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Abstract

For an integer ℓ ≥ 2, let Aℓ(n) denote the number of ℓ-regular overpartitions of
n. In this article, we investigate the divisibility properties of Ap(n), A3p(n), and
A3·2α(n) by arbitrary powers of 2, where p is an odd prime and α ≥ 1. We also prove
arithmetic properties of congruences, including some Ramanujan-type congruences
satisfied by A7(n) and Aℓ(n) for ℓ ≡ 3 (mod 4), employing theta function identities,
Hecke operators, and the theory of modular forms. Furthermore, leveraging an Ono
and Taguchi result on the nilpotency of Hecke operators, we identify infinite families
of congruences modulo arbitrary powers of 2 satisfied by A3·2α(n).

1. Introduction

For |ab| < 1, Ramanujan’s general theta function g(a, b) [4, p. 35, Entry 19] is

defined by

g(a, b) =

∞∑
k=−∞

ak(k+1)/2bk(k−1)/2 = (−a, ab)∞(−b, ab)∞(ab, ab)∞,

where here and throughout this paper, we assume that

(a; q)∞ =

∞∏
m=0

(1− aqn), |q| < 1 and fk := (qk; qk)∞.
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The following are three special cases of g(a, b):

f(−q) := g(−q,−q2) =
∞∑

k=−∞

(−1)kqk(3k−1)/2 = (q; q)∞ = f1,

φ(q) := g(q, q) =

∞∑
k=−∞

qk
2

= (−q; q2)2∞(q2; q2)∞ =
f52
f21 f

2
4

,

and

ψ(q) := g(q, q) =

∞∑
k=0

qk(k+1)/2 =
(q2; q2)∞
(q; q2)∞

=
f22
f1
.

A partition of n is a non-increasing sequence of positive integers whose sum is

n. An overpartition of n is a partition in which the first occurrence of a part may

be overlined. Let p(n) denote the number of overpartitions of n. The generating

function for p(n) is defined as follows:

∞∑
n=0

p(n)qn =
f2
f21
.

Corteel and Lovejoy [6] introduced and developed the theory of overpartitions.

Since then, numerous mathematicians studied overpartition functions and have un-

covered several interesting properties.

For an integer ℓ ≥ 2, an ℓ-regular partition of n is a partition in which none of the

parts is divisible by ℓ. Similarly, an ℓ-regular overpartition of n is an overpartition

in which none of the parts is a multiple of ℓ. The number of ℓ-regular overpartitions

of n is denoted by Aℓ (n). The generating function for Aℓ (n) is:

∞∑
n=0

Aℓ(n)q
n =

(−q; q)∞(qℓ; qℓ)∞
(q; q)∞(−qℓ; qℓ)∞

=
f2f

2
ℓ

f21 f2ℓ
. (1)

Lovejoy studied the ℓ-regular overpartition function Aℓ (n) in his series of papers

[9, 10, 11]. Shen [17] investigated the generating functions of A3 (n) and A4 (n).

Further, Shen established several arithmetic properties modulo 3, 6, and 24. Alanzi

et al. [2] proved infinite families of Ramanujan-type congruences modulo 3 satisfied

by A3j (n) for positive integers j ≥ 3. Adiga and Ranganatha [1] demonstrated

various infinite families of congruences for small powers of 2 for A2j (n) where j ≥ 2

is a positive integer. Ray and Barman [3] obtained an infinite family of congruences

modulo 4 for A2ℓ (n) and modulo 4, 8, and 16 for A4ℓ (n). Recently, Ray and

Chakraborty [5] studied the divisibility properties of Aℓ (n) by arbitrary powers
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of pi under certain conditions on ℓ and p. They obtained arithmetic properties

for A5 (n) and established a Ramanujan-type congruence modulo 7 for A7 (n) using

properties of modular forms and Hecke operators. In this paper, we study divisibility

properties of ℓ-regular overpartition functions Aℓ(n) by arbitrary powers of 2 for

certain values of ℓ. Let p be an odd prime and j be a fixed positive integer. In our

first theorem, we prove that Ap(n) is divisible by a fixed but arbitrary power of 2

for almost all n. Specifically, we prove the following.

Theorem 1. Let p be an odd prime and for any positive integer j, we have

lim
X→∞

#
{
n ≤ X : Ap(n) ≡ 0 (mod 2j)

}
X

= 1.

In the next theorem, we prove that A3p(n) is divisible by arbitrary powers of 2

for almost all n.

Theorem 2. If p be an odd prime, then for any integer positive integer j, we have

lim
X→∞

#
{
n ≤ X : A3p(n) ≡ 0 (mod 2j)

}
X

= 1.

We further prove that the partition function A3·2α(n) is almost always divisible

by arbitrary powers of 2 for all α > 0.

Theorem 3. Let j and α be positive integers with j ≥ α+ 1. We have

lim
X→∞

#
{
n ≤ X : A3·2α(n) ≡ 0 (mod 2j)

}
X

= 1.

In the following theorem, using a result of Ono and Taguchi on nilpotency of

Hecke operators, we prove that there exists an infinite family of congruences modulo

2 satisfied by A3·2α(n).

Theorem 4. Let α > 0 be an integer. Then there exists a non-negative integer c

such that for each d ≥ 1 and distinct primes p1, · · · , pc+d coprime to 6, we have

A3·2α
(p1 · · · pc+d · n

24

)
≡ 0 (mod 2d),

whenever n is coprime to p1, . . . , pc+d.

Let pi > 2 be a prime such that pi ̸≡ 1 (mod 6). We prove the following infinite

family of congruences modulo 4 satisfied by Aℓ(n) where ℓ ≡ 3 (mod 4), using the

theory of Hecke eigenforms.

Theorem 5. Let n, k ≥ 0 and ℓ ≡ 3 (mod 4) be integers. If pi > 2 is prime such

that pi ≡ 3 (mod 4) for i ∈ {1, 2, ..., k + 1}, then, for j ̸≡ 0 (mod pk+1), we have

Aℓ

(
p21 · · · p2k · pk+1(pk+1(4n+ 1) + 4j)

)
≡ 0 (mod 4).
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Let ℓ ≡ 3 (mod 4) be an integer, and let p > 2 be a prime such that p ̸≡ 1

(mod 6). Suppose all the primes p1, p2, . . . , pk+1 are equal to the same prime p. We

obtain the following corollary as an immediate consequence of Theorem 5.

Corollary 1. Let ℓ ≡ 3 (mod 4) be an integer, and let p > 2 be a prime such that

p ̸≡ 1 (mod 6). Then we have

Aℓ

(
p2k+2(4n+ 1) + p2k+14j

)
≡ 0 (mod 4),

where j ̸≡ 0 (mod p).

Next, we prove the following congruence modulo 4 satisfied by Aℓ(n) where

ℓ ≡ 3 (mod 4), using theta function identities.

Theorem 6. If n ≥ 0 and k ≥ 0 are integers and ℓ ≡ 3 (mod 4), then we have

Aℓ (4ℓn+ 4j + 3)) ≡ 0 (mod 4),

where j ̸≡ ℓ−3
4 (mod ℓ).

In the following theorem, using the theory of Hecke operators, we prove the

self-similarity congruences modulo 7 satisfied by A7(n).

Theorem 7. Let n ≥ 0 and k ≥ 0 be integers. Then we have

A7

(
72k(4n+ 3)

)
≡ A7(4n+ 3) (mod 7).

Finally, using theta function identities and the theory of modular forms, we prove

the following Ramanujan-type congruences modulo 7 satisfied by A7(n).

Theorem 8. Let n ≥ 0 be integers. Then we have

A7 (16n+ 4) ≡ 0 (mod 7), (2)

A7 (64n+ i) ≡ 0 (mod 7), (3)

A7 (256n+ j) ≡ 0 (mod 7), (4)

A7 (1024n+ k) ≡ 0 (mod 7), (5)

where i ∈ {4, 36}, j ∈ {4, 36, 68, 100, 132, 164, 196, 228} and k ∈ {4, 36, 68, 100, 132,
164, 196, 228, 260, 292, 324, 356, 388, 420, 452, 484, 516, 548, 580, 612, 644, 676, 708,

740, 772, 804, 836, 868, 900, 932, 964, 996}.

2. Preliminaries

In this section, we collect certain definitions and results on modular forms. Detailed

discussions can be found in [13, 8].
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Let H := {z ∈ C : Im(z) > 0} denote the upper half of the complex plane. The

congruence subgroups Γ0(N),Γ1(N), and Γ∞ of SL2(Z) of level N are defined as

follows:

Γ0(N) :=

{(
a b
c d

)
∈ Γ

∣∣∣∣ c ≡ 0 (mod N)

}
,

Γ1(N) :=

{[
a b
c d

]
∈ Γ0(N)

∣∣∣∣ a ≡ d ≡ 1 (mod N)

}
,

and

Γ∞ :=

{(
1 h
0 1

)
∈ Γ

∣∣∣∣h ∈ Z
}
,

where N is a positive integer. Suppose that k be a positive integer and Mk(Γ1(N))

(resp. Sk(Γ1(N))) represents the complex vector space of modular forms (resp.

cusp forms) of weight k with respect to a congruence subgroup Γ1(N).

Definition 1 ([13, Definition 1.15]). Let χ be a Dirichlet character modulo N .

Then a modular form f ∈Mk(Γ1(N)) (resp. Sk(Γ1(N))) has Nebentypus character

χ if

f

(
az + b

cz + d

)
= χ(d)(cz + d)ℓf(z),

for all z ∈ H and all

[
a b
c d

]
∈ Γ0(N). The space of such modular forms (resp. cusp

forms) is denoted by Mk (Γ0(N), χ)
(
resp. Sk(Γ0(N), χ)

)
.

The Dedekind eta-function η(z) is given by

η(z) := q1/24(q; q)∞ = q1/24
∞∏

n=1

(1− qn),

where q = e2πiz and z ∈ H. A function f(z) is defined as an eta-quotient provided

it satisfies

f(z) =
∏
δ|N

η(δz)rδ ,

where N is a positive integer and rδ ∈ Z.
The following result of Gordon, Huges, and Newman is very useful when dealing

with eta-quotients.

Theorem 9 ([13, Theorem 1.64]). Suppose f(z) =
∏

δ|N
η(δz)rδ is an eta-quotient

with k =
1

2

∑
δ|N

rδ ∈ Z, with the following additional properties,

∑
δ|N

δrδ ≡ 0 (mod 24),
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and ∑
δ|N

N

δ
rδ ≡ 0 (mod 24).

Then we have f(z) that satisfies

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z),

for every

[
a b
c d

]
∈ Γ0(N). The character χ is formulated as χ(d) :=

(
(−1)ks

d

)
,

where s :=
∏

δ|N δrδ .

Let f be an eta-quotient satisfying the conditions of Theorem 9. Note that if

f is also holomorphic at all the cusps of Γ0(N), then f ∈ Mk(Γ0(N), χ) (resp.

Sk(Γ0(N), χ)). The following theorem provides the necessary criterion for deter-

mining the orders of eta-quotients at the cusps.

Theorem 10 ([13, Theorem 1.65]). Let c, d, and N be positive integers with d | N
and gcd(c, d) = 1. If f is an eta-quotient satisfying the conditions of Theorem 9 for

N , then the order of vanishing of f(z) at the cusp c
d is

N

24

∑
δ|N

gcd(d, δ)2rδ

gcd(d, Nd )dδ
.

We use the following result of Strum [18] to verify that the coefficients of two

modular forms are congruent modulo any given prime.

Theorem 11. Let p be a prime, f(z) =
∑∞

n=n0
a(n)qn ∈Mk(Γ0(N), χ), and g(z) =∑∞

n=n1
b(n)qn ∈Mk(Γ0(N), ψ), where n0 and n1 are non-negative integers. If either

χ = ψ and

a(n) ≡ b(n) (mod p) for all n ≤ kN

12

∏
d prime; d|N

(
1 +

1

d

)
,

or χ ̸= ψ and

a(n) ≡ b(n) (mod p) for all n ≤ kN2

12

∏
d prime; d|N

(
1− 1

d2

)
,

then f(z) ≡ g(z) (mod p) (i.e., a(n) ≡ b(n) (mod p) for all n).

Next, we recall the following definitions of Hecke operators, which are useful for

proving our main results.
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Definition 2. Letm be a positive integer, and f(z) =
∑∞

n=0 a(n)q
n ∈Mk(Γ0(N), χ).

Then action of Hecke operator Tm on f(z) can be formulated as

f(z)|Tm :=

∞∑
n=0

 ∑
d|gcd(n,m)

χ(d)dℓ−1a
(nm
d2

) qn.

Precisely, if m = p is prime, then

f(z)|Tp :=

∞∑
n=0

(
a(pn) + χ(p)pℓ−1a

(
n

p

))
qn. (6)

Note that a(n) = 0 unless n is a non-negative integer.

If f is an eta-quotient that satisfies the presumptions of Theorem 9 and p|s
(here s is as defined in Theorem 9), then χ(p) = 0 so that the latter term vanishes.

In this case, we have the factorization property(
f ·

∞∑
n=0

g(n)qpn

)
|Tp =

( ∞∑
n=0

a(pn)qn

)( ∞∑
n=0

g(n)qn

)
. (7)

Definition 3. A modular form f(z) =
∑∞

n=0 a(n)q
n ∈ Mk(Γ0(N), χ) is called a

Hecke eigenform if for every m ≥ 2, a complex number λ(m) can be found, such

that

f(z)|Tm = λ(m)f(z). (8)

To prove the divisibility properties of various partition functions, we use the

following result of Serre.

Theorem 12 ([13, Theorem 2.65]). Let m be a positive integer, and suppose f(z) =∑∞
n=0 a(n)q

n ∈Mk(Γ0(N), χ) has Fourier expansion

f(z) =

∞∑
n=0

c(n)qn ∈ Z[[q]].

Then there exits a constant α > 0 such that

# {n ≤ X : c(n) ̸≡ 0 (mod m)} = O
(

X

(logX)α

)
.

The following lemma is immediate from the Binomial theorem.

Lemma 1. For any positive integers s and t, and any prime p, we have

fp
t

s ≡ fp
t−1

sp (mod pt). (9)
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3. Proofs of Theorems 1 - 3

In this section, we give the proofs of our first three main results by applying Theo-

rems 9, 10, and 12.

Proof of Theorem 1. Setting ℓ = p in (1), we have

∞∑
n=0

Ap(n)q
n =

f2f
2
p

f21 f2p
. (10)

Let Bj(z) =
∏∞

n=1
(1−q24n)2

(1−q48n) = η2(24z)
η(48z) . By employing Lemma 1. We have

B2j

j (z) =
η2

j+1

(24z)

η2j (48z)
≡ 1 (mod 2j+1).

Define

Cj(z) =
η(48z)η2(24pz)

η2(24z)η(48pz)
· B2j

j (z)

=
η2

j+1−2(24z)η2(24pz)

η2j−1(48z)η(48pz)
.

Taking this equation modulo 2j+1, we obtain

Cj(z) ≡
η(48z)η2(24pz)

η2(24z)η(48pz)

=
f48f

2
24p

f224f48p
. (11)

From Identities (10) and (11), we obtain

Cj(z) ≡
∞∑

n=0

ap(n)q
24n (mod 2j+1). (12)

Note that Cj(z) is an eta-quotient with level N = 192p. The cusps of Γ0(192p) can

be written as fractions c
d , where d | 192p and gcd(c, d) = 1. Using Theorem 10, we

observe that, Cj(z) is holomorphic at a cusp c
d if and only if

D := 4p
(
2j − 1

) gcd(d, 24)2

gcd(d, 48p)2
+ 4

gcd(d, 24p)2

gcd(d, 48p)2
− p

(
2j − 1

) gcd(d, 48)2

gcd(d, 48p)2
− 1 ≥ 0.

From Table 1, we find that D ≥ 0 for all d | 192p. Hence, Cj(z) is holomorphic

at every cusp c
d . Using Theorem 9, we find that the weight of Cj(z) is k = 2j−1,

and the associated character, χ1(•), equals (((−1)2
j−1 · 22j+1·32

j
·p)/•). Hence, by

Theorems 9 and 10, we have Cj(z) ∈ M2j−1 (Γ0(192p), χ1(•)). Thus, by Serre’s

Theorem 12, the Fourier coefficients of Cj(z) are almost always divisible by 2j for

all j > 0. By employing (12), we complete the proof of Theorem 1.
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d | 192p gcd(d,24)2

gcd(d,48p)2
gcd(d,24p)2

gcd(d,48p)2
gcd(d,48)2

gcd(d,48p)2 D
1, 2, 3, 4, 6, 8, 12, 24 1 1 1 3+3p(2k−1)
16, 32, 48, 64, 96, 192 1/4 1/4 1 0

p, 2p, 3p, 4p, 6p, 8p,
12p, 24p

1/p2 1 1/p2 3 + 3( 2
k−1
P )

16p, 32p, 48p, 64p,
96p, 192p

1/4p2 1/4 1/p2 0

Table 1: Table to find the possible values of D.

The proofs of Theorems 2 and 3 are similar to Theorem 1. Thus we present a

modified proof.

Proof of Theorem 2. Setting ℓ = 3p in (1), we have

∞∑
n=0

A3p(n)q
n =

f2f
2
3p

f21 f6p
. (13)

Define

Fj(z) =
η2

j+1−2(24z)η2(72pz)

η2j−1(48z)η(144pz)
.

It is easy to obtain

Fj(z) ≡
∞∑

n=0

A3p(n)q
24n (mod 2j+1). (14)

Clearly, Fj(z) is an eta-quotient with level N = 576p. The cusps of Γ0(576p) can

be written as fractions c
d , where d | 576p and gcd(c, d) = 1. Using Theorem 10, we

observe that, Fj(z) is holomorphic at a cusp c
d if and only if

G := 12p
(
2j − 1

) gcd(d, 24)2

gcd(d, 144p)2
+ 4

gcd(d, 72p)2

gcd(d, 144p)2

− 3p
(
2j − 1

) gcd(d, 48)2

gcd(d, 144p)2
− 1 ≥ 0.

From Table 2, we see that G ≥ 0 for all d | 576p. Thus, Fj(z) is holomorphic at

every cusp c
d . Using Theorem 9, the weight of Fj(z) is k = 2j−1, and the associated

character, χ2(•), equals (((−1)2
j−1 · 22j+1·32

j+1·p)/•). Again, by Theorems 9 and

10, Fj(z) ∈M2j−1 (Γ0(576p), χ2(•)). Therefore, by Serre’s Theorem 12, the Fourier

coefficients of Fj(z) are almost always divisible by 2j for all j > 0. By employing

Identity (14), we complete the proof of Theorem 2.
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d | 576p gcd(d,24)2

gcd(d,144p)2
gcd(d,48)2

gcd(d,144p)2
gcd(d,72p)2

gcd(d,144p)2 G
1, 2, 3, 4, 6, 8, 12, 24 1 1 1 3 + 9p(2k − 1)
16, 32, 48, 64, 96, 192 1/4 1 1/4 0
9, 18, 36, 72 1/9 1/9 1 2k + 2
144, 288, 576 1/36 1/9 1/4 0

p, 2p, 3p, 4p, 6p, 8p,
12p, 24p

1/p2 1 1/p2 3 + 9( 2
k−1
p )

16p, 32p, 48p, 64p,
96p, 192p

1/4p2 1/p2 1/4 0

9p, 18p, 36p, 72p 1/9p2 1/9p2 1 3 + 2k−1
p

144p, 288p, 576p 1/36p2 1/9p2 1/4 0

Table 2: Table to find the possible values of G.

We now present a proof of the Theorem 3.

Proof of Theorem 3. Setting ℓ = 3 · 2α in Identity (1), we have

∞∑
n=0

A3·2α(n)q
n =

f2f
2
3·2α

f21 f6·2α
.

Define

Lj(z) =
η(48z)η2

j+1+2(32 · 2α+3z)

η2(24z)η2j+1(32 · 2α+4z)
.

It is easy to obtain

Lj(z) ≡
∞∑
=0

A3·2α(n)q
24n (mod 2j+1). (15)

On using Theorem 9, the level of the eta-quotient Lj(z) = 32 · 2α+4u, where u is

the smallest integer such that

u
[
3 · 2k − 3(3 · 2α − 1)

]
≡ 0 (mod 24).

Hence, the level of Lj(z) is 32 · 2α+7. The cusps of Γ0(3
2 · 2α+7) can be written

as fractions c
d , where d | 32 · 2α+7 and gcd(c, d) = 1. Using Theorem 10, Lj(z) is

holomorphic at a cusp c
d if and only if

M := 3 · 2α gcd(d, 48)2

gcd(d, 32 · 2α+4)2
− 3 · 2α+2 gcd(d, 24)2

gcd(d, 32 · 2α+4)2

+4
(
2j + 1

) gcd(d, 32 · 2α+3)2

gcd(d, 32 · 2α+4)2
−
(
2j + 1

)
≥ 0.
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d = 2r · 3s | 32 · 2α+7 gcd(d,24)2

gcd(d,32·2α+4)2
gcd(d,48)2

gcd(d,32·2α+4)2
gcd(d,32·2α+3)2

gcd(d,32·2α+4)2 M
0 ≤ r ≤ 3,
0 ≤ s ≤ 1

1 1 1 3(2j+1)−9·2α

0 ≤ r ≤ 3,
s = 2

1/9 1/9 1 3(2j + 1)− 2α

4 ≤ r ≤ α + 3,
0 ≤ s ≤ 1

26−2r 28−2r 1 3(2j + 1)

4 ≤ r ≤ α + 3,
s = 2

26−2r/9 28−2r/9 1 3(2j + 1)

α+ 4 ≤ r ≤ α+ 7,
0 ≤ s ≤ 1

2−2−2α 2−2α 1/4 0

α+ 4 ≤ r ≤ α+ 7,
s = 2

2−2−2α/9 2−2α/9 1/4 0

Table 3: Table to find the possible values of M.

From Table 3, we find thatM ≥ 0 for all d | 32·2α+7, and j ≥ 2α+1. Hence, Lj(z)

is holomorphic at every cusp c
d . Using Theorem 9, the weight of Lj(z) is 2

j−1, and

the associated character, χ4(•), equals (((−1)2
j−1 · 32j+1+1 · 22j(α+2)+α)/•). Hence,

by Theorems 9 and 10, Lj(z) ∈ M2j−1

(
Γ0(3

2 · 2α+7), χ4(•)
)
for all j ≥ 2α + 1.

Thus, by Serre’s Theorem 12, the Fourier coefficients of Lj(z) are almost always

divisible by 2j . By employing Identity (15), we complete the proof of Theorem

3.

4. Proof of Theorems 4 - 7

In order to prove our Theorem 5, we recall the following result on nilpotency of the

Hecke operators given by Ono and Taguchi [14].

Theorem 13 ([14, Theorem 1.3]). . Let n ≥ 0, k > 0 be integers, and let χ be

a quadratic Dirichlet character with conductor 9 · 2n. There exists a non-negative

integer c such that for every f(z) ∈Mk (Γ(9 · 2n), χ) ∩ Z[[q]] and for every t ≥ 1,

f(z)|Tp1 |Tp2 | · · · |Tpc+t ≡ 0 (mod 2t),

whenever the primes p1, p2,...,pc+t are coprime to 6.

We now present the proof of Theorems 4.

Proof of Theorem 4. From Identity (15), we have

Lj(z) ≡
∞∑

n=0

A3·2α(n)q
24n (mod 2j+1).
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This implies

Lj(z) :=

∞∑
n=0

Cj(n)qn ≡
∞∑

n=0

A3·2α
( n
24

)
qn (mod 2j+1). (16)

Clearly, Lj(z) ∈ M2β−1

(
Γ0(9 · 2β+7), χ4

)
. By Theorem 13, there exists a non-

negative integer c such that for every d ≥ 1,

Lj(z)|Tp1 |Tp2 | · · · |Tpc+d
≡ 0 (mod 2d),

whenever the primes p1, p2,...,pc+d are coprime to 6. By Definition 1 of Hecke

operators, if pi are distinct primes and (n, pi) = 1 for 1 ≤ i ≤ c+ d, then

Cj(p1 · · · pc+d · n) ≡ 0 (mod 2d). (17)

Using Identities (16) and (17), we complete the proof of Theorem 4.

Next, we present the proof of Theorem 5

Proof of Theorem 5. We recall the following even-odd dissection formulas from Berndt

[4, p. 40, Entry 25]:

f21 =
f2f

5
8

f24 f
2
16

− 2q
f2f

2
16

f8
,

1

f21
=

f58
f52 f

2
16

+ 2q
f24 f

2
16

f52 f8
.

Employing the above even-odd dissection formulas in Identity (1) and drawing out

the common terms of q2n+1, we have

∞∑
n=0

Aℓ(2n+ 1)qn = 2
f22 f

8
2 f

5
4ℓ

f41 f4f
2
2ℓf

2
8ℓ

− 2q
ℓ−1
2

f54 f
2
8ℓ

f41 f
2
8 f4ℓ

≡ 2f62 + 2q
ℓ−1
2 f62ℓ (mod 4). (18)

Since ℓ ≡ 3 (mod 4), on extracting the coefficient of q2n from Identity (18), we have

∞∑
n=0

Aℓ(4n+ 1)qn ≡ 2f61 (mod 4), (19)

which implies

∞∑
n=0

Aℓ(4n+ 1)q4n+1 ≡ 2η6(4z) (mod 4).
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Let η6(4z) =
∑∞

n=0 c(n)q
n. Note that c(n) = 0 if n ̸≡ 1 (mod 4) for all n ≥ 0 and

Aℓ(6n+ 1) ≡ c(4n+ 1) (mod 4). (20)

By Theorems 9 and 10, we have η6(4z) ∈ S3

(
Γ0(16),

(−1
•
))
. Since η6(4z) is a Hecke

eigenform (see [12]), using identities (6) and (8), we obtain

η6(4z) | Tp =

∞∑
n=1

[
c(pn) + p2

(
−1

p

)
c

(
n

p

)]
qn = λ(p)

∞∑
n=1

c(n)qn,

which implies

c(pn) + p2
(
−1

p

)
c

(
n

p

)
= λ(p)c(n). (21)

For c(1) = 1, c
(
1
p

)
= 0, and for n = 1 in Identity (21), we obtain c(p) = λ(p). Since

c(p) = 0 for all p ̸≡ 1 (mod 4), we obtain λ(p) = 0. Thus, Identity (13) yields

c(pn) + p2
(
−1

p

)
c

(
n

p

)
= 0, (22)

which is true for all primes p ≡ 3 (mod 4). Replacing n by pn+ r in Identity (22),

we obtain

c(p2n+ pr) = 0, (23)

for all n ≥ 0 and p ∤ r. Similarly, replacing n by pn in Identity (22), we obtain

c(p2n) = −p2c(n) ≡ c(n) (mod 2). (24)

Replacing n by 4n− pr + 1 in Identity (23) and using Identity (20), we obtain

Aℓ

(
4

(
p2n+

(p2 − 1)

4
+ pr

(1− p2)

4

)
+ 1

)
≡ 0 (mod 4). (25)

Similarly, replacing n by 4n+ 1 in Identity (24) and using Identity (20), we obtain

Aℓ

(
4

(
p2n+

(p2 − 1)

4

)
+ 1

)
≡ Aℓ(4n+ 1) (mod 4). (26)

For a prime p > 2, we have 4 | (1 − p2) and gcd( 1−p2

4 , p) = 1. It is easy to see

that, when r runs over a residue system excluding the multiples of p, so does 1−p2

4 r.

Therefore, Identity (25) can be rewritten as

Aℓ

(
4

(
p2n+

(p2 − 1)

4
+ pj

)
+ 1

)
≡ 0 (mod 4), (27)
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where p ∤ j. For odd primes pi satisfying pi ≡ 3 (mod 4), we have

p21 . . . p
2
kn+

p21 . . . p
2
k − 1

4
= p21

(
p22 . . . p

2
kn+

p22 . . . p
2
k − 1

4

)
+
p21 − 1

4
,

and applying Identity (26) repeatedly on the above identity, we obtain

Aℓ

(
4

(
p21 · · · p2kn+

(p21 · · · p2k − 1)

4

)
+ 1

)
≡ Aℓ(4n+ 1) (mod 4). (28)

For j ̸≡ 0 (mod pk+1), set n = p2k+1n +
p2
k+1−1

4 + pk+1j in Identity (28). Then,

employing Identity (27), we complete the proof of Theorem 5.

Next, we present the proof of Theorem 6.

Proof of Theorem 6. Since ℓ ≡ 3 (mod 4), on extracting the common terms of

q2n+1 from Identity (18), we have

∞∑
n=0

Aℓ(4n+ 3)qn ≡ 2q
ℓ−3
4 f6ℓ (mod 4). (29)

Now, extracting the common terms of qℓn+j from Identity (29), where j ̸≡ ℓ−3
4

(mod ℓ), completes the proof of Theorem 6.

We now present the proof of Theorem 7.

Proof of Theorem 7. Setting ℓ = 7 in Identity (1), we have

∞∑
n=0

Aℓ(n)q
n ≡ f121

f62
= φ6(−q) (mod 7). (30)

From a result of Hirschhorn [7, (1.9.4)], we have

φ(−q) = φ(q4)− 2qψ(q8). (31)

Using Identity (31) in (30) and extracting the common terms of q4n and q4n+3 from

the resulting identity, we obtain

∞∑
n=0

A7(4n)q
n ≡ φ6(q) + 2qφ2(q)ψ4(q2) (mod 7), (32)

∞∑
n=0

A7(4n+ 3)qn ≡ φ3(q)ψ3(q2) =
f122
f61

(mod 7). (33)

Consider the following eta-quotient functions:

H1(z) :=
η12(2z)

η6(z)
η6(z)E48

6 (z)
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and

H2(z) :=
η12(2z)

η6(z)
η294(z),

where E6(z) is the weight 6 normalized Eisenstein series, given by E6(z) := 1 −
504

∑∞
n=1 σ5(n)q

n. The function E6(z) is a modular form on Γ0(1) with trivial

character and E6 ≡ 1 (mod 7). By Theorems 9 and 10, we observe that H1 and

H2 are modular forms in the space M312 (Γ0(4), χ7) with character χ7(•) =
(

212

•

)
.

Considering identities H1(2) and H2(z) modulo 7, and using Identity (21), we have

H1(z) ≡
∞∑

n=0

A7(4n+ 3)qn+1 · f61 (mod 7)

and

H2(z) ≡
∞∑

n=0

A7(4n+ 3)qn+13 · f2941 (mod 7).

Applying the Hecke operator T7 to H2(z) and employing Identity (7), we have

(H2|T7)(z) ≡
∞∑

n=0

A7(4(7n+ 1) + 3)qn+2 · f421 (mod 7).

Again, applying the Hecke operator T7 to H2(z) and using Identity (7), we have

(H2|T 2
7 )(z) ≡

∞∑
n=0

A7(4(49n+ 36) + 3)qn+1 · f61 (mod 7).

Since the Hecke operator is an endomorphism on M312 (Γ0(4), χ7), we have

(H2|T 2
7 )(z) ∈ M312 (Γ0(4), χ7). Since the modular forms are in the same space

M312 (Γ0(4), χ7) and have the same character, the Sturm bound is 156. Upon using

Mathematica, we confirm that all coefficients up to the desired bound are congruent

modulo 7. Hence, by Sturm’s Theorem 11,

H2(z) ≡ (H2|T 2
7 )(z) (mod 7),

which implies

A7(4(49n+ 36) + 3) ≡ A7(4n+ 3) (mod 7).

This is the k = 0 case of Theorem 5. Upon using mathematical induction on k, we

complete the proof of Theorem 5.
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5. Proof of Theorem 8

In [5], Ray and Chakraborty proved Identity (2) using the approach developed by

Radu and Sellers [15, 16]. Here, we present an alternative proof of Identity (2) using

Ramanujan’s theta function identities. Additionally, we extend this methodology to

prove identities (3)–(5) by employing the approach developed by Radu and Sellers.

We recall for prime p, the index of Γ0(N) in Γ is given by

[Γ : Γ0(N)] = N
∏
p|N

(
1 + p−1

)
.

For a positive integer M , let R(M) be the set of integer sequences r = (rδ)δ|M
indexed by the positive divisors of M . Let r ∈ R(M), let 1 = δ1 < · · · < δk = M

be the positive divisors of M , and write r = (rδ) = (rδ1 , . . . , rδk). Define cr(n) by∏
δ|M

(
qδ; qδ

)rδ
∞ :=

∞∑
n=0

cr(n)q
n.

The approach was developed by Radu and Sellers [15, 16] for proving congruences

for cr(n). For a positive integer m, an integer s, [s]m denotes the set of all elements

congruent to s modulo m. Let Z∗
m denote the set of all invertible elements in Zm

and S∗m denote the set of all squares in Z∗
m. For t ∈ {0, 1, . . . ,m−1} and r ∈ R(M),

we define a subset Pm,r(t) ⊂ {0, 1, . . . ,m− 1} by

Pm,r(t) :=

t′ : there exits [s]24m ∈ S24m such that t′ ≡ ts+
s− 1

24

∑
δ|M

δrδ (mod m)

.
Definition 4. Let m,M, and N be positive integers, let r = rδ ∈ R(M), and let

t ∈ {0, 1, . . . ,m− 1}. Let k = k(m) := gcd(m2 − 1, 24) and write∏
δ|M

δ|rδ| = 2s · j,

where s and j are non-negative integers with j odd. The set ∆∗ consists of all tuples

(m,M,N, (rδ), t) satisfying these conditions and all of the following.

(1) Each prime divisor of m is also a divisor of N .

(2) δ|M implies δ|mN for every δ ≥ 1 such that rδ ̸= 0.

(3) kN
∑

δ|M rδmN/δ ≡ 0 (mod 24).

(4) kN
∑

δ|M rδ ≡ 0 (mod 8).

(5)
24m

gcd (−24kt− k
∑

δ|Mδrδ, 24m)
divides N .
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(6) If 2|m, then either 4|kN and 8|sN or 2|s, and 8|(1− j)N .

For positive integers m,M, and N , γ :=

(
a b
c d

)
∈ Γ, r ∈ R(M), and r′ ∈ R(N),

set

pm,r(γ) := min
λ∈{0,1,...,m−1}

1

24

∑
δ|M

rδ
gcd2(δa+ δkλc,mc)

δm

and

p∗r′(γ) :=
1

24

∑
δ|N

r′δ
gcd2(δ, c)

δ
.

Lemma 2 ([15, Lemma 4.5]). Let u be a positive integer, (m,M,N, (rδ), t) ∈ ∆∗,

and r′ = (r′δ) ∈ R(N). Let {γ1, γ2, . . . , γn} ⊆ Γ be a complete set of representatives

of the double cosets of Γ0(N)\Γ/Γ∞. Assume that pm,r(γi) + p∗r′(γi) ≥ 0 for all

1 ≤ i ≤ n. Let tmin = mint′∈Pm,r(t) t
′ and

ν :=
1

24


∑

δ|M

rδ +
∑
δ|N

r′δ

 [Γ : Γ0(N)]−
∑
δ|N

δr′δ

− 1

24m

∑
δ|M

δrδ −
tmin

m
.

If the congruence cr(mn + t′) ≡ 0 (mod u) holds for all t′ ∈ Pm,r(t) and 0 ≤ n ≤
⌊ν⌋, then it holds for all t′ ∈ Pm,r(t) and n ≥ 0.

To apply Lemma 2, we use the following result, which provides a complete set of

representatives of the double cosets in Γ0(N)\Γ/Γ∞.

Lemma 3 ([19, Lemma 4.3]). If N or 1
2N is a square-free integer, then

⋃
δ|N

Γ0(N)

[
1 0
δ 1

]
Γ∞ = Γ.

Proof of Theorem 8. To prove Identity (2), we first recall the following result from

Berndt [4, p. 40 Entry 25(v) and 25(vi)]:

φ2(−q) = φ2(q2)− 4qψ2(q4). (34)

Using Identity (34) in Identity (32) and then extracting the common terms of q2n+1,

we obtain

∞∑
n=0

A7(8n+ 4)qn ≡ 5φ4(q)ψ2(q2) + 2φ2(q)ψ4(q) + qψ6(q2) (mod 7). (35)
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From a result of Berndt [4, p. 40 Entry 25(iv)], we have

φ(q)ψ(q2) = ψ2(q). (36)

Using Identity (36) in Identity (35), we obtain

∞∑
n=0

A7(8n+ 4)qn ≡ qψ6(q2) (mod 7). (37)

Hence Identity (2) follows from Identity (37) by extracting the common terms of

q2n.

The proofs of Identities (3) - (5) are similar, thus we prove only Identity (5).

Setting ℓ = 7 in (1) and using Lemma 1, we have

∞∑
n=0

A7(n)q
n ≡ f121

f62
(mod 7).

Let (m,M,N, r, t) = (1024, 2, 8, (12,−6), 4). By applying Conditions (1) - (6) of

Definition 4, it is clear that (1024, 2, 8, (12,−6), 4) ∈ ∆∗ and Pm,r(t) = {4, 36, 68, 100,
132, 164, 196, 228, 260, 292, 324, 356, 388, 420, 452, 484, 516, 548, 580, 612, 644, 676,

708, 740, 772, 804, 836, 868, 900, 932, 964, 996}. By Lemma 3, we know that{[
1 0
δ 1

]
: δ|8

}
forms a complete set of double coset representatives of Γ0(N)\Γ/Γ∞. With r′ =

(0, 0, 0, 0) ∈ R(8), on using Mathematica we obtain

pm,r

([
1 0
δ 1

])
+ p∗r′

([
1 0
δ 1

])
≥ 0, for each δ|8.

From Lemma 2, ⌊ν⌋ = 2. Upon using Mathematica, we verify that A7(1024n +

t′) ≡ 0 (mod 7), for t′ ∈ Pm,r(t), and for 0 ≤ n ≤ 2. Again using Lemma 2,

A7(1024n+ t′) ≡ 0 (mod 7), for t′ ∈ Pm,r(t), is true for all n ≥ 0. This completes

the proof of Theorem 8.

6. Concluding Remarks

In the previous sections, we have demonstrated the application of Ramanujan’s

theta function identities and the methods developed by Radu and Sellers to establish

congruences for partition functions. These techniques have been instrumental in

proving specific modular properties of A7(n) under various arithmetic progressions.

In particular, the congruences for A7(8n + 4) modulo 7 suggest a more general
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pattern that holds for larger powers of 4. Motivated by these results and extensive

computations, we propose the following conjecture, which extends the modular

properties of A7(n) to higher powers of 4. This conjecture, if true, reveals a deeper

arithmetic structure underlying the partition function A7(n), specifically in relation

to powers of 4 and certain residue classes modulo 32. We now state the conjecture.

Conjecture 1. Let k ≥ 2 and 0 < j < 4k be integers. We have

A7

(
4kn+ j

)
≡ 0 (mod 7),

where j ≡ 4 (mod 32).

Acknowledgements. The authors are grateful to the anonymous referee, who

read our manuscript with great care and offered useful suggestions.

References

[1] C. Adiga and D. Ranganatha, Congruences modulo powers of 2 for ℓ-regular overpartitions,
J. Ramanujan Math. Soc. 32 (2017), 147-163.

[2] A. M. Alanazi, A. O. Munagi, and J. Sellers, An infinite family of congruences for ℓ-regular
overpartitions, Integers 16 (2016), #A37.

[3] R. Barman and C. Ray, Infinite families of congruences for k-regular overpartitions, Int. J.
Number Theory 14(1) (2018), 19-29.

[4] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, (1991).

[5] K. Chakraborty and C. Ray, Certain eta-quotients and ℓ-regular overpartitions, Ramanujan
J. 57 (2022), 453-470.

[6] S. Corteel and J. Lovejoy, Overpartitions, Tam. Math. Soc. 356 (2004) 1623-1635.

[7] M. D. Hirschhorn, The Power of q, Springer, Berlin (2017).

[8] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, New York (1991).

[9] J. Lovejoy, Gordon’s theorem for overpartitions, J. Comb. Theory A103 (2003), 393-401.

[10] J. Lovejoy, Overpartition theorems of the Rogers–Ramanujan type, J. London. Math. Soc.
69(2) (2004), 562-574.

[11] J. Lovejoy, A theorem on seven-colored overpartitions and its applications, Int. J. Number
Theory 1(2) (2005), 215-224.

[12] Y. Martin, Multiplicative η-quotients, T. Am. Math. Soc. 348 (1996), 4825-4856.

[13] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-
Series, CBMS Regional Conference Series in Mathematics, vol. 102. American Mathematical
Society, Providence (2004).



INTEGERS: 25 (2025) 20

[14] K. Ono and Y. Taguchi, 2-adic properties of certain modular forms and their applications to
arithmetic functions, Int. J. Number Theory 1(2005), 75-101.

[15] S. Radu, An algorithmic approach to Ramanujan’s congruences, Ramanujan J. 20(2) (2009),
295-302.

[16] S. Radu and J. A. Sellers, Congruence properties modulo 5 and 7 for the pod function, Int.
J. Number Theory 7(8) (2011), 2249-2259.

[17] E. Y. Y. Shen, Arithmetic properties of ℓ-regular overpartitions, Int. J. Number Theory 12
(2016), 841-852.

[18] J. Sturm, On the congruence of modular forms, Springer, Lect. Notes Math. 1240(1984),
275-280.

[19] L. Wang, Arithmetic properties of (k, ℓ)-regular bipartitions, Bull. Aust. Math. Soc. 95
(2017), 353-364.


