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Abstract

In this paper, we examine matrices whose entries are Stirling numbers of the second
kind. Specifically, we explore various matrix decompositions of these matrices and
compute their determinants. Utilizing these results, we subsequently derive multiple
identities involving both Stirling numbers of the first and second kinds.

1. Introduction

Let k and n be two integers. We denote by c(n, k) the number of permutations on

n elements that have exactly k cycles in their cycle structures. The number c(n, k)

is known as a signless Stirling number of the first kind. We denote by s(n, k) the

DOI: 10.5281/zenodo.15091069



INTEGERS: 25 (2025) 2

signed Stirling number of the first kind (also known as Stirling number of the first

kind), which is defined as s(n, k) = (−1)n−kc(n, k). We also denote by S(n, k) the

Stirling number of the second kind, which is defined as the number of partitions of

the set [n] = {1, 2, . . . , n} into exactly k nonempty subsets. It follows easily from

the definition that for every integer n ≥ 1,

s(n, k) = S(n, k) = 0, if k > n,

and

c(n, 0) = s(n, 0) = S(n, 0) = 0, and S(n, 1) = 1,

and for every integer n ≥ 0,

c(n, n) = s(n, n) = S(n, n) = 1.

It is well-known that for every k, n ≥ 1 the numbers c(n, k) and S(n, k) satisfy

the following recurrence relations [7, pages 26, 74] (see also [1, Theorems 8.2.4 and

8.2.8]):

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k), (1)

and

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k). (2)

Alternatively, Stirling numbers s(n, k) and S(n, k) can also be introduced as follows

(see [1, p. 282]). In fact, they can be defined as the coefficients in the following

expansion of a variable x:

[x]n =

n∑
k=0

s(n, k)xk and xn =

n∑
k=0

S(n, k)[x]k, (3)

where

[x]n = x(x− 1)(x− 2) · · · (x− n+ 1),

is the falling factorial (with [x]0 = 1).

Given a matrix A, we use the notation Ai,j to denote the entry of A in the ith

row and jth column. The n×n Stirling matrices of the first kind s(n) = [si,j ]1≤i,j≤n

and of the second kind S(n) = [Si,j ]1≤i,j≤n, are defined by

si,j =

{
s(i, j), if i ≥ j;

0, otherwise,

and

Si,j =

{
S(i, j), if i ≥ j;

0, otherwise,
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respectively. The Stirling matrices s(5) and S(5), for example, are

s(5) =


1 0 0 0 0
−1 1 0 0 0
2 −3 1 0 0
−6 11 −6 1 0
24 −50 35 −10 1

 and S(5) =


1 0 0 0 0
1 1 0 0 0
1 3 1 0 0
1 7 6 1 0
1 15 25 10 1

 .

These matrices have been studied by several authors, for instance, see [2]-[6] and

[8]. It follows especially from Equation (3) that the Stirling matrices of the first

kind and the second kind are inverses of each other, that is,

S(n)−1 = s(n) and s(n)−1 = S(n),

and this is why we study only the matrices associated with the Stirling matrix of

the second kind S(n) in this paper.

Given an integer m ≥ 0, we define an n× n matrix S[m](n) = [S
[m]
i,j ]1≤i,j≤n with

entries:

S
[m]
i,j = S(i+m, j) for 1 ≤ i, j ≤ n.

The matrices S[1](5) and S[3](5), for instance, are given by

S[1](5) =


1 1 0 0 0
1 3 1 0 0
1 7 6 1 0
1 15 25 10 1
1 31 90 65 15

 and S[3](5) =


1 7 6 1 0
1 15 25 10 1
1 31 90 65 15
1 63 301 350 140
1 127 966 1701 1050

 .

We observe that the entries of S[m](n) satisfy the following recurrence relation:

S
[m]
i,j = S

[m]
i−1,j−1 + jS

[m]
i−1,j , (2 ≤ i, j ≤ n), (4)

with initial conditions

S
[m]
i,1 = 1, S

[m]
1,j = S(m+ 1, j), (i, j ≥ 1). (5)

Among other results, we will obtain a matrix decomposition of S[m](n) (see Theorem

2) and through this decomposition, we will obtain its determinant:

detS[m](n) =

n∏
i=1

im = n!m.

Finally, we obtain several identities related to the Stirling numbers of the first and

second kind.

The rest of this paper is organized as follows: Additional notation, definitions and

auxiliary results are collected in Section 2. In Section 3, we consider the matrices

S[m](n), and formulate one of the main results of the paper – Theorem 2. In Section

4, we derive some identities involving the Stirling numbers of the first and second

kind.
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2. Auxiliary Results

In this section, we collect some relevant facts and auxiliary results which will be used

later. First, we introduce the n×n upper triangular matrix V (n) = [Vi,j ]1≤i,j≤n by

Vi,j =


j, if j = i;

1, if j = i+ 1;

0, otherwise.

Also, let Ṽ (n) = [Ṽi,j ]1≤i,j≤n be the n × n upper triangular matrix whose entries

are given by

Ṽi,j =

{
(−1)j−i (i−1)!

j! , if j ≥ i;

0, otherwise.

For instance, if n = 5, the matrices V (5) and Ṽ (6) are

V (5) =


1 1 0 0 0
0 2 1 0 0
0 0 3 1 0
0 0 0 4 1
0 0 0 0 5

 and Ṽ (5) =


1 −1/2 1/6 −1/24 1/120
0 1/2 −1/6 1/24 −1/120
0 0 1/3 −1/12 1/60
0 0 0 1/4 −1/20
0 0 0 0 1/5

 .

The following result shows that V (n) and Ṽ (n) are inverses of each other.

Lemma 1. For any positive integer n, we have V (n)−1 = Ṽ (n).

Proof. Let V = V (n), Ṽ = Ṽ (n), and I = In, the identity matrix of order n. It

suffices to show that V · Ṽ = I. To prove this, we compute the (i, j)-entry of V · Ṽ .

Since V and Ṽ are both upper triangular matrices, their product is also an upper

triangular matrix, therefore, it is enough to consider only two cases: i = j and

j > i. If i = j, then by direct calculation, we obtain

(V · Ṽ )i,i =

n∑
l=1

Vi,lṼl,i = Vi,iṼi,i = i · 1
i
= 1,

and if j > i, then

(V · Ṽ )i,j =

n∑
l=1

Vi,lṼl,j = Vi,iṼi,j + Vi,i+1Ṽi+1,j

= i · (−1)j−i(i− 1)!

j!
+ 1 · (−1)j−i−1i!

j!
= 0.

This completes the proof of the lemma.

Now, we define the following matrices:



INTEGERS: 25 (2025) 5

- the n× n matrix E(n) = [Ei,j ]1≤i,j≤n, with Ei,j = (j + 1)i−1.

- the n× n upper triangular matrix Q[N ](n) = [Q
[N ]
i,j ]1≤i,j≤n, with

Q
[N ]
i,j =

{
(−1)j−i+1 iN−1

(i−1)!(j−i−1)! , if j ≥ i+ 1;

0, otherwise.
(6)

For instance, if n = 5, the matrices E(5) and Q[3](5) are

E(5) =


1 1 1 1 1
2 3 4 5 6
4 9 16 25 36
8 27 64 125 216
16 81 256 625 1296

 and Q[3](5) =


0 1 −1 1/2 −1/6
0 0 4 −4 2
0 0 0 9/2 −9/2
0 0 0 0 8/3
0 0 0 0 0

 .

Lemma 2. Let N,n be positive integers. Then Q[N+1](n) has the following matrix

decomposition:

Q[N+1](n) = Q[N ](n) ·
(
V (n)− In

)
.

Proof. Again, we compute the (i, j)-entry of Q[N ](n) ·
(
V (n) − In

)
. Note, first of

all, that

(
V (n)− In

)
i,j

=


j − 1, if j = i;

1, if j = i+ 1;

0, otherwise.

Now, for every 1 ≤ i, j ≤ n, we have

(
Q[N ](n)

(
V (n)− In

))
i,j

=

n∑
l=1

Q
[N ]
i,l

(
V (n)− In

)
l,j

= Q
[N ]
i,j−1

(
V (n)− In

)
j−1,j

+Q
[N ]
i,j

(
V (n)− In

)
j,j

= Q
[N ]
i,j−1 + (j − 1)Q

[N ]
i,j .

We calculate Q
[N ]
i,j−1 + (j − 1)Q

[N ]
i,j in three cases: j ≤ i, j = i+ 1, and j ≥ i+ 2.

Case 1: j ≤ i: In this case, Q
[N ]
i,j−1 = Q

[N ]
i,j = 0, and hence(

Q[N ](n) ·
(
V (n)− In

))
i,j

= Q
[N ]
i,j−1 +

(
j − 1

)
Q

[N ]
i,j = 0.

Case 2: j = i+ 1: In this case, we have Q
[N ]
i,j−1 = Q

[N ]
i,i = 0 and

Q
[N ]
i,j = Q

[N ]
i,i+1 = (−1)(i+1)−i+1 iN−1

(i− 1)!((i+ 1)− i− 1)!
=

iN−1

(i− 1)!
,
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hence we obtain(
Q[N ](n) ·

(
V (n)− In

))
i,j

= Q
[N ]
i,j−1 + (j − 1)Q

[N ]
i,j = Q

[N ]
i,i + iQ

[N ]
i,i+1 =

iN

(i− 1)!
.

Case 3: j ≥ i+ 2: In this case, we obtain(
Q[N ](n) ·

(
V (n)− In

))
i,j

= Q
[N ]
i,j−1 + (j − 1)Q

[N ]
i,j

= (−1)j−i iN−1

(i− 1)!(j − i− 2)!
+ (j − 1)(−1)j−i+1 iN−1

(i− 1)!(j − i− 1)!

= (−1)j−i+1 iN

(i− 1)!(j − i− 1)!
.

Therefore, combining the above cases, we have

(
Q[N ](n) ·

(
V (n)− In

))
i,j

=


(−1)j−i+1 iN

(i−1)!(j−i−1)! , if j ≥ i+ 2;
iN

(i−1)! , if j = i+ 1;

0, otherwise,

=

{
(−1)j−i+1 iN

(i−1)!(j−i−1)! , if j ≥ i+ 1;

0, otherwise.

This shows that (
Q[N ](n)

(
V (n)− In

))
i,j

= Q
[N+1]
i,j ,

for every 1 ≤ i, j ≤ n, and the proof is complete.

Corollary 1. Let N,n be positive integers. Then, we have the following matrix

identity:

Q[N ](n) = Q[1](n) ·
(
V (n)− In

)N−1
.

Proof. The result follows by repeatedly applying Lemma 2.

Lemma 3. For any positive integer n, we have the following matrix identity:

S(n) ·
(
V (n)− In

)
= E(n) ·Q[1](n). (7)

Proof. Let R1(A) (resp. C1(A)) denote the first row (resp. the first column) of a

matrix A. Using this notation, to prove Equation (7), it suffices to establish

C1

(
S(n) ·

(
V (n)− In

))
= C1

(
E(n) ·Q[1](n)

)
, (8)

and

R1

(
S(n) ·

(
V (n)− In

))
= R1

(
E(n) ·Q[1](n)

)
, (9)
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and also the remaining entries of S(n) ·
(
V (n) − In

)
and E(n) ·Q[1](n) satisfy the

same recurrence relation, defined by

Ai,j = Ai−1,j−1 + jAi−1,j , i, j = 2, 3, . . . , n. (10)

Let us do the required calculations. Let i ≥ 1. Since

C1

(
V (n)− In

)
= C1(Q

[1](n)) = 0,

it is clear that(
S(n) ·

(
V (n)− In

))
i,1

=
(
E(n) ·Q[1](n)

)
i,1

= 0, i ≥ 1,

and Equation (8) follows. Let us for the moment assume that j ≥ 2. The (1, j)-entry

of S(n) ·
(
V (n)− In

)
is

(
S(n) ·

(
V (n)− In

))
1,j

=

n∑
l=1

S1,l

(
V (n)− In

)
l,j

= S1,j−1

(
V (n)− In

)
j−1,j

+ S1,j

(
V (n)− In

)
j,j

= S1,j−1 +
(
j − 1

)
S1,j

=

{
1, if j = 2;

0, if j ≥ 3.

(11)

On the other hand, since E1,l = 1 for all l and Q
[1]
l,j = 0 for all l ≥ j, we obtain

(
E(n) ·Q[1](n)

)
1,j

=

n∑
l=1

E1,lQ
[1]
l,j =

j−1∑
l=1

Q
[1]
l,j . (12)

Now, we rewrite Q
[1]
l,j , slightly,

Q
[1]
l,j = (−1)j−l+1 1

(l − 1)!(j − l − 1)!
= (−1)j−l+1 1

(j − 2)!

(
j − 2

l − 1

)
.

If this is substituted in Equation (12), then we obtain

(
E(n) ·Q[1](n)

)
1,j

=

j−1∑
l=1

(−1)j−l+1 1

(j − 2)!

(
j − 2

l − 1

)

=
1

(j − 2)!

j−2∑
l=0

(−1)j−l

(
j − 2

l

)
=

{
1, if j = 2;

0, if j ≥ 3.

(13)

Comparing Equations (11) and (13) gives us Equation (9).
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Finally, we show that the entries
(
E(n) ·Q[1](n)

)
i,j

and
(
S(n) ·

(
V (n) − In

))
i,j

satisfy Equation (10). Hence, from now on we assume 2 ≤ i, j ≤ n. First, since

Q
[1]
l,j = 0 for all l ≥ j, we see that

(
E(n) ·Q[1](n)

)
i,j

=

j−1∑
l=1

Ei,lQ
[1]
l,j =

j−1∑
l=1

(l + 1)i−1(−1)j−l+1 1

(l − 1)!(j − l − 1)!
.

Similarly, we have

(
E(n) ·Q[1](n)

)
i−1,j−1

=

j−2∑
l=1

(l + 1)i−2(−1)j−l 1

(l − 1)!(j − l − 2)!
, (14)

and (
E(n) ·Q[1](n)

)
i−1,j

=

j−1∑
l=1

(l + 1)i−2(−1)j−l+1 1

(l − 1)!(j − l − 1)!
. (15)

If we substitute Equations (14) and (15) into Equation (10), we see that(
E(n) ·Q[1](n)

)
i−1,j−1

+ j
(
E(n) ·Q[1](n)

)
i−1,j

=

j−2∑
l=1

(l + 1)i−2(−1)j−l 1

(l − 1)!(j − l − 2)!

+ j

j−1∑
l=1

(l + 1)i−2(−1)j−l+1 1

(l − 1)!(j − l − 1)!

=

j−2∑
l=1

(−1)j−l+1 (l + 1)i−1

(l − 1)!(j − l − 1)!
+

ji−1

(j − 2)!

=

j−1∑
l=1

(−1)j−l+1 (l + 1)i−1

(l − 1)!(j − l − 1)!
=

(
E(n) ·Q[1](n)

)
i,j
.

Next, we observe that

(
S(n) ·

(
V (n)− In

))
i,j

=

n∑
l=1

Si,l

(
V (n)− In

)
l,j

= Si,j−1

(
V (n)− In

)
j−1,j

+ Si,j

(
V (n)− In

)
j,j

= S(i, j − 1) + (j − 1)S(i, j).

In a similar way, we obtain that(
S(n) ·

(
V (n)− In

))
i−1,j−1

= S(i− 1, j − 2) + (j − 2)S(i− 1, j − 1), (16)

and (
S(n) ·

(
V (n)− In

))
i−1,j

= S(i− 1, j − 1) + (j − 1)S(i− 1, j). (17)
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Again, if we substitute Equations (16) and (17) into Equation (10), we see that(
S(n) ·

(
V (n)− In

))
i−1,j−1

+ j
(
S(n) ·

(
V (n)− In

))
i−1,j

= S(i− 1, j − 2) + (j − 2)S(i− 1, j − 1) + jS(i− 1, j − 1) + j(j − 1)S(i− 1, j)

= S(i− 1, j − 2) + (j − 1)S(i− 1, j − 1) + (j − 1) [S(i− 1, j − 1) + jS(i− 1, j)]

= S(i, j − 1) + (j − 1)S(i, j) (by Equation (2))

=
(
S(n) ·

(
V (n)− In

))
i,j
.

The proof is now complete.

Finally, a relationship between the matrices S(n), V (n), E(n), and Q[N ](n) is

established.

Theorem 1. Let N,n be positive integers. Then, we have the following matrix

identity:

S(n) ·
(
V (n)− In

)N
= E(n) ·Q[N ](n).

Proof. It follows that

S(n) ·
(
V (n)− In

)N
=

[
S(n) ·

(
V (n)− In

)] (
V (n)− In

)N−1

= E(n) ·Q[1](n)
(
V (n)− In

)N−1
(by Lemma 3)

= E(n) ·Q[N ](n), (by Corollary 1)

as desired.

3. The Matrices S[m](n)

Preliminary observations show that the leading principal minors of the infinite ma-

trix S[m](∞) = [S
[m]
i,j ]i,j≥1 form an interesting integer sequence. In fact, we will

prove that (see Theorem 2 below):

detS[m](n) =

n∏
i=1

im = n!m.

To achieve the above result, we need to find an appropriate matrix decomposition

of S[m](n). Let us look at some special cases first. A more interesting case may be
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when m = 1. In this case, for n = 5, we have:
1 1 0 0 0
1 3 1 0 0
1 7 6 1 0
1 15 25 10 1
1 31 90 65 15

 =


1 0 0 0 0
1 1 0 0 0
1 3 1 0 0
1 7 6 1 0
1 15 25 10 1

 ·


1 1 0 0 0
0 2 1 0 0
0 0 3 1 0
0 0 0 4 1
0 0 0 0 5

 .

We note that the above upper triangular matrix is V (5), that is, S[1](5) = S(5)·V (5).

Similarly, for m = 3 and n = 5, we have:
1 7 6 1 0
1 15 25 10 1
1 31 90 65 15
1 63 301 350 140
1 127 966 1701 1050

 =


1 0 0 0 0
1 1 0 0 0
1 3 1 0 0
1 7 6 1 0
1 15 25 10 1

 ·


1 7 6 1 0
0 8 19 9 1
0 0 27 37 12
0 0 0 64 61
0 0 0 0 125

 .

The above upper triangular matrix is in fact V 3(5), that is, S[3](5) = S(5) · V 3(5).

The existence of such matrix decompositions for the matrices S[m](n) is therefore

guaranteed, as the following theorem shows.

Theorem 2. Let m,n be positive integers. Then, the following matrix decomposi-

tion holds:

S[m](n) = S(n) · V (n)m. (18)

Also, we have

det S[m](n) = det
1≤i,j≤n

[S(i+m, j)] =

n∏
i=1

im = n!m.

Proof. First, we show that

S[k](n) = S[k−1](n) · V (n), (19)

for any integer k ≥ 1. In order to do this, we observe first that

(
S[k−1](n) · V (n)

)
i,1

=

n∑
l=1

S[k−1](n)i,lV (n)l,1

= S[k−1](n)i,1V (n)1,1 (since V (n) is upper triangular)

= 1 (since S[k−1](n)i,1 = V (n)1,1 = 1)

= S[k](n)i,1,
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and then, for every 2 ≤ j ≤ n, we obtain

(
S[k−1](n) · V (n)

)
i,j

=

n∑
l=1

S[k−1](n)i,lV (n)l,j

= S[k−1](n)i,j−1V (n)j−1,j + S[k−1](n)i,jV (n)j,j

= S(i+ k − 1, j − 1) + jS(i+ k − 1, j)

(by the definition of V (n))

= S(i+ k, j) (by Equation (2))

= S[k](n)i,j .

This completes the proof of Equation (19).

Now, repeatedly applying Equation (19), we get

S[m](n) = S[m−1](n) · V (n) = S[m−2](n) · V (n)2 = · · · = S[0](n) · V (n)m.

The decomposition (18) then follows by noting that S[0](n) = S(n).

Taking the determinant of both sides of Equation (18), we get

det S[m](n) = det
(
S(n) · V (n)m

)
= detS(n) ·

(
detV (n)

)m
= n!m,

because detS(n) = 1 and detV (n) = n!. The proof is now complete.

The following corollary is an immediate consequence of Theorem 2.

Corollary 2. Let m ≥ 0 be an integer. Then, for any positive integer n, we have

S[m+1](n) = S[m](n) · V (n),

and consequently,

detS[m+1](n) = n! detS[m](n).

Corollary 3. Let m1,m2 ≥ 0 be integers. Then, for any positive integer n, we

have

S[m1+m2](n) = S[m1](n) · s(n) · S[m2](n).

Proof. It follows from Theorem 2 that for any integer m ≥ 0, we have

V (n)m = S(n)−1 · S[m](n).

Using this and the fact that V (n)m1+m2 = V (n)m1 · V (n)m2 , we obtain

S(n)−1 · S[m1+m2](n) = S(n)−1 · S[m1](n) · S(n)−1 · S[m2](n).

Since S(n)−1 = s(n), the result follows by left-multiplying both sides by S(n).
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Theorem 3. Let m,n be positive integers. Then, the inverse of the matrix S[m](n)

has the following matrix decomposition:

S[m](n)−1 = Ṽ (n)m · s(n).

Proof. Applying Theorem 2 and noting that S(n)−1 = s(n), we obtain

S[m](n)−1 =
(
S(n) · V m(n)

)−1
= V m(n)−1 · S(n)−1 =

(
V (n)−1

)m · s(n).

The result then follows by Lemma 1.

4. Identities Involving the Stirling Numbers

In this section, we give several identities involving the Stirling numbers of the first

and second kind. We begin with the following observation.

Theorem 4. Let i, j be integers with i ≥ j ≥ 1. Then, for any positive integer m,

we have
i∑

l=1

s(i, l)S(l +m, j) =

{
im, if i = j;

0, if i > j.

Proof. Let i ≥ j ≥ 1 be fixed. Choose the integer n so that 1 ≤ i, j ≤ n, and

consider the matrices S(n), V (n)m, and S[m](n) for any positive integer m. Then,

by Theorem 2 and the fact that S(n)−1 = s(n), we have

V (n)m = S(n)−1 · S[m](n) = s(n) · S[m](n).

This implies that the (i, j)-entry on both sides must be equal, that is,(
V (n)m

)
i,j

=
(
s(n) · S[m](n)

)
i,j
. (20)

If j = i, then we have

im =
(
V (n)m

)
i,i

=
(
s(n) · S[m](n)

)
i,i

=

n∑
l=1

si,lS
[m]
l,i =

i∑
l=1

s(i, l)S(l +m, i).

Also, if j < i, since V (n)m is an upper triangular matrix and s(n) is a lower

triangular matrix, Equation (20) implies that

0 =
(
V (n)m

)
i,j

=
(
s(n) · S[m](n)

)
i,j

=

n∑
l=1

si,lS
[m]
l,j =

i∑
l=1

s(i, l)S(l +m, j).

The proof is complete.



INTEGERS: 25 (2025) 13

Theorem 5. Let i, j,N be positive integers. Then, we have

N∑
l=0

(−1)N−l

(
N

l

)
S(i+ l, j) =

j−1∑
k=1

(−1)j−k+1 kN−1(k + 1)i−1

(k − 1)!(j − k − 1)!
.

Proof. Let i, j be fixed. Choose an integer n ≥ 1 large enough so that 1 ≤ i, j ≤ n,

and consider the matrices E(n), Q[N ](n), S(n), and V (n). We have

E(n) ·Q[N ](n) = S(n) ·
(
V (n)− In

)N
(by Theorem 1)

= S(n) ·
N∑
l=0

(−1)N−l

(
N

l

)
V (n)l (by Binomial Theorem)

=

N∑
l=0

(−1)N−l

(
N

l

)[
S(n) · V (n)l

]
=

N∑
l=0

(−1)N−l

(
N

l

)
S[l](n). (by Theorem 2)

Equating the (i, j)-entries on both sides of the above equation shows that

(
E(n) ·Q[N ](n)

)
i,j

=
( N∑
l=0

(−1)N−l

(
N

l

)
S[l](n)

)
i,j

=

N∑
l=0

(−1)N−l

(
N

l

)
S[l](n)i,j .

By the definition of S[m](n), for each l, S[l](n)i,j = S(i + l, j). Therefore, we can

rewrite the above equation as

(
E(n) ·Q[N ](n)

)
i,j

=

N∑
l=0

(−1)N−l

(
N

l

)
S(i+ l, j). (21)

On the other hand, the left-hand side can be simplified as(
E(n) ·Q[N ](n)

)
i,j

=

n∑
k=1

E(n)i,kQ
[N ](n)k,j =

n∑
k=1

Ei,kQ
[N ]
k,j

=

n∑
k=1

(k + 1)i−1Q
[N ]
k,j =

j−1∑
k=1

(k + 1)i−1(−1)j−k+1 kN−1

(k − 1)!(j − k − 1)!
,

(22)

where the last equality is obtained by Equation (6). Combining Equations (21) and

(22), we obtain the conclusion of the theorem.

As a corollary of Theorem 5, we have:

Corollary 4. Let i, j ≥ 1 be integers. Then, we have

S(i+ 1, j)− S(i, j) =

j−1∑
k=1

(−1)j−k+1 (k + 1)i−1

(k − 1)!(j − k − 1)!
.
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Proof. This is immediate by applying Theorem 5 with N = 1.

Theorem 6. Let i, j, n be integers with n ≥ max{i, j}. Then, we have

n∑
k1=1

n∑
k2=k1

(−1)k2−k1(k1 − 1)!

k2!
S(i+ 1, k1)s(k2, j) = δi,j ,

where δi,j denotes the delta Kronecker function.

Proof. Setting m = 1 in Theorem 3, it follows that

S[1](n) · Ṽ (n) · s(n) = In,

and hence (
S[1](n) · Ṽ (n) · s(n)

)
i,j

= (In)i,j = δi,j ,

for each i, j ≥ 1. Simplifying the left-hand side of this equation, we obtain(
S[1](n) · Ṽ (n) · s(n)

)
i,j

=

n∑
k1=1

n∑
k2=1

S[1](n)i,k1
Ṽ (n)k1,k2

s(n)k2,j

=

n∑
k1=1

n∑
k2=k1

S(i+ 1, k1)(−1)k2−k1
(k1 − 1)!

k2!
s(k2, j),

and the proof follows.

Theorem 7. Let i, j ≥ 1 be integers. Then, we have

min{i+1,j}∑
k=1

(−1)j−k(k − 1)!

j!
S(i+ 1, k) =

{
S(i, j), if i ≥ j;

0, otherwise.

Proof. Let n ≥ max{i, j} be an integer. Applying Theorem 2 with m = 1, we have

S[1](n) = S(n) · V (n).

By Lemma 1, we can then obtain

S[1](n) · Ṽ (n) = S(n),

which implies that

(
S[1](n) · Ṽ (n)

)
i,j

= S(n)i,j =

{
S(i, j), if i ≥ j;

0, otherwise.

Simplifying the left-hand side, we get

(
S[1](n) · Ṽ (n)

)
i,j

=

n∑
k=1

S[1](n)i,kṼ (n)k,j =

min{i+1,j}∑
k=1

S(i+ 1, k)
(−1)j−k(k − 1)!

j!
.

This completes the proof.
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Theorem 8. Let i, j, n be positive integers with n ≥ max{i, j}. Then, we have

n∑
k1=1

k1∑
k2=1

S(i+m1, k1)s(k1, k2)S(k2 +m2, j) = S(i+m1 +m2, j).

Proof. Using Corollary 3, we obtain

S(i+m1 +m2, j) =
(
S[m1+m2](n)

)
i,j

=
(
S[m1](n) · s(n) · S[m2](n)

)
i,j

=

n∑
k1=1

n∑
k2=1

S[m1](n)i,k1s(n)k1,k2S
[m2](n)k2,j

=

n∑
k1=1

k1∑
k2=1

S(i+m1, k1)s(k1, k2)S(k2 +m2, j),

as desired.
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