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Abstract

In a paper by the author, Hemmer, Hopkins, and Keith, the concept of a fixed
point in a sequence was applied to the sequence of first column hook lengths of
a partition. In this paper, we generalize this notion to fixed hook lengths in an
arbitrary column of a partition. We establish combinatorial connections between
these fixed hooks and colored partitions that have interesting gap and mex-like
conditions. Additionally, we obtain several generating functions for hook lengths of
a given fixedness by hook length or part size in unrestricted partitions, as well as
some classical restrictions such as odd and distinct partitions.

1. Introduction

Recall that a weakly decreasing sequence of non-negative integers (λ1, λ2, . . . , λr)

is called a partition of n if λ1 + λ2 + . . . + λr = n and then each λi is called a

part. The Young diagram of a partition is a representation of the partition in which

each part is represented by a row of λi many squares justified to the top right. Let

λ = (λ1, λ2, . . . , λk) be a partition of n and λ′ denote its conjugate. For a square

(i, j) in the Young diagram of λ, define hi,j(λ) = λi + λ′
j − i− j + 1 to be the hook

length of (i, j). In terms of the Young diagram, this is the sum of the number of

squares in the ith row and column at least j, called the arm, and the number of

squares in the jth column and row at least i, called the leg.

In [5] Blecher and Knopfmacher defined the notion of a fixed point in a partition

so that the partition λ has a fixed point if there is some i such that λi = i. This

was extended by Hopkins and Sellers [9] so that λ is said to have an h-fixed point if

λi = i+h for some i. Instead of looking at the sequence of parts, the author, Hem-

mer, Hopkins, and Keith in [8] considered instead {h1,1(λ), h2,1(λ), . . . , ht,1(λ)}, the
sequence of first column hook lengths. This sequence uniquely defines the parti-

tion λ and is notable in representation theory. Here we concern ourselves with the
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Figure 1: Young diagram of (4, 4, 3, 1) labeled by hook lengths

sequence of mth column hook lengths {h1,m(λ), h2,m(λ), . . . , ht,m(λ)}. We can no

longer recover the entire partition from this sequence since there is no information

about the parts of size less than m.

We also define the q-Pochhammer symbol along with the Gaussian binomial co-

efficient and make use of their standard notation and combinatorial interpretations

(see, for instance, Andrews [2]):

(a; b)n :=

n−1∏
k=0

(1− abk),

(a; b)∞ :=

∞∏
k=0

(1− abk),(
a

b

)
q

:=
(q; q)a

(q; q)b(q; q)a−b
.

We now generalize some of the combinatorial theorems from [8], noting that in

each case their original theorems can be obtained by setting m = 1. Their Theorem

2.1 is generalized in the following theorem.

Theorem 1. The number of partitions of n having a 0-fixed hook in the mth column

is equal to the sum over L of the number of times across all partitions of n, with

two colors of parts 1, 2, . . . ,m− 1, that a part of size L appears exactly L+m− 1

times in the first color, but L + 1, L + 2, . . . , L + 2m − 2 are not parts in the first

color.

Example 1. Using m = 3 and looking at partitions of 10 we find the two sets given

in Table 1.

Generalizing Theorems 3.3, 3.4, and 4.3 from [8] we have the following theorems.

Theorem 2. The number of partitions of n with an h-fixed hook in the mth column

arising from a part of size m equals the number of times in all partitions of n−mh

where m appears as a part exactly once, there are no parts of sizes m + 1,m +

2, . . . , 2m− 1, and there are at least −h parts of size at least 2m.

Generalizing Theorem 3.4 from [8] we get the following theorem.
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Description 1 Description 2
(6, 4) (7, 13)
(5, 4, 1) (6, 1, 13)
(4, 4, 2) (2, 24)
(4, 4, 1, 1) (24, 12)
(4, 3, 3) (24, 1, 1)
(3, 3, 3, 1) (24, 12)
(3, 2, 2, 2, 1) (23, 11, 13)
(3, 2, 2, 1, 1, 1) (22, 13, 13)
(3, 2, 1, 1, 1, 1, 1) (2, 15, 13)
(3, 1, 1, 1, 1, 1, 1, 1) (17, 13)

Table 1: Example of Theorem 1.

Theorem 3. The number of times in all partitions of n that an h-fixed hook arises

from a part of size k in the mth column equals the number of partitions of n +(
k−m+1

2

)
− k(k − h − m + 1)) where there are two colors of parts 1, 2, . . . ,m − 1,

parts of size k −m+ 1, . . . , k +m− 1 do not appear in the first color, and at least

one part of every size 1, 2, . . . , k −m appear in the first color.

Generalizing Theorem 4.3 from [8] we have the following theorem.

Theorem 4. The generating function for the number of mth column hooks of size

k in all partitions of n is

qkm

(qk; q)∞

k∑
l=1

q−(l−1)(m−1)(qm; q)l−1

(q; q)l−1(q; q)k−l
=

qm+k−1

(qk; q)∞

k∑
l=1

q(m−1)(k−l)(qm; q)l−1

(q; q)l−1(q; q)k−l
.

Interestingly, for a fixed m, the function in the above theorem stabilizes to qk

times the generating function for the number of parts of size m− 1 appearing in all

partitions of n. See, for example, the sequences A000070, A024786, and A024787

in the OEIS [10].

Theorem 5. For a fixed m ≥ 2,

lim
k→∞

qm−1

(qk; q)∞

k∑
l=1

q(m−1)(k−l)(qm; q)l−1

(q; q)l−1(q; q)k−l
=

qm−1

(1− qm−1)(q; q)∞
.

In order to prove the previous theorems, we first establish several generating

functions that are also of independent interest.
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2. Part Sizes

Figure 1 will be a useful reference for constructing the generating functions in the

next two sections.

s− 1

km

s+ h− k

Figure 2: λ with an h-fixed hook hs,m = s+ h at part λs = k.

The fixed hook is marked in black and we use the terminology “below the fixed

hook” to refer to the red box in the diagram. Theorem 3.1 of [8] establishes a

generating function that counts fixed points in the sequence of first column hook

lengths in any partition of n. We include this theorem for completeness.

Theorem 6. The generating function for the number of partitions of n, with an

h-fixed hook arising from a part of size k, is given by

∞∑
s=k−h

q(k+1)(s−1)+h+1

(q; q)s−1

(
s+ h− 1

k − 1

)
q

=

∞∑
s=0

qs(k+1)+k(k−h)

(q; q)s+k−h−1

(
s+ k − 1

k − 1

)
q

.

We generalize the above to an arbitrary column in the following theorem.

Theorem 7. The generating function for the number of partitions of n, with an

h-fixed hook in the mth column arising from a part of size k ≥ m, is given by

∞∑
s=k−h−m+1

qs(k+m)+m(h−k+m−1)

(q; q)s−1(q; q)m−1

(
s+ h− 1

k −m

)
q

=

∞∑
s=0

qs(k+m)+k(k−h−m+1)

(q; q)s+k−h−m(q; q)m−1

(
s+ k −m

k −m

)
q

.

Proof. Using Theorem 6 we extend the Young diagram by appending m−1 columns

to the left. Each column must have length at least 2s+ h− k. This is generated by
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q(m−1)(2s+h−k)/(q; q)m−1, giving

∞∑
s=k−h

q(k+1)(s−1)+h+1+(m−1)(2s+h−k)

(q; q)s−1(q; q)m−1

(
s+ h− 1

k − 1

)
q

.

Parts of size k are now of size k+m−1. After reindexing by substituting k+m−1

for k, one gets the theorem. The second line follows by substituting s+k−h−m+1

for s.

One can derive similar formulae for certain restrictions on partitions. For in-

stance, when considering just those partitions in which each part is odd, one arrives

at the following theorem.

Theorem 8. The generating function for the number of odd partitions of n, with

an h-fixed hook in the mth column arising from a part of size k ≥ m, is given by

∞∑
s=k−h−m+1

qs(k+m)+m(m+h−k−1)

(q2; q2)s−1(q; q2)(m−1)/2

(
s+ h− k + (k −m)/2

s+ h− k

)
q2

if m is odd, and

∞∑
s=k−h−m+1

qs(k+m+1)+m(h−k+m)+h−k+1

(q2; q2)s−1(q; q2)m/2

(
s+ h− k + (k −m− 1)/2

s+ h− k

)
q2

if m is even.

Proof. In the case that m = 1, one gets the formula

∞∑
s=k−h

qk(s−1)+h+s

(q2; q2)s−1

(
s+ h− k + (k − 1)/2

s+ h− k

)
q2
.

The term qk(s−1)/(q2; q2)s−1 generates the s−1 rows above the part of size k we are

considering. The term qh+s = qk+(s+h−k) times the binomial coefficient generates

the fixed hook and the s+h−k rows below it. Generalizing to an arbitrary odd m,

we add m−1 columns to the left of the partition. Each column must have length at

least 2s+ h− k and the parts below the fixed hook must be odd. This is generated

by q(m−1)(2s+h−k)/(q; q2)m−2, which gives

∞∑
s=k−h

q(m−1)(2s+h−k)+k(s−1)+h+s

(q2; q2)s−1(q; q2)(m−1)/2

(
s+ h− k + (k − 1)/2

s+ h− k

)
q2
.

Parts of size k are now of size k+m−1. After reindexing by substituting k+m−1

for k and simplifying the exponent, we have the first equation. The case that m

is even is similar, but with two minor changes. All the parts below the fixed hook
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must have opposite parity to m and this is taken care of by multiplying in qs+h−k

and changing the binomial coefficient to
(
s+h−k+(k−2)/2

s+h−k

)
q2
. We also change the

second Pochhammer to (q; q2)m/2, which gives

∞∑
s=k−h

q(m−1)(2s+h−k)+k(s−1)+h+s+(s+h−k)

(q2; q2)s−1(q; q2)m/2

(
s+ h− k + (k − 2)/2

s+ h− k

)
q2
.

After reindexing by substituting k +m− 1 for k and simplifying the exponent, we

have the second equation.

Despite partitions into odd parts and those into distinct parts being equinumer-

ous, the sets of corresponding hook lengths behave quite differently. To illustrate

this we have the following theorem to compare to Theorem 8.

Theorem 9. The generating function for the number of distinct partitions of n,

with an h-fixed hook in the mth column arising from a part of size k ≥ m, is given

by
k−m∑
s=0

qs(k+m)+k(k−h−m+1)+(s+k−m+1−h
2 )+(s2)(−q; q)m−1

(q; q)s+k−h−m

(
k −m

s

)
q

.

Proof. In the case that m = 1, one gets the formula

2k−h−1∑
s=k−h

q(s−1)k+s+h+(s2)+(
s+h−k

2 )

(q; q)s−1

(
k − 1

s+ h− k

)
q

.

Each of the s−1 rows above the part of size k we are considering have length at least

k + 1 giving the term q(s−1)k and the term q(
s
2)/(q; q)s−1 = q1+2+...+s−1/(q; q)s−1

guarantees these parts are all distinct. The hook itself is generated by qs+h and the

portion of the partition under the hook is generated by q(
s+h−k

2 )( k−1
s+h−k

)
q
. The finite

bounds on the sum are due to the limited possible part sizes below a part of size k

in a distinct partition. Generalizing to an arbitrary m, we add m − 1 columns to

the left of the partition. Each of these columns must have length at least 2s+h−k

which gives the term q(m−1)(2s+h−k)(−q; q)m−1. We then have,

2k−h−1∑
s=k−h

q(s−1)k+s+h+(s2)+(
s+h−k

2 )+(m−1)(2s+h−k)(−q; q)m−1

(q; q)s−1

(
k − 1

s+ h− k

)
q

.

Parts of size k are now of size k +m− 1, so after reindexing by substituting k for

k +m− 1 and simplifying the exponent, we have

2k−2m+1−h∑
s=k−m+1−h

qs(k+m)+m(m+h−k−1)+(s2)+(
s+h−k+m−1

2 )
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· (−q; q)m−1

(q; q)s−1

(
k −m

s+ h− k +m− 1

)
q

.

Lastly, reindexing by substituting s+ k −m+ 1− h for s gives the theorem.

3. Hook Sizes

The generating functions tend to be simpler when considering fixed hooks arising

from a given hook size rather than a given part size, and this section will focus

primarily on this interpretation. Previously established (Theorem 4.1 [8]) was a

generating function analogous to Theorem 6, but by a given hook length instead of

a given part size. Another benefit of counting by hook length is that the generating

functions all turn out to be finite sums which allows them to be summed over all h

and m to obtain the generating function for the number of hooks of a given length

in certain restricted families of partitions easier than may be otherwise possible.

We restate Theorem 4.1 from [8] for completeness.

Theorem 10. The generating function for the number of partitions of n, with an

h-fixed hook in the first columm arising from a hook of size k, is given by

k∑
l=1

qk+l(k−h−1)

(q; q)k−h−1

(
k − 1

l − 1

)
q

.

We then generalize this to an arbitrary column in the following theorem.

Theorem 11. The generating function for the number of partitions of n, with an

h-fixed hook in the mth column arising from a hook of size k, is given by

k∑
l=1

q(m−1)(2k−h−l)+k+l(k−h−1)

(q; q)k−h−1(q; q)m−1

(
k − 1

l − 1

)
q

.

Proof. Using Theorem 10 we extend the Ferrers diagram by adding inm−1 columns

to the left. Each of these columns must have length at least k− h− 1+ k− l+1 =

2k−h− l. This is generated by q(m−1)(2k−h−l)/(q; q)m−1 and gives the theorem.

Similar to the previous section, we specialize to obtain similar generating func-

tions for certain families of partitions.

Theorem 12. The generating function for the number of odd partitions of n, with

an h-fixed hook in the mth column arising from a hook of size k, is given by

k∑
l=1
l odd

qk+l(k−h−1)+(m−1)(2k−h−l)

(q2; q2)k−h−1(q; q2)(m−1)/2

(
k − l + (l − 1)/2

k − l

)
q2
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if m is odd, and

k∑
l=1

l even

qk+l(k−h−1)+(m−1)(2k−h−l)+(k−l)

(q2; q2)k−h−1(q; q2)m/2

(
k − l + (l − 2)/2

k − l

)
q2

if m is even.

Proof. Note that in all cases we need the arm length, l, and m to have the same

parity in order to guarantee that the fixed hook is arising from an odd part. In the

case that m = 1, one gets the formula

k∑
l=1
l odd

qk+l(k−h−1)

(q2; q2)k−h−1

(
k − l + (l − 1)/2

k − l

)
q2
,

where the sum is taken over possible arm lengths that the hook can take on. The

term ql(k−h−1)/(q2; q2)k−h−1 generates the k−h−1 rows above the hook of size k we

are considering. The term qk generates the fixed hook and the binomial coefficient

generates the portion of the partition under the hook. Generalizing to an arbitrary

odd m, we add m− 1 columns to the left of the partition. Each column must have

length at least 2k − h− l and the parts below the fixed hook must be odd. This is

generated by q(m−1)(2k−h−l)/(q; q2)(m−1)/2, which gives the first equation. The case

that m is even is similar. We need all parts to be odd, so we insert a qk−l under

the hook and change the binomial coefficient to
(
k−l+(l−2)/2

k−l

)
q2
. We also change the

second Pochhammer to (q; q2)m/2. Summing over even l instead of odd gives the

second equation.

Theorem 13. The generating function for the number of distinct partitions of n,

with an h-fixed hook in the mth column arising from a hook of size k, is given by

k∑
l=⌈(k+1)/2⌉

qk+l(k−h−1)+(m−1)(2k−h−l)+(k−h
2 )+(k−l

2 )(−q; q)m−1

(q; q)k−h−1

(
l − 1

k − l

)
q

.

Proof. In the case that m = 1, one gets the formula

k∑
l=⌈(k+1)/2⌉

qk+l(k−h−1)+(k−h
2 )+(k−l

2 )

(q; q)k−h−1

(
l − 1

k − l

)
q

.

The term qk+l(k−h−1)+(k−h
2 )/(q; q)k−h−1 generates the hook and the k−h−1 distinct

rows above the hook. The term q(
k−l
2 )(l−1

k−l

)
q
generates the distinct parts below the

hook. Generalizing to an arbitrary m, we add m − 1 columns to the left of the

partition. Each column has length at least 2k − h − l and still distinct which is

generated by q(m−1)(2k−h−l)(−q; q)m−1, giving the theorem.
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Remark 1. For a fixed k, summing the generating functions from Theorems 12

and 13 over all m and h gives a way to count the number of hooks of length k in

the corresponding sets of partitions. This generates ak(n) and bk(n) as defined in

[4], which is equivalent to Theorem 2.1 in [7].

Theorem 14. The generating function for the number of odd and distinct partitions

of n, with an h-fixed hook in the mth column arising from a hook of size k, is given

by

k∑
l=⌈ 2k−1

3 ⌉
l odd

q(m−1)(2k−h−l)+k+l(k−h−1)+2(k−h
2 )+2(k−l

2 )(−q, q2)m−1
2

(q2; q2)k−h−1

(
k − l + 3l−2k

2

k − l

)
q2

if m is odd and

k∑
l=⌈ 2k

3 ⌉
l even

qk−l+(m−1)(2k−h−l)+k+l(k−h−1)+2(k−h
2 )+2(k−l

2 )(−q, q2)m
2

(q2; q2)k−h−1

(
k − l + 3l−2k−2

2

k − l

)
q2

if m is even.

Proof. Note that l and m must have the same parity since m−1+ l must be an odd

part size. Considering first m odd, we have the term q(m−1)(2k−h−l)(−q, q2)(m−1)/2

generating the first m− 1 columns. The term

ql(k−h−1)+2(k−h
2 )/(q2; q2)k−h−1 = ql(k−h−1)+2+4+...+2(k−h−1)/(q2; q2)k−h−1

generates the rest of the first k − h− 1 rows of the partition. The last factor is

q2(
k−l
2 )
(
k − l + 3l−2k

2

k − l

)
q2

= q2+4+...+2(k−l−1)

(
k − l + 3l−2k

2

k − l

)
q2

which generates the portion under the hook while guaranteeing each part is still

distinct and odd. The case that m is even is almost identical. There is an extra

term of qk−l that is inserted under the hook adding 1 to each part to make them

all odd. The Pochhammer is now (−q, q2)m/2 and the binomial coefficient is now(k−l+ 3l−2k−2
2

k−l

)
q2
.

Summing Theorem 14 over all m and h gives a way to count the number of

hooks of a given length in all odd and distinct partitions of n. While not the

cleanest representation, the following proposition does give an explicit generating

function for the number of hooks of a given length in all odd and distinct partitions.
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Proposition 1. The generating function for the number of hooks of length k in all

odd and distinct partitions of n is given by

(−q;q2)∞qk
k∑

l=⌈ 2k−1
3 ⌉

l odd

q2(
k−l
2 )
(
k − l + 3l−2k

2

k − l

)
q2

∞∑
m=0

q2m(k−l+1)

(−q2m+1; q2) l−1
2

+ (−q; q2)∞qk
k∑

l=⌈ 2k
3 ⌉

l even

q2(
k−l
2 )+k−l

(
k − l + 3l−2k−2

2

k − l

)
q2

∞∑
m=0

q2m(k−l+1)

(−q2m+1; q2) l
2

.

Proof. We begin by summing the odd case of Theorem 14 over all m and h, and

simplifying from there. For a fixed k, we have

qk
∞∑

m=1
m odd

(−q, q2)m−1
2

k−1∑
h=−∞

q2(
k−h

2 )

(q2; q2)k−h−1

·
k∑

l=⌈ 2k−1
3 ⌉

l odd

q(m−1)(2k−h−l)+l(k−h−1)+2(k−l
2 )
(
k − l + 3l−2k

2

k − l

)
q2
.

Reordering the sums and reindexing by substituting h for k − h− 1 gives

qk
k∑

l=⌈ 2k−1
3 ⌉

l odd

q2(
k−l
2 )
(
k − l + 3l−2k

2

k − l

)
q2

·
∞∑

m=1
m odd

q(m−1)(k−l+1)(−q; q2)m−1
2

∞∑
h=0

qh
2+h(l+m)

(q2; q2)h
.

Using the identity (Corollary 2.2 in [2])

(−z; q)∞ =

∞∑
n=0

znqn(n−1)/2

(q; q)n
,

the inner sum becomes precisely (−ql+m+1; q2)∞. Since the sum on m is taken over

odd values, we can reindex by substituting 2m+ 1 for m and take the sum over all

m to get

qk
k∑

l=⌈ 2k−1
3 ⌉

l odd

q2(
k−l
2 )
(
k − l + 3l−2k

2

k − l

)
q2

∞∑
m=0

q2m(k−l+1)(−q; q2)m(−ql+2m+2; q2)∞.

Using the fact that

(−q; q2)m(−ql+2m+2; q2)∞ = (−q; q2)∞/(−q2m+1; q2) l−1
2

we get the first term of the proposition. The case that l is even follows similarly.
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Remark 2. In [6] Cossaboom used their Theorem 2.2, which is equivalent to Propo-

sition 1, and Theorem 1.2 in [1] in order to settle Conjecture 5.3 in [7]. This made

explicit the different asymptotic behaviors of hook lengths in self-conjugate parti-

tions and in partitions that are odd and distinct.

4. Proofs for Theorems in Section 1

In this section we provide proofs for each of the theorems from Section 1.

Proof of Theorem 1. Setting h = 0, fixing m, and then summing Theorem 11 over

all k, we get

∞∑
k=1

k∑
l=1

q(m−1)(2k−l)+k+l(k−1)

(q; q)m−1(q; q)k−1

(
k − 1

l − 1

)
q

=
1

(q; q)m−1

∞∑
l=1

∞∑
k=l

ql(k−m)+k(2m−1)

(q; q)l−1(q; q)k−l

=
1

(q; q)m−1

∞∑
l=1

∞∑
k=0

ql(k+l−m)+(k+l)(2m−1)

(q; q)l−1(q; q)k

=
1

(q; q)m−1

∞∑
l=1

ql(l+m−1)

(q; q)l−1

∞∑
k=0

qk(l+2m−1)

(q; q)k

=
1

(q; q)m−1

∞∑
l=1

ql(l+m−1)

(q; q)l−1
· 1

(ql+2m−1; q)∞

=
1

(q; q)m−1(q; q)∞

∞∑
l=1

ql(l+m−1)(ql; q)2m−1.

The first line and the last line give the combinatorial descriptions in the theorem.

Proof of Theorem 2. Set k = m in Theorem 6 to obtain

∞∑
s=1−h

qm(h−1)+s(2m)

(q; q)m−1(q; q)s−1

(
s+ h− 1

0

)
q

=
qmh+m

(q; q)m−1

∞∑
s=−h

q2ms

(q; q)s

=
qmh+m

(q; q)m−1

(
1

(q2m; q)∞
−

−h−1∑
s=0

q2ms

(q; q)s

)
.

Interpreting the first and last lines gives the theorem.
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Proof of Theorem 3. Using Theorem 7 we have

∞∑
s=0

qs(k+m)+k(k−h−m+1)

(q; q)s+k−h−m(q; q)m−1

(
s+ k −m

k −m

)
q

=
qk(k−h−m+1)−(k−m+1

2 )

(q; q)m−1

∞∑
s=0

qs(k+m)+(k−m+1
2 )

(q; q)s+k−h−m

(
s+ k −m

k −m

)
q

.

Interpreting the first and second lines gives the theorem.

Proof of Theorem 4. For a fixed m and k, summing Theorem 11 over all h we have,

k−1∑
h=−∞

k∑
l=1

q(m−1)(2k−h−l)+k+l(k−h−1)

(q; q)k−h−1(q; q)m−1

(
k − 1

l − 1

)
q

.

Reindexing by substituting k − h− 1 for h gives

qkm

(q; q)m−1

k∑
l=1

q−(l−1)(m−1)

(
k − 1

l − 1

)
q

∞∑
h=0

qh(m+l−1)

(q; q)h

=
qkm

(q; q)m−1

k∑
l=1

q−(l−1)(m−1) (q; q)k−1

(q; q)k−l(q; q)l−1(qm+l−1; q)∞
.

The theorem follows by multiplying by (qm; q)l−1/(q
m; q)l−1 and by the fact that

(q; q)k−1

(q; q)m−1(qm; q)l−1(qm+l−1; q)∞
=

1

(qk; q)∞

Proof of Theorem 5. For a fixed m, we have

lim
k→∞

qm−1

(qk; q)∞

k∑
l=1

q(m−1)(k−l)(qm; q)l−1

(q; q)l−1(q; q)k−l
= qm−1 lim

k→∞

k−1∑
l=0

q(m−1)(l+1)(qm; q)k−l−1

(q; q)k−l−1(q; q)l

=
qm−1(qm; q)∞

(q; q)∞

∞∑
l=0

q(m−1)(l+1)

(q; q)l

=
qm−1

(qm−1; q)∞(q; q)m−1

=
qm−1

(1− qm−1)(q; q)∞
.

This gives the theorem.
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5. Future Work

There are many directions that future work could be taken. The same methods

required to produce generating functions for the sets of restricted partitions studied

here could be applied to more exotic families and potentially get similar generat-

ing functions; for example, analogous results for self-conjugate partitions to mirror

those of odd distinct partitions could be obtained. As mentioned in Remarks 1

and 2, asymptotic analysis on some of these theorems could lend insight into the

relative distributions of hook lengths between different sets of equinumerous par-

titions. Another relatively straightforward extension would be to establish similar

combinatorial results to those of the theorems in Section 1. All of these theorems

use the generating functions established specifically for unrestricted partitions, but

very similar analogous results could readily be established by looking at the gener-

ating functions that are associated with the hook lengths in any form of restricted

partitions. A less straightforward, but nonetheless interesting, continuation would

be to further delve into the connection that the author, Hemmer, Hopkins, and

Keith in [8] saw with the truncated pentagonal number theorem of Andrews and

Merca [3]. Lastly, Theorem 5 seems to suggest the truth of the following conjecture.

Conjecture 1. For k ≥ m ≥ 2, the difference

qm−1

(1− qm−1)(q; q)∞
− qm+k−1

(qk; q)∞

k∑
l=1

q(m−1)(k−l)(qm; q)l−1

(q; q)l−1(q; q)k−l

is positive.

If true, this would imply that there are more parts of size m − 1 in partitions

of n+ k than there are hooks of size k in the mth column of partitions of n and a

combinatorial proof of this may be interesting.
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