e−kp)

where p is given by Lemma 20.

Proof. Start with row x = 1, column j, where there are nr possibilities for row
y on column i, and the probability of a match is 1 − e−nrp, using the Poisson
approximation to a binomial. Continuing, when nr − k matches have been made
and k remain to be made, the probability of the next one occurring is 1 − e−kp.
Hence the probability of a complete match for columns i and j is

∏nr

k=1(1− e−kp),

and
(
nc−d

2

)
is the number of pairs of columns under consideration. □

In the above lemma, d = 0 corresponds to considering all the nc = L − P (L)
columns excluding the Class A matches. Now d = 1 corresponds to also excluding
Column 0, because it is all 0 so unlikely to match any other column. Then d = 2
further excludes Column 1, because it has a unique distribution since rx,1 = ⌊b2x/n⌋,
and so it is also less likely to match other columns.

Here is an analysis of the behaviour of Sd as n grows, first obtaining an asymptotic
expression for p.

Lemma 22. With p as in Lemma 20, p = 2
n +O(log n/n2) as n→∞.

Proof. By Equation (13) and the top line of (12) (z ∈ (0, n2) means that z > n
dominates for large n),

ngr =
1

2n− 2
+ log

(
(n− 1)(n− 1/2)

n(r + 1/2)

)
= log(n)− log(r + 1/2) +O(1/n),
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and then using Lemma 20

n2p =

n−1∑
r=0

(ngr)
2 =

n−1∑
r=0

(
(log n− log(r + 1/2))2 +O(log n/n)

)
≃
∫ n

0

(log n− log s)2ds+O(log n)

=

∫ ∞

0

(t)2(ne−t)dt+O(log n) [with t = log(n/s)]

= 2n+O(log n).

Dividing by n2 yields the specified result. □

Remark 5. Fitting n2p−2n against log n on n ∈ {10, 30, 100, 300, 1000, 3000, 10000}
via linear regression shows that p ≃ 2/n + (9.46 − 4.54 log n)/n2 with an absolute
relative error |p̂/p− 1| bounded above by 0.7/n on that set.

Lemma 23. Let Sd be as in Lemma 21. Then

logSd < log

((
nc − d

2

))
+ nr(log p+ log nr − 1) +

1

2
(log nr + log(2π)) +O(1/nr).

Proof. From Lemma 21, and using the inequality 1 − exp(−x) < x for x > 0 and
Stirling’s formula z! ∼ (z/e)z

√
2πz, we have

logSd = log

(
nc − d

2

)
+

nr∑
k=1

log(1− exp(−kp)),

logSd − log

(
nc − d

2

)
<

nr∑
k=1

log(kp)

= nr log p+ log nr!

= nr(log p+ log nr − 1) + 1
2 (log nr + log(2π)) +O(1/nr).

□

The gradient of Sd is negative against n as log p ∼ log 2− log n, positive against
nc, and negative against nr because nr < n so (log p+ log nr − 1) ∼ log( 2nr

ne ) < 0.
Later we show that by elimination of some possibilities by algebra, and others by
computer evaluation, the sum of S0 over all infinitely many remaining possibilities
is very small.

Example 12. Let n = 103, L = 6, nr = 2, nc = 6. Then S0 < 0.0066 by
Lemma 23. But see Theorem 12, case L = 6, which shows that column matches are
impossible in this case.
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The development thus far has been theoretical with many (reasonable) approxima-
tions. But could these combine to produce discernible errors in the distribution of
repetend digit matches? We now provide expectation and variance for this, and
test the predictions against several examples.

Lemma 24. Let H be the number of repetend digit matches between all pairs of
the nc − d columns under consideration, and let N = nr(nc − d). Then

E[2H] =
∑
r

N (2)g2r ,

Var[2H] = N (2)
∑
r

g2r(−(4N − 6)g2r + 4(N − 2)gr + 2).

where gr is defined in Lemma 20 and x(k) is the fairly common notation to denote
x(x− 1) . . . (x− k + 1).

Proof. Let mr be the random variable which is the number of times the repetend
digit r occurs in the allowed columns. Then we assume that mr has a Binomial
distribution with parameters N and gr as defined at Equation (13). The prob-
ability generating function E[smr ] is easily shown to equal (sgr + 1 − gr)

N , and
differentiating k times and setting s to 1 gives

E[m(k)
r ] = N (k)gkr . (14)

Then

H =
∑
r

mr(mr − 1)/2,

E[2H] =
∑
r

E[m(2)
r ] =

∑
r

N (2)g2r .
(15)

Calculation of the standard deviation of H requires moments up to the 4th of mr.
Now 4H2 =

∑
r

∑
s mr(mr − 1)ms(ms − 1).

When r ̸= s, ignoring the small negative covariance from high mr making high
ms less likely out of the N −mr remaining digits, Equation (14) shows that

E[mr(mr − 1)ms(ms − 1)] = N (2)g2rN
(2)g2s (16)

whereas when r = s,

E[m2
r(mr − 1)2] = E[m

(4)
r + 4m

(3)
r + 2m

(2)
r ]

= N (4)g4r + 4N (3)g3r + 2N (2)g2r .
(17)

Using (15), (16), (17), and the identity
∑

r

∑
s̸=r xrxs = (

∑
r xr)

2 −
∑

r x
2
r,

Var[2H] = E[4H2]− E[2H]2

= (
∑

r N
(2)g2r)

2 −
∑

r(N
(2))2g4r +N (4)g4r + 4N (3)g3r + 2N (2)g2r

−(
∑

r N
(2)g2r)

2

= N (2)
∑

r g
2
r(−(4N − 6)g2r + 4(N − 2)gr + 2).

(18)
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□

We now give statistics on how H behaves in practice versus theory. We use
d = 2 for this, so that we exclude Columns 0 and 1 because they have different
probability distributions from the other columns. We also tabulate ld = − log10 Sd

for d = 0, 1, 2.

An R program was written to evaluate the observed Ho and expected He values
of H in the case d = 2, along with the standard deviation

√
Var[2H]/4. The results

of nine examples are displayed in Table 15, ordered by increasing nr and then by
increasing n.

Note that the highest relative error forHo against the model is (94−63)/23 = 1.35
standard deviations, which is unremarkable, and Ho > He in 5 of the 9 cases.
Therefore our heuristic model for repetend digit hits appears to be quite a good
one. Note also that S0 = 10−l0 decreases fairly rapidly as n and nr increase.

We now move on to Theorem 12 regarding sporadic column matches with nr < 4,
which requires a way of calculating nr from the inputs n and L. This is provided in
the following theorem (but see also Toth [15] for a nice alternative formula, albeit
requiring an implicit enumeration of subsets of divisors).

Theorem 10. Let n =
∏m

i=1 qi where the qi are prime powers of increasing charac-
teristic, and let i0 = 0 if 8 | n and i0 = 1 otherwise. Let L =

∏
p p

fp . For i ≥ 2− i0
let ϕ(qi) =

∏
p p

ep,i . In the case that i0 = 0, so q1 = 2k with k ≥ 3, let e2,0 = 1 and
e2,1 = k − 2. Also let Sp = {i0 ≤ i ≤ m : ep,i ≥ fp}. Then the number of elements
of order L in Z∗

n is

E(L, n) =
∏
p|L

(pfp|Sp| − p(fp−1)|Sp|
) ∏

i/∈Sp

pep,i

 .

Proof. Standard theory gives ϕ(n) =
∏m

i=1 ϕ(qi). For i ≥ 2 − i0 let Gi = Z∗
qi . By

Theorem 1 and the exclusion of i = 1 if i0 = 0, the group Gi is cyclic. But if

n L P (L) nr nc Ho He s.d. l2 l1 l0
11 10 1 4 9 31 39 18 0.95 0.81 0.68
13 12 0 4 12 92 98 34 0.72 0.63 0.55
17 8 0 4 8 28 25 13 1.59 1.44 1.32
37 12 0 4 12 29 35 14 2.30 2.21 2.14
19 9 2 6 7 12 10 8 3.25 2.95 2.73
29 14 2 6 12 94 63 23 3.21 3.10 3.00
17 16 2 8 14 290 300 77 2.37 2.28 2.20
31 15 2 8 13 157 134 39 4.15 4.05 3.97
23 11 4 10 7 73 47 21 4.64 4.42 4.24

Table 15: Statistics relating to H and Sd
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i0 = 0, then Z∗
q1 ≃ Z2 × Z2k−2 , so let G0 = Z2 and G1 = Z2k−2 . Then in all cases

Z∗
n is isomorphic to the direct product of the cyclic groups Gi0 , . . . , Gm, and each
|Gi| =

∏
p p

ep,i with ep,i as specified.

Let x be an element of order L, if one exists – otherwise see Remark 6. For each
prime p and each index i let Hi be the p-subgroup of Gi. There must be at least one
index i such that the order of x in Hi is p

fp . For each i we now find the proportion
of values which x can take in Hi. First suppose that i is not in Sp, i.e., ep,i < fp;
then x does not have order pfp in Hi, so can take any of the pep,i values in that
subgroup, giving proportion 1.

For other values of i, those in Sp, the order of x in Hi can either be pfp , enabling
pfp to maximally divide L, or smaller, not so enabling. The number of elements
which have order dividing pfp in this product of subgroups Hi is

∏
i∈Sp

pfp , and∏
i∈Sp

pfp−1 is the number of elements of order less than pfp (unless fp = 0, in which

case it is 0). The difference is the number of elements with order equal to the desired
pfp . Then the proportion of elements of desired order in this subgroup is yp =
(pfp|Sp| − ⌊p(fp−1)|Sp|⌋)/

∏
i∈Sp

pep,i . The number of elements of order L, E(L, n),

is then the product of all these proportions times ϕ(n) =

m∏
i=i0

|Gi| =
∏
i,p

pep,i , so

E(L, n) =
∏
p

( m∏
i=i0

pep,i

)(pfp|Sp| − ⌊p(fp−1)|Sp|⌋)/
∏
i∈Sp

pep,i


=
∏
p

(pfp|Sp| − ⌊p(fp−1)|Sp|⌋)
∏
i/∈Sp

pep,i

 .

Now, if fp = 0 then ep,i ≥ fp for each i so the inside product above is over the
null set and the overall term for that p is 1, because p0|Sp| − ⌊p(−1)|Sp|⌋ = 1 − 0.
Hence the product need only be taken over p such that fp > 0, i.e., p | L, as in the
theorem statement of E(L, n), and in this case the floor function is the identity. □

Remark 6. If any |Sp| = 0, then pfp|Sp|− p(fp−1)|Sp| = 1− 1 = 0 and E(L, n) = 0.
This can occur if p | L but p ∤ ϕ(n), agreeing with Lagrange’s Theorem that there
is no subgroup of order L in this case, or if pr | L with r ≥ 2 while pr ∤ ϕ(qi) for any
i, in which case there might be a subgroup of order pr yet no element of order pr.

Corollary 4. The integer E(L, n) is a multiple of ϕ(L).

Proof. The value ϕ(L) contains a factor h = ϕ(pfp) = pfp−1(p − 1) for each prime
power pfp ||L. The corresponding term in E(L, n) from Theorem 10 is

k = (pfp|Sp| − p(fp−1)|Sp|)
∏
i/∈Sp

pep,i = p(fp−1)|Sp|(p|Sp| − 1)
∏
i/∈Sp

pep,i .

Since |Sp| > 0, pfp−1 | p(fp−1)|Sp| and (p− 1) | (p|Sp| − 1), so h | k and the result is
proved. □
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The next examples demonstrate inequality in Corollary 4, i.e., E(L, n) > ϕ(L).

Example 13. Let n = 35, L = 12, ϕ(L) = 4, E(L, n) = 8. Evaluation of cases
shows there are 8 bases with repetend length 12: 2{1,5,7,11} mod 35 = {2, 32, 23, 18}
and 3{1,5,7,11} mod 35 = {3, 33, 17, 12}. This agrees with Theorem 10 as follows:
m = 2, q1 = 5, q2 = 7; ϕ(q1) = 4, e2,1 = 2, e3,1 = 0; ϕ(q2) = 6, e2,2 = e3,2 = 1;
f2 = 2, f3 = 1, S2 = {1}, S3 = {2}; E(L, n) = (22·1 − 21·1)(21)(31·1 − 30·1)(30),
which is 8 = 2ϕ(L).

Example 14. Let n = 2k ≥ 8, L = 2, E(L, n) = 3. In this case, m = 1, i0 = 0,
e2,0 = 1, e2,1 = k− 2 ≥ 1 = f2, so S2 = {0, 1} and E(L, n) = (22 − 20)1 = 3, which
is 3ϕ(L).

Example 15. Let n = 2k ≥ 16, L = 2f2 ≥ 4. Then m = 1, i0 = 0, e2,0 = 1, and
e2,1 = k− 2 which must be at least f2 ≥ 2 to make S2 non-empty and equal to {1}.
Then E(L, n) = (2f2 − 2f2−1)2 = 2f2 = L = 2ϕ(L).

It is possible to characterize exactly when equality occurs in Corollary 4.

Theorem 11. In the notation of Theorem 10, E(L, n) = ϕ(L) if and only if for
each p | L, |Sp| = 1 and ep,i = 0 if i /∈ Sp.

Proof. In the proof of Corollary 4, k = h if and only if

p(fp−1)|Sp|/pfp−1 = (p|Sp| − 1)/(p− 1) = 1 and
∏
i/∈Sp

pep,i = 1.

It is clear that this occurs only under the conditions of this theorem. □

Note that it would also be possible to argue from the standpoint that the elements
of order L must be in a unique cyclic subgroup of order L.

Corollary 5. If E(L, n) = ϕ(L) and 2 | L then either n = 4, L = 2, or n = tq and
L | ϕ(q) where t = 1 or 2 and q is an odd prime power.

Proof. With p = 2 in Theorem 11, since every ϕ(qj) is even except for the possibility
q1 = 2, the unique divisibility by 2 implies that either m = 2 with q1 = 2 and q2 an
odd prime power, so n = 2q2, or m = 1. In the latter case, n is either an odd prime
power, as in the statement of this corollary, or 2k, so L | 2k−1. In this latter case,
k = 1 does not allow 2 | L, and k ≥ 3 in Theorem 10 gives e2,1 ≥ e2,0 = 1 which
does not satisfy Theorem 11. This only leaves the possibility n = 22, L = 2. □

This corollary means that if E(L, n) = ϕ(L) and L is even, then Z∗
n has to be

cyclic. But if L is odd, this is not the case, since the odd primes dividing L can be
shared among different ϕ(qi)’s.

Corollary 6. If L = 2 then E(L, n) is a power of 2 minus 1.
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Proof. Since L = 2, the prime p = 2 is the only one in the outside product in the
Theorem 10 equation. Also, L = 2 = 2f2 so f2 = 1.

Then E(L, n) = (2|Sp| − 1)
∏

i/∈S2
2e2,i . But the last term is unity since for each

i either e2,i ≥ 1 = f2, so i ∈ S2, or e2,i = 0 so 2e2,i = 1. □

Now that we know how nr = E(L, n) relates to n and L, we can prove Theorem 12
that if the number of rows nr ≤ 3 then there are no sporadic column matches. The
following series of lemmas, ending at Lemma 40, will prepare for this theorem.

Lemma 25. Column L− 1 contains no zeroes.

Proof. If any row x has final element zero, then under the notation of Section 2,
rx =

∑L−2
j=0 rx,jb

L−1−j
x = bxz say, where z is an integer. But then by Equation (2),

if m = 1 as mandated in this section, then bLx − 1 = nbxz, so bL−1
x − 1/bx = nz.

This implies that bx divides 1, a contradiction. □

Lemma 26. If L ≤ 2 there are no column matches.

Proof. Since L is the number of columns, if L = 1 then trivially no column matches
are possible. If L = 2, since Column 0 is all zero, the only possible match, between
Columns 0 and 1, implies that Column 1 is zero. But then each repetend is 0, which
is impossible. □

Lemma 27. If nr = 1 or nr = 3 then there are no column matches.

Proof. If nr = 1 then 1 is a multiple of ϕ(L) by Corollary 4, so ϕ(L) = 1 and hence
L = 1 or 2. Then the result follows from Lemma 26.

If nr = 3 then by Corollary 4, 3 must be a multiple of ϕ(L), which is either 1 or
even. Since 3 is not a multiple of an even number, we must have ϕ(L) = 1, and the
arguments of the nr = 1 case apply to show there are no column matches. □

We now move on to nr = E(L, n) = 2, and Corollary 4 requires that ϕ(L) | 2. In
fact ϕ(L) = 2 is necessary, which occurs just for L = 3, 4, 6.

Lemma 28. If nr = 2 and columns i and j match then: Di = ±Dj, and Si = Sj.

Proof. Let s = L − 1, so Di = rs,i − r1,i. There is a match if and only if either
r1,i = r1,j and rs,i = rs,j or r1,i = rs,j and rs,i = r1,j . In the first case Di = Dj , in
the second case Di = −Dj , and in both cases Si = Sj . □

Lemma 29. If L ≡ 0 mod 2 and Z∗
n is cyclic then bj+L/2 = n− bj for any j, and

Cj + Cj+L/2 = CL/2, Sj + Sj+L/2 = SL/2.

Proof. The relation in S clearly follows from the relation in C, and for that, any
base of order L may be considered to be b1, so we may just consider Row 1. Being
cyclic and of even order, Z∗

n has exactly one element of order 2, namely −1. Since

b
L/2
1 has order 2, it is −1 mod n and therefore b

j+L/2
1 ≡ −bj mod n for any j, and
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this implies bj+L/2 = n− bj . Three applications of the Repetend Digit Formula (2)
give a Row 1 identity, and hence a column identity, as:

n(r1,j + r1,j+L/2 − r1,L/2)

= b1bj − bj+1 + b1bj+L/2 − b1+j+L/2 − b1bL/2 + b1+L/2

= b1bj − bj+1 + b1(n− bj)− (n− bj+1)− b1(n− 1) + (n− b1)

= 0. □

Lemma 30. If nr = 2 and L = 3 then there are no column matches.

Proof. We know that C0 is all 0, from the RDF and b∗ < n, and from Theorem 2
that Column 2 consists of pairs of identical digits, so if nr = 2 then D0 = D2 = 0.
To prove that C0 ̸∼ C1 ̸∼ C2, we show D1 ̸= 0 and apply Lemma 28. We have:

D1 = r2,1 − r1,1 = (b22 − b4 mod 3)/n− (b21 − b2)/n = (b2 − b1)(b1 + b2 + 1)/n.

Since b1 + b2 + 1 > 0, the value D1 can only be zero if b1 = b2, which is impossible
since they are distinct cube roots of 1 mod n.

C2 ̸∼ C0 since the latter is all zero and the former has no 0’s by Lemma 25. □

Lemma 31. Let b be a small base and let b2 = b2 + un with 2 ≤ b2 ≤ n− 2. Then
b ̸= u+ 1.

Proof. If b = u+ 1 then 0 < b2 − 1 = b2 − un− 1 = u(u+ 2− n). Since u ≥ 0, this
inequality implies u > n− 2, so b > n− 1, a contradiction. □

Lemma 32. If nr = 2 and L = 4 then there are no column matches.

Proof. With L = 4 in Theorem 10, f2 = 2 so E(L, n) = (22|S2| − 2|S2|)
∏

i/∈S2
2e2,i ,

and this equalling nr = 2 implies |S2| = 1 and that if i /∈ S2 then e2,i = 0 (for
otherwise E(L, n) ≥ 4). Such an i implies that 2 ∤ ϕ(qi), which implies qi = 2. Any
other i has to be in the single element set S2, so either m = 1 and n is a prime
power or m = 2 and n is twice an odd prime power.

In fact, in the prime power case, n cannot be 2k, because if k ≤ 3 there are no
elements of order 4, and if k ≥ 4 Example 15 with f2 = 2 shows that E(L, n) = 4.

Therefore n = tpk where p is a 1 mod 4 prime and t is 1 or 2; by Theorem 1, Z∗
n

is cyclic.

By Lemma 29, b2 = n−1, b3 = n−b1, and C1 = C2−C3. Now define the integer
u by the equation b2 = b21−un. We compute the repetend digits for Columns 2 and
3 and deduce Column 1:

nr1,3 = nr3,3 = b1b3 − b4 = b1(n− b1)− 1 = n(b1 − u− 1),

nr1,2 = b1b2 − b3 = b1(n− 1)− (n− b1) = n(b1 − 1),

nr3,2 = b3b6 − b9 = (n− b1)(n− 1)− b1 = n(n− b1 − 1).



INTEGERS: 25 (2025) 38

Thus the repetends for Columns 1 to 3 are given in the following array,

1 2 3
b1 : u b1 − 1 b1 − u− 1
b3 : n− 2b1 + u n− b1 − 1 b1 − u− 1

,

and the six column comparisons are as follows:

• C3 ̸∼ C0 by Lemma 25 since C0 = 0,

• C1 ̸∼ C2 since S3 > 0 and C1 = C2 − C3 implies S1 = S2 − S3 < S2, then
applying Lemma 28,

• C0 ̸∼ {C1, C2} ̸∼ C3 since D0 = D3 = 0 but D1 = D2 = n − 2b1 from the
table, so to equal ±D3 = 0 for Lemma 28 requires n = 2pk, b1 = pk, which is
not coprime to n. □

Remark 7. Instead of using earlier lemmas to prove the above lemma, it would be
possible, for each column pair and for each of the two permutations for matching,
to use two simultaneous equations to eliminate u, and then find a contradiction for
the solved value of b1. The same would apply to proofs below. However, in the case
of L = 6 it would involve 15× 3× 2 = 90 calculations.

Lemma 33. If nr = 2 and L = 6 then either n = 3kt ≥ 9 or n = pkt, where p is a
prime 1 mod 6 and t = 1 or 2.

Proof. In Theorem 10, L = 6 implies f2 = f3 = 1, and since E(6, n) = nr = 2 =
ϕ(L), Theorem 11 implies that in Theorem 10, |S2| = |S3| = 1. We let p denote an
odd prime.

Now if 8 | n then i0 = 0, e2,0 = 1 ≥ f2, e2,1 = k − 2 ≥ 1 ≥ f2 so |S2| ≥ 2, a
contradiction. Therefore i0 = 1. If m ≥ 3 then q2, q3 are odd so ϕ(q2), ϕ(q3) are
even, so e2,2, e2,3 ≥ 1 = f2, implying |S2| > 1, a contradiction. If m = 1 then
n = q1 = pk. If m = 2 then |S2| = 1 implies that q1 = 2, q2 = pk. In both the cases
m = 1 and m = 2, to get elements of order 3, either 9 | pk or p ≡ 1 mod 6. □

We separate the proofs for p = 3 and p > 3 because they have different properties
with respect to the cyclotomic polynomial b2 − b + 1 | b6 − 1: it turns out that if
p = 3 then b21 − b1 + 1 ≡ 3 mod n and b1 + 1 = n/3, whereas if p > 3 then
b21 − b1 + 1 ≡ 0 mod n/t.

Lemma 34. If n = 3kt with k ≥ 2, 1 ≤ t ≤ 2 and L = 6 then there are no column
matches.

Proof. Consider b = n/3 − 1, which is coprime to 3 and to t (and of order 1 mod
t of course). In the following, note that (n/3)2 ≡ 32k−2 = 3k3k−2 ≡ 0 mod 3k, so
squared n/3 terms disappear. Then b2 ≡ −2n/3+1 ≡ n/3+1 = b2. Then by Lemma
29, b3 = n− b0 = n− 1, which confirms that b has order 6, b4 = n− b1 = 2n/3 + 3,
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and b5 = n− b2 = 2n/3− 1. Using the Repetend Digit Formula, the repetends can
easily be shown to be as in the following array:

1 2 3 4 5

b1 : n/9− 1 n/9− 1 n/3− 2 2n/9− 1 2n/9− 1

b5 : 4n/9− 2 4n/9− 1 2n/3− 2 2n/9 2n/9− 1

where by inspection, there are no repeats in the b5 row, so two columns j, k could
only match if r1,j = r5,k. This does occur for j = 4, k = 5, but r5,4 = 2n/9 ̸= r1,5
prevents those columns from matching. □

The final case to consider for Theorem 12 is p ≡ 1 mod 6, L = 6, nr = 2. Within
this there are three sub-cases, because t = 2 causes a bifurcation: though b2− b+1
is congruent to 0 mod pk, it is not congruent to 0 mod 2 for any b. However,
b3 + 1 = (b + 1)(b2 − b + 1) ≡ 0 mod 2 provided b is odd. Therefore if b < pk is a
root mod pk, the root mod 2pk, which we call b1, is b if it is odd, and b+ pk if b is
even. We then unify the three sub-cases by defining:

h =


0 if t = 1,

+ 1
2 if t = 2 and b1 < pk,

− 1
2 if t = 2 and b1 > pk.

This device (with h for “half”) means that b1 + hn ∈ [1, n− 1] is even when t = 2.
The following six lemmas cover, without explicitly including the parameters in their
statements, all the cases with n = tpk, t = 1 or 2, p ≡ 1 mod 6, L = 6, nr = 2.

Lemma 35. The following equations hold for some integer u:

b2 = b1 − 1 + hn

b3 = n− 1

b4 = n− b1

b5 = n− b2 = n− b1 + 1− hn

b21 = un+ b1 − 1 + hn

b22 = un− b1 + (hn+ 2b1 − 1)hn

b1b2 = un− 1 + (b1 + 1)hn.

Proof. Since b21 ≡ b2 mod n by definition, let u = (b21−b2)/n. Since b = b1 has order
6 mod n, and Z∗

n is cyclic, b3 ≡ −1 mod tpk, and therefore p | (b+1)(b2− b+1). If
p divides both factors then it divides (b+1)2−(b2−b+1) = 3b. Since gcd(b, p) = 1,
then p | 3, a contradiction. Now p cannot divide b + 1 alone, for then b has order
2, so b2 − b+ 1 ≡ 0 mod pk, implying b2 ≡ b1 − 1 mod pk. If h = 0, i.e., t = 1, then
b2 = b1 − 1. But if t = 2 then b2 must be odd in order that b2 +1 ≡ 0 mod t. Since
b1− 1 is even (for the same reason), pk = n/2 must be added to or subtracted from
b1 − 1 to give 0 < b2 < n. Hence b2 = b1 − 1 + hn in all three cases.
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Next, b3 ≡ b1b2 ≡ −1 mod pk. If t = 1 then b3 = n − 1, which also works to
make b3 odd when t = 2 and n is even. Similarly b4 ≡ b3b1 ≡ −b1 mod pk yields
b4 = n− b1, and likewise b5 = n− b2.

For b21, b
2
2, b1b2, we first derive u from un = b21−b2, and then b21 = un+b1−1+hn.

Then
b22 = b21 + 1 + h2n2 − 2b1 + 2b1hn− 2hn

= un+ (b1 − 1 + hn) + 1 + h2n2 − 2b1 + 2b1hn− 2hn

= un− b1 + (hn+ 2b1 − 1)hn,

b1b2 = (un+ b1 − 1 + hn)− b1 + b1hn

= un− 1 + (b1 + 1)hn. □

Lemma 36. The differences Di satisfy D0 = D5 = 0 and

D2 = n− b1 − b2 = 1− 2b+ (1− h)n

D1 = (1− h)D2

D3 = D2

D4 = hD2.

Proof. Column C0 is zero, and C5 has equal digits by Theorem 2, so D0 = D5 = 0.
The RDF and Lemma 35, with . . . representing some omitted algebra, give

nD2 = n(r5,2 − r1,2) = b5b4 − b3 − b1b2 + b3 = (n− b2)(n− b1)− b1b2

= (n− b1 − b2)n;

nD1 = b25 − b4 − b21 + b2 = (n− b2 − b1)(n− b2 + b1) + b2 − (n− b1)

= n(n− 2b2) + b22 − b21 + b2 + b1 − n = . . . = (1− h)(n− b1 − b2);

nD3 = b5b3 − b2 − b1b3 + b4 = (n− b2 − b1)(n− 1)− b2 + n− b1

= (n− b1 − b2)n;

nD4 = b5b2 − b1 − b1b4 + b5 = (n− b2)(b2 + 1)− b1(n− b1)− b1

= n(b2 − b1 + 1) + b21 − b22 − b1 − b2 = . . . = (n− b1 − b2)hn. □

We now examine the 15 combinations of column pairs, with the understanding
that a set of x columns compared with a set of y columns covers all xy combinations.

Lemma 37. Column C0 does not match C5 (Case 1).

Proof. This follows since C0 = 0, and C5 contains no zeroes by Lemma 25. □

Lemma 38. Columns {C1, C2, C3} do not match {C0, C5} (Cases 2-7).
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Proof. The differences D0 = D5 = 0, so by Lemma 28, a match in these six cases
requires Dj = 0 for some 1 ≤ j ≤ 3. But by Lemma 36, since (1− h) > 0, any such
Dj = 0 implies D2 = 0, which implies b ≡ 1/2 mod pk, contradicting Lemma 16. □

Lemma 39. Column C4 does not match columns {C0, C5} (Cases 8-9).

Proof. Since D4 = hD2 by Lemma 36, and D2 ̸= 0 by the proof of the previous
lemma, if h ̸= 0 then D4 ̸= 0, and as before C4 cannot match C0 or C5. And if
h = 0, forcing D4 = 0, we need 0 ̸= r1,4 ̸= r1,5. Now,

nr1,4 = b1b4− b5 = b1(n− b1)−n+ b2 = (b1− 1)n− (b2 + un) + b2 = (b1− 1− u)n,

and this is non-zero by Lemma 31. Finally, nr1,5 = b1b5 − b6 = b1(n− b1 + 1)− 1,
and this equals b1n− (un+ b1 − 1) + b1 − 1 = (b1 − u)n ̸= nr1,4. □

Lemma 40. No pair of columns within {C1, C2, C3, C4} matches (Cases 10-15).

Proof. By Lemma 28, Ci ∼ Cj requires Di = ±Dj ; by inspection of the cases of
Lemma 36, and knowing that h ∈ {0, 1

2 ,−
1
2}, this is ruled out except for three cases,

which we now examine.

Case 1: Column 2 versus 3. By Lemma 29, S2 + S5 = S3, and since S5 > 0 by
previous analysis of Column 5, S2 ̸= S3, so C2 ̸∼ C3 by Lemma 28.

Case 2: Column 1 versus 2 and 3 when h = 0. In this case D1 = D2 = D3 prevents
use of Lemma 28. But D4 = D5 = 0 is useful as it implies Sj = 2r1,j for j = 4, 5.
Then since S1 +S4 = S2 +S5 by Lemma 29, S2−S1 = S4−S5 = 2(r1,4− r1,5) ̸= 0
since C4 ̸∼ C5 by Lemma 39. The other relation C1 ̸∼ C3 is proved from S1+S4 = S3

by Lemma 29, and S4 > 0 since C4 ̸∼ C0 has been proved, so S1 < S3.

Case 3: Column 1 versus 4 when h = 1/2. Now D1 = D4, so a match occurs if and
only if r1,1 = r1,4. By the RDF and Lemma 35, this implies that 0 = n(r1,4−r1,1) =
b1b4−b5−b21+b2 = b1(n−2b1)+2b2−n = (b1−1)n+2(b2−b2−un) = (b1−1−2u)n.
Solving for u then implies b21 = b2+un = (b1−1+n/2)+(b1−1)n/2 = b1(1+n/2)−1.
Since n is even, dividing by b1 implies b1 | 1, contradicting Lemma 16. □

This concludes the proofs of the 15 cases for n = tpk, t = 1 or 2, p ≡ 1 mod 6,
L = 6, nr = 2, and Lemmas 25 to 40 combined prove the following theorem.

Theorem 12. If the number of rows nr ≤ 3 then there are no sporadic column
matches in the repetend table among all the nc = L− P (L) possible columns.

Now fix nr = E(L, n), and note from Corollary 4 that it is a multiple of ϕ(L).
Therefore, the given nr implies a limited set for ϕ(L), which in turn implies a
limited set for L. The set of n’s compatible with L is infinite, and though it tends
to be relatively sparse, we assume that there is an integer N such that all n ≤ N
have been ruled out from sporadic column matches by direct computation, and
(pessimistically) that all n > N are compatible with L. This, in combination with
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Theorem 12 above, which rules out sporadic matches for small nr, leads to a useful
upper bound on the probability of sporadics, given in Theorem 13 below. We first
derive an upper bound on the size of the set of compatible L’s.

Lemma 41. The number of possible L’s given nr > 3 is at most T (nr) where

T (x) =



2 if x is a power of 2 minus 1

0 if x is otherwise odd

8 if x = 4, 6

12 if x = 8

15x/4 if 8 < x < 48 and even

35x/8 if 48 ≤ x < 480 and even

77x/16 if 480 ≤ x < 5760 and even.

(19)

Proof. By Corollary 6, L = 2 if and only if nr is a power of 2 minus 1, and otherwise
nr is never odd. This justifies the first two lines in Equation (19).

If nr = 4, ϕ(L) ∈ {1, 2, 4} so L ∈ {2, 3, 4, 5, 6, 8, 10, 12}, with 8 elements.

If nr = 6, ϕ(L) ∈ {1, 2, 3, 6} so L ∈ {2, 3, 4, 6, 7, 9, 14, 18}, also with 8 elements.

If nr = 8, ϕ(L) ∈ {1, 2, 4, 8} so L ∈ {2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24}, with 12
elements. These results justify lines 3 and 4 of Equation (19) – they are not best
possible since detailed use of Theorem 10 can show some of these (nr, L) pairs are
impossible.

Let p1 = 2, p2 = 3, . . . be the list of all primes and write L =
∏f

i=1 p
ei
j(i) where

each ei > 0 . Then using Corollary 4,

nr

L
≥ ϕ(L)

L
=

∏f
i=1 p

ei−1
j(i) (pj(i) − 1)∏f
i=1 p

ei
j(i)

=

f∏
i=1

(1− 1

pj(i)
) ≥

f∏
i=1

(1− 1

pi
) = Nf/Tf (20)

where Nf =
∏f

1 (pi − 1), Tf =
∏f

1 pi. Following the numerators of the above
sequence also shows that ϕ(L) ≥ Nf , and the denominators show that L ≥ Tf .

f 1 2 3 4 5 6
Tf 2 6 30 210 2310 30030

Nf 1 2 8 48 480 5760

Tf/Nf 2 3 3.75 4.37 4.81 5.21

Table 16: The first six values of the increasing sequences Tf , Nf and Tf/Nf
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Then, given nr but not L, if Ng ≤ nr < Ng+1 then Nf ≤ ϕ(L) ≤ nr < Ng+1, so
f ≤ g. We summarize all this in:

L ≥ Tf ;Nf ≤ Ng ≤ nr < Ng+1. (21)

Hence by (20), L ≤ nrTf/Nf ≤ nrTg/Ng. Since the number of L’s is less than the
maximum L, lines 5, 6 and 7 of Equation (19) are derived from the values of T/N
in Table 16 with the column indices 3, 4, and 5. □

Remark 8. Though not needed, it is possible to extend Lemma 41 to any general
x ≥ 5760 by using a lower bound on the value of the nth prime, such as given by
Robin [14]. Details are available on request to the first author.

Next we prove a lemma needed for Theorem 13.

Lemma 42. If m, s > 0, then
∑∞

n=s+1 n
−m < ((m− 1)sm−1)−1.

Proof. It follows by integrating n from s instead of summing from s + 1, and
because the series is decreasing, each term n−m is less than its integral over the
interval (n− 1, n). □

In bounding the expected number of sporadic column matches, in the following
theorem, we use S0(nc, nr, n) from Lemma 21, which allows Columns 0 and 1 to
be included even though the reasoning following that lemma explains why they are
less likely to match other columns.

Theorem 13. The expected number of sporadic column matches for cases where
n > N is less than

S(N) =

N−1∑
nr=4

U(nr)
N

nr − 1

(
2nr

eN

)nr

+

∞∑
nr=N

U(nr)
nr

nr − 1

(
2

e

)nr

, (22)

where U(x) = T (x)(T (x) + 2)(T (x) + 1)
√
πx/2.

Proof. By Lemmas 21 and 23

S0(nc, nr, n) =

(
nc

2

)(
2nr

en

)nr √
2πnr.

Note that nr ≤ ϕ(n) < n. Since nr ≤ 3 has been ruled out by Theorem 12, and
since nc = L−P (L) ≤ L ≤ T (nr), the expected number of sporadic column matches
is

∞∑
nr=4

∑
L:ϕ(L)|nr

∑
n>N,L|ϕ(n)

S0(nc, nr, n) ≤
∞∑

nr=4

T (nr)
∑

n>max(N,nr)

S0(T (nr), nr, n)

=

∞∑
nr=4

T (nr)
∑

n>max(N,nr)

(T (nr) + 2)(T (nr) + 1)(
2nr

en
)nr
√
2πnr/2.
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We now split the outer sum into two parts: 4 ≤ nr < N and nr ≥ N . The first sum
is

N−1∑
nr=4

U(nr)(2/e)
nr

∞∑
n=N+1

(nr

n

)nr

<

N−1∑
nr=4

U(nr)(2/e)
nr

nnr
r

(nr − 1)Nnr−1

=

N−1∑
nr=4

U(nr)
N

nr − 1

(
2nr

eN

)nr

using Lemma 42 with m → nr, s → N . This sum, which is the first sum in
Equation (22), can be evaluated directly by computer.

The second sum is similar, but has limits nr ≥ N and n ≥ nr+1 so the Lemma 42
parameters are m→ nr and s→ nr. This makes the sum less than

∞∑
nr=N

U(nr)
nr

nr − 1

(
2

e

)nr

.

This is the second sum in Equation (22), so the theorem is proved. Though an
infinite sum, the terms diminish exponentially and become zero to machine precision
within a few thousand terms, in particular fewer than the 5760 which is the limit
on nr covered by Lemma 41, so computation of all non-zero (machine precision)
terms is easily achievable. □

We initially performed exhaustive testing for all n ≤ N = 1000, and found no
sporadic column matches. Hence we were able to use Theorem 13 to assert that the
expected number of such matches is less than 3.2× 10−5 (and virtually all of that
amount arises from the case nr = 4). We then tried all moduli up to N = 2500: at
this point, the expected number of sporadic matches is less than 2.1 × 10−6 (but
would have been 0.65 if nr = 2 had not been ruled out). We therefore make the
following conjecture.

Conjecture 1: There are no sporadic column matches.

This does not rule out the existence of algebraic column matches beyond Classes
A, B, and C, though they would have to satisfy fairly severe conditions for them
not to occur for any n < 2500.

Acknowledgement. We wish to thank anonymous referees for pointing out a
number of relevant and interesting references.
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Appendix A: Class B Arithmetic via a Hybrid Residue Number System

Introduction

Class B primes (or prime powers – see Section 3) take the form p ≡ 1 mod L where
L = 12a+6 and a is an integer which needs to be fairly small to have a reasonable
chance 2−s of finding examples. The value s is specified as a function of f = ϕ(L),
with L being the repetend length, as in Theorem 4. For each a, we can estimate
how large the first successful p will be as follows. Ignoring prime powers, which
become proportionally rarer as the limit increases, the expected number of Class B
primes below a bound B is roughly

H(a,B) = B/((log(B)− 1)f2s)

from the prime number theorem and the restriction that p is not just coprime, but
unity, relative to L.
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If we consider a = 10 in Table 8, just before the leap from s = 12 to s = 16, we
find that H(10, 2000000) = 1.00, so the expected number of hits below that bound
of two million is approximately 1. In fact the first hit is about three-quarters of
that. But the 97th and final hit computed is at 269612029 ∼ 228.01. We shall see
that that is too large for single precision computation within the R language. At the
bottom of that table, where a = 22, the limit from H(22, 2.8e10) ∼ 1 is 234.70, too
large for products to fit in the 64-bit word common to modern micro-processors.
Therefore special code was needed, and though we could, with some effort, have
got more efficient code by rewriting in the C language and using a multiprecision
package such as NTL, we decided to continue with the interpreted language R and
see what we could achieve.

The Scale of the Challenge

An “average” prime in the a = 22, s = 24 case would be around half the limit
computed above, so 233.7. Based on an experiment to find 1000 candidate primes of
the correct form and of that size, the mean work done per candidate is as follows.

First there are 6.07 GCD tests against the product of primes up to 37, to weed
out many composites.

Then there are 3.79 single Fermat tests (does 2n ≡ 2 mod n?) including the
successful one which produces a candidate which is probably prime. Of course, this
test can pass composites (pseudoprimes), and indeed among the 1000 candidates
there was one: 13954784761 = 19421 · 718541. However, such pseudoprimes are
detected later in the process, for example by ki in Theorem 4 not being an integer.

Finally, a suitable base b is sought of order L mod p, and the ki’s evaluated. This
is done by finding the order of small integers z. For each z, having earlier factorized
p−1, z(p−1)/y is evaluated with prime power factors of p−1 systematically put into
and removed from y until the exact order x of z is found. If L ∤ x then the next z is
tried, but otherwise zx/L is the required element of order L. Typically only a small
number of z’s need to be tried.

In the experiment, the order-finding part took 87% of the work, so improving
the speed of finding candidates would have a marginal effect. But in any case,
both primality testing and order-finding employ modular exponentiations and hence
modular multiplications (MMs). Speed (and without saying, accuracy) of the latter
is therefore of paramount importance; in the experiment 1563 MMs per candidate
were performed. Each candidate took 9.7ms, so 2s = 224, the expected number per
success, would take 45 hours on a single processor.

The Hybrid RNS

The double arithmetic type in R uses IEEE floating point (FP) numbers with a
52-bit mantissa. With an implied leading 1 for any number (except zero), this gives
53 bits of precision. Our experiments confirmed that it was possible to multiply two
numbers less than 226.5 and get a precise result. Rather than use 26-bit packets and
pack and unpack these whilst performing standard multiplication, we decided to use
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a Residue Number System (RNS) with 2 or 3 prime moduli; the identical working
over those primes made for relatively efficient code since R can act on vectors. The
hybrid aspect of the algorithm comes from also carrying an FP estimate of the size
of each number.

Given k prime moduli P1 > . . . > Pk close in size just below 2c for some c such as
26, we writeP as the vector of these primes, and use the following notation regarding
an integer x. The true integer value is x, x′ is a FP approximation to it, and
bold x = (x1, . . . , xk) is the RNS representation. Square brackets [·] will represent
reduction modulo P of either a scalar or vector of the correct length, so x = [x].
Operations on bold variables such as x are implicitly done moduloP. We use CRT(·)
to denote the inverse function to [·], derived from the Chinese Remainder Theorem

and imposing the limits ±M ′
0/2 where M ′

0 ∼M0 =
∏k

1 Pj . Thus CRT(x) = x, and
it additionally uses the stored data M = M0/P and R = [1/M]. (The variable R
is used to suggest “reciprocal”.) Note that M is known exactly since each element
is a product of k − 1 ≤ 2 primes each of which is less than 26.5 bits.

With this notation, the Chinese Remainder Theorem algorithm [1] (Chapter 14)
can be written as:

CRT(x) = (xR) ·M mod M0. (A1)

We use CRT′(x) to denote a FP approximation to this.

The details of the number system used depend on the size of the modulus n in
accordance with Table A1.

log2 N k c log2 E
26.5 - - -
51.0 2 26.0 -
62.0 3 25.0 -
64.0 3 26.0 -
65.5 3 26.5 64.63

Table A1: limits on log2 n given c and k

Here, N is the maximum value of n appertaining to each row. The first row
simply uses FP numbers, so the number k of Chinese primes is irrelevant. In the
last row E stands for extra error correction: if E < n < N then an extra step is
used to ensure that modular multiplications stay on track.

Note that k = 2 primes are easily sufficient for the Class B calculations on moduli
up to 234.7 mentioned above, but we wanted to see how far the method could be
pushed with 3 primes, achieving 65.5 bits as detailed below. We did not implement
the next possibility, 4 primes, but our inequalities suggest that it would support
moduli up to 74 bits. But it appears to be a case of diminishing returns of modulus
size against number of primes, so researchers interested in larger moduli should
consider algorithms such as those of Posch and Posch [12] which do not have limits
on k. They favour Montgomery-style arithmetic and base extension by doubling
the number of Chinese primes. Their Figure 3 suggests that they perform 7 k-fold
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modular multiplications, whereas we take 4 (at Step 3 (2), Step 4, and Step 6). We
have not implemented their algorithm, so do not know which is faster in practice
at 65 bits.

The Hybrid RNS Modular Multiplication Algorithm

This algorithm takes inputs a, a′,b, b′,n, n′, and outputs z, z′ where z = ab mod n.
With exact arithmetic, z = ab − hn where h = ⌊ab/n⌋, and setting z ← ab − hn,
we have z′ = z = CRT(z) = (zR) ·M mod M0 by Equation (A1).

But for larger n, the arithmetic is not exact, and many refinements can be needed
to determine h. The FP estimate h′ = ⌊a′b′/n′⌋ can differ from h, so a correction
using CRT(ab − h′n) is applied in Steps 3 to 6. This can still leave a substantial
error, so a correction using mod P1 arithmetic is performed in Step 7. If c > 25
(hence n > 262) it proves necessary to test modulo P2 too, in Step 8, and apply
a further correction if needed. Even after this the result can be just above n, and
Step 9 tests and corrects for this. Finally, if n > E, further error checking is done
in Step 10 to see whether the small value l in Step 5 needs changing, and if so then
it gets changed and Steps 6 to 9 are redone.

In the algorithm below, for intermediate variables we use vectors lettered between
u and y, and earlier letters for scalars.

Error Analysis

In this section, we analyze the floating point errors which occur in each step. Table
A2 gives values for the error bounds for various values of c and m = log2 n, and
these explain the thresholds chosen in Table A1.

For each scalar variable, such as a for example, with its FP approximation a′,
use ea = a′−a to denote the error in the approximation, and Ea for a bound on its
magnitude. IEEE-754 standard at https://ieeexplore.ieee.org/document/8766229
provides for double-precision arithmetic with a format of a 53-bit mantissa using 52
bits of data and an implied leading 1. Let δ = 2−53. Through rounding in IEEE-754,
if a > 253 then, by the theory of that document and confirmed by experiment,

|ea| ≤ δ2⌈log2 a⌉−1. (A2)

However, in our arithmetic Step 7 involves an addition step which doubles the error
limit, so we assume, and this is borne out by experiment, that

|ea| ≤ Ea = δ2⌈log2 a⌉ = 2⌈log2 a⌉−53. (A3)

We will actually demonstrate this bound for the output z, which often becomes the
a in a later multiplication. This formula also applies to eb. We choose to reduce
the bound on en by 1 bit by the expense of calculating en exactly and modifying n′

if needed to reduce |en|. Now in Step 1, h′ = (a+ ea)(b+ eb)(n+ en)
−1 + e∗, where
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The Algorithm

1. h′ ← ⌊(a′b′)/n′⌋
2. y← [h′] (if h′ > 264 then compute l, v from h′ ∼ 2lv and use [2l][v])
3. x← ab− yn (so CRT(x) = ab− h′n, only reduced mod n if h′ = h)
4. w← xR
5. g′ ←∼ w ·M− lM0 ∈ (−M0/2,M0/2) where, to reduce FP errors

when k = 3, g′ ∼ ((w1M1 + w2M2 − l2M0) + w3M3 − l3M0)− l4M0

for each lj ∈ {0, 1}; g′ is an estimate of ab− h′n but ̸∈ (0, n′) under
certain FP error patterns

6. Let q ← ⌊g′/n′⌋, f ′ ←∼ g′ − qn′, z← x− qn (revising Step 3 and in
practice avoiding arithmetic if q = 0)

7. q1 ← ⌊(f ′ − z1)/P1 +
1
2⌋, d′ ←∼ d = z1 + q1P1 = f ′ + j,

where |j| < P1/2; d ≡ z1 mod P1 is a closer estimate of CRT(z);
set z′ = d′ for tentative output (z, z′)

8. If c > 25 then do the following, letting e← P1 − P2 > 0:
let d2 = z1 + (q1 mod P2)(P1 mod P2) = (z1 + e(q1 mod P2)) mod P2;
if d2 ̸= z2 then solve i in z2 = (d2 + iP1) mod P2 = (d2 + ie) mod P2,
so i← (z2 − d2 mod ± P2)/e where mod± reduces to a centred interval;
set z′ ← d′ ←∼ z1 + (q1 + i)P1

9. u← z− n; if u is of the form (j, j, j) then z← u, z′ ← z′ − n′

10. If n > E, compute bounds on the error in h′ knowing n′, a′, b′;
if l can then possibly be in error, refine the error bounds successively by
computing errors in a′, b′, n′, and if the possibility of error remains,
compute l10 ∈ {−1, 0,+1} such that w ·M− (l + l10M0 − qn) is inside
(−M0/2,M0/2), and if l10 ̸= 0 then redo Steps 6 to 9 (see the Error
Analysis section for further details)

e∗ is the error from the FP multiplication, division, and flooring. Then

eh = h′ − h

= (ab+ eab+ eba+ eaeb)(1− en/n+ e2n/n
2 + . . .)/n+ e∗ − (ab− z)/n

= (eab+ eba)/n− aben/n
2 + e∗ + z/n+O(1/n).

(A4)
Then ignoring O(1/n) terms and knowing that 0 < a, b < n,

|eh| < |ea|+ |eb|+ |en|+ |e∗|+ 1 ≤ 5

2
δ2⌈m⌉ + |e∗|+ 1.

For e∗, a′b′ attracts a FP error up to δ2⌈2m⌉−1, by the IEEE mandated rounding.
When that result is divided by n′, that error gets so divided also, giving δ2⌈2m⌉−m−1,
and a new error up to δ2⌈m⌉−1 occurs on the output which is ∼ a′b′/n′ < 2m. Hence

|e∗| < E∗ = δ(2⌈m⌉ + 2⌈2m⌉−m)/2,

|eh| < Eh = δ(3 · 2⌈m⌉ + 2⌈2m⌉−m−1) + 1.
(A5)
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Now in Step 5, g′ = CRT′(x) is the estimate of ab − h′n = CRT(x). Also,
wiMi < M0 < 23c for each i, and its error is less than r = δ2⌈3c⌉/2. When the
first two are added together their error bounds add, and being up to 2M0, the error
from the addition is double the individual ones, for a total of 4r. The subtraction
of l2M0 ensures the result is less than M0 again, so the addition of w3M3 adds r
for its own error plus 2r as before for the sum. The total is now 7r, but there are
up to three subtractions of M0, each introducing an identical error eM0

= M ′
0−M0

(total → 7r + 3eM0
).

We evaluate eM0 as follows. Let C = ⌈3c⌉. Then M0 has C bits and may be
written M0 = 2C−53x − y with 252 < x < 253, −2C−54 < y < 2C−54; x is exactly
the FP mantissa, and y is the FP error M ′

0−M0. Then eM0
= y = M0 mod± 2C−54,

where mod± means reduction into a centred interval. In practice we only use the
values c = 25, 26, 26.5, and using the top three primes below each of these bounds
gives, respectively,

eM0
= 116571, 6075, 15426731 for c = 25, 26, 26.5. (A6)

The overall error bound from Step 5 is then

eg = g′ − CRT(x), with |eg| < Eg = 7r + 3eM0 , where r = δ2⌈3c⌉−1. (A7)

In Step 6 g′ gets reduced mod n′ to give f ′, and the same quotient q subtracts qn
from x to give z. So we have:

f ′ = (g′ − qn′)′

= (CRT(x) + eg − qn′)′

= (CRT(z) + eg − q(n− n′))′

= CRT(z) + eg − qen + e6

(where e6 is FP error from this step 6 calculation),

ef = f ′ − CRT(z)

= eg − qen + e6.

(A8)

Bounds on eg, en have already been given, so now we need to study q and e6. We
have q = ⌊g′/n′⌋ ∼ (g + eg)/n

′ = (ab − h′n + eg)/n
′ = (ab − hn − ehn + eg)/n

′.
Here, 0 < ab − hn = z < n, the true answer, so this term is small. Likewise by
Equation (A7), |eg/n′| < 8δ23c−1/2m ≤ 2−27 which occurs at m = 51 in Table A1,
and is negligible. Therefore

q ∼ −ehn/n′ ∼ −eh. (A9)

For e6, this is the FP error arising from g′ − qn′, where the result is smaller
in magnitude than g′. IEEE-754 requires that the subtraction be done in higher
precision and then rounded to 53 bits, so the error bound is

E6 = δ2⌈log2(|q|n
′)⌉−1 = δ2⌈m+log2(Eh)⌉−1 (A10)
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from Equation (A2). In Equation (A8), |qen| ≤ EhEn by Equation (A9), so

|ef | ≤ Ef = Eg + EnEh + E6. (A11)

The expression eneh contains, through Equation (A4), a quadratic term −abe2n/n2

which is negative, and this causes the upper and lower bounds for ef to be slightly
different in magnitude; this is observed in practice – see Table A2 for the differing
bounds.

Next, in Step 7 (the mod P1 correction), the calculation of q1 implies that the
value d = v1+q1P1 in full precision has the correct value mod P1 and a size close to
f ′. Therefore d is initially posited to be equal to CRT(z). Then ed = d′ − d arises
from error in multiplication of q1 by P1 and error in addition of v1. The former is,
by Equation (A2) and z′ = d′ ∼ f ′, bounded by δ2⌈log2 z⌉−1, and the latter suffers
the same zeroization of its lower bits, so the error is doubled, giving the value at
Equation (A3) with a replaced by z.

If the CRT instantiation of interest is relatively rare, as occurs when the modulus
n is updated, then by performing additional calculations modulo some number
greater than the known error bound, the output error can be exactly determined,
and then reduced to achieve the smaller bound in Equation (A2).

Now, if n < 265.5, then ed < δ2⌈log2 z⌉ < 2−53+66 = 8192 << P1/2, so error
in d′ is not a problem. However, d = f ′ + j is subject to error |ef | < Ef , so if
Ef > P1/2 ≃ 2c−1 then d might be in error. Table A2 shows this to be the case for
c > 25.

So if c > 25, Step 8 performs mod P2 work to test the assumption that d is
CRT(z). Now d mod P2 = v1+(q1 mod P2)(P1 mod P2) = (v1+e(q1 mod P2)) mod
P2. If this equals v2, then all is well. Otherwise, q1 needs to be changed, say by
adding i, as given in the Step 8 definition. Since f ′ + j + iP1 = f + j + (ef + iP1)
with |ef + iP1| < P1/2, the small value −ef/P1 roughly equals i, with its bound
Ef/P1 < 9 in all cases in Table A2. After this, d does equal CRT(z), and the bound
on ed is unchanged because q1 + i is very close to q1, so

|ed| < Ed = δ2⌈log2 n⌉. (A12)

Step 9 is needed because q = ⌊g′/n′⌋ = ⌊(g+eg)/(n+en)⌋, and this can differ by
±1 from the correct value q0 = ⌊g/n⌋ which is needed to reduce the RNS value x
properly. Step 9 prevents z from representing a value slightly bigger than n. This
is important because the Fermat test and the order finding function respectively
require comparisons with 2 and 1, so outputs n+ 2 and n+ 1 are undesirable. We
could also test and correct for a value slightly smaller than zero, but do not since
the code works fine with such numbers.

All calculations to this point assume that l = l2 + l3 + l4 is the correct value
to determine q in Step 6. But a change of ±1 in l changes q by roughly ±M0/n.
From Equation (A9), |q| ∼ |eh| < Eh, so if Eh > M0/(2n) then q slightly below
Eh cannot be correctly distinguished from q −M0/(2n) > −Eh, and an error can
occur.
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Step 10 corrects this by first converting FP values to CRT, taking differences
with the original CRT, and converting these delta CRTs to integers (simple when
the absolute value is less than P3). For each new e. evaluated, the bounds on
eh can be re-evaluated, and if small enough Step 10 can be aborted. Otherwise,
now knowing ea, eb, en exactly, k = (eab + eba)/n − aben/n

2 from Equation (A4)
is known to high accuracy. Replacing l in Step 10 by l + l10 causes q to change to
q+ l10M0/n+O(1), so Equations (A4) and (A9) imply eh ∼ k+e∗ ∼ −q− l10M0/n
and therefore |q+ k+ l10M0/n| ∼ |− e∗| < E∗. It is a requirement of the algorithm
that E∗ < M0/(2n), so l10 = ⌊(−q − k)n/M0 +

1
2⌋ is the correct value – of course,

this is often zero.

c m Em0 En Ea B∗ E∗ Eh nE+
h nE−

h Eg E6 E+
f E−

f

25 61.51 16.83 8 9 12.49 9.27 10.89 18.89 17.77 23.84 19 23.935 23.870
25 61.99 16.83 8 9 12.01 9.01 10.81 18.81 17.59 23.84 19 23.933 23.872
25 62.01 16.83 9 10 11.99 9.99 11.81 20.81 19.58 23.84 20 24 .094 23.866
26 62.01 12.57 9 10 14.99 9.99 11.81 20.81 19.58 26.81 20 26.843 26.811
26 63.99 12.57 10 11 13.01 11.01 12.81 22.81 21.59 26.81 23 26.989 26.870
26 64.01 12.57 11 12 12.99 11.99 13 .81 24.81 23.58 26.81 24 27.285 26.859

26.5 64.01 23.88 11 12 14.49 11.99 13.81 24.81 23.58 28.94 24 29.066 28.955
26.5 64.64 23.88 11 12 13.86 12.19 13 .87 24.87 23.72 28.94 25 29.112 28.997
26.5 65.49 23.88 12 13 13.01 12.78 14.75 26.75 25.44 28.94 27 29.507 29.172
26.5 65.51 23.88 12 13 12.99 13 .27 14.89 26.89 25.77 28.94 27 29.529 29.144

Table A2: log2 error bounds affecting the algorithm

Table A2 displays the various log2 error bounds as functions of c and m. A negative
superscript such as in E−

f denotes a negative bound, with the log of the absolute

value displayed. The B∗ column gives the value 23c−m−1, which needs to be greater
than E∗ to avoid occasional errors. Four entries are in italics, since they indicate
when optional steps are needed or when the value of c changes, as follows.

1. c = 25, m = 62.01, log2 Ef+ = 24.094 > c − 1, indicating that m > 62
requires Step 8, though we remark that so many extreme events have to occur
to attain ef > 224 that in a 10-hour run with m = 62.1 and c = 25, ef < 223.94

was observed, so no errors occurred. Table A1 switches c from 25 to 26 at
this point; that does not avert the need for Step 8, but does delay the need
for Step 10.

2. c = 26, m = 64.01, log2 Eh = 13.81 > log2 B
∗ = 12.99 indicates that Step 10

would be needed, so Table A1 chooses c = 26.5 for m ≥ 64, again to delay the
need for Step 10.

3. Similarly for c = 26.5, m = 64.64, Eh = 13.87 is too large so Step 10 is
needed for m > 64.63. A straightforward calculation using B∗ and Equation
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(A5) shows that Eh = B∗ at m = 64 + log2
4
√
2−1
3 = 64.6344.

4. c = 26.5, m = 65.51, log2 E
∗ = 13.27 > log2 B

∗ = 12.99, which shows that,
even with Step 10, m > 65.5 would suffer occasional errors, so this is the
upper limit for this algorithm.


