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Abstract

In this paper we study the finite trigonometric sum
∑

al csc
(
πl/n

)
, where the

coefficients al are equal to cos(2πlν/n), and where the summation index l and
the discrete parameter ν both run from 1 to n − 1. This sum is a generalization
of Watson’s trigonometric sum, which has been extensively studied in a series of
previous papers, and also may be regarded as the so-called Dowker sum of order one
half. It occurs in various problems in mathematics, physics and engineering, and
plays an important role in some number-theoretic problems. In the paper, we obtain
several integral and series representations for the above-mentioned sum, investigate
its properties, derive various expansions for it (including asymptotic expansions)
and deduce very narrow upper and lower bounds for it. In addition, we obtain two
relatively simple approximate formulas containing only a few terms, which are also
very accurate and can be particularly useful in applications. Finally, we also derive
several advanced summation formulas for the digamma function, which relate the
gamma and the digamma functions, the investigated sum, and the product of a

sequence of cosecants
∏(

csc(πl/n)
)csc(πl/n)

.

1. Introduction

1.1. A Short Historical Survey

Finite trigonometric sums are an interesting object of study and often appear in

analysis, discrete mathematics, combinatorics, number theory, applied statistics,

and in many other areas of mathematics. They also often occur in applications,

especially in physics, and in a variety of related disciplines, such as, for example,

digital signal processing, computer science, information theory, telecommunications,

and cryptography; see, for example, [19, Section 1.1]. Albeit many finite summation
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formulas are known and can be found in various handbooks and tables of series; see,

for example, [52, 54, 59, 74], such formulas still continue to attract the attention

of mathematicians; see, for example, [3, 4, 6, 10, 11, 12, 13, 14, 15, 16, 20, 22,

23, 28, 29, 30, 32, 33, 42, 48, 51, 57, 58, 75, 77, 79]. Indeed, very often, finite

trigonometric sums cannot be evaluated in a closed-form at all.1 In such cases, it

may be desirable to have a convenient asymptotic formula; notwithstanding, even

the latter may be quite difficult. We, for example, still do not know the asymptotics

of many trigonometric sums related to the ζ-function.

In 1916 the famous English mathematician George N. Watson [83] considered

the finite sum

Sn ≡
n−1∑
l=1

csc
πl

n
, n ∈ N \ {1} , (1)

which often occurs in mathematics, physics, and in a variety of related disciplines.

Watson obtained the complete asymptotic expansion of this sum, which allows one

to calculate it quickly and accurately for large n (see Remark 1 hereafter). Watson,

of course, was not the first person who dealt with this sum; however, for convenience,

throughout the paper we refer to this sum as Watson’s trigonometric sum. The sum

Sn also appeared in many other works, including very recent ones; see, for example,

[19, Section 1.1, p. 3] for a nonexhaustive list of references. Furthermore, this sum

has been found to be so remarkable, that Chen devoted a whole chapter of his

book [22, Chapter 7] to it and to some of its properties. Besides, as noted in [80,

Section 1], there exist closed-form expressions for much more complicated sums such

as, for example,
∑n−1

l=1 csc2p(πl/n), p ∈ N, or
∑n−1

l=1 cos2q(θl) csc2p(πl/n), q, p ∈ N;

see [22, Chapter 14], [80, Section 1], [74, Volume 1, Section 4.4.6], [75], but still

little is known about Sn. In the above-cited paper [19], we partially addressed this

issue by examining it in detail and by studying its properties, and also investigated

its generalization

n−1∑
l=1

csc

(
φ+

aπl

n

)
, φ+

aπl

n
̸= πk , k ∈ Z , (2)

where φ and a are some parameters, the initial phase and the scaling factor, re-

spectively. The study of this sum enabled us to obtain, inter alia, three advanced

summation formulas for the digamma function. It was also discovered that for large

n this sum may have qualitatively different behavior, depending on how the initial

phase and the scaling factor are chosen. It was established that (2) has four quali-

tatively different leading terms, which, as φ and a start to vary, appear or dissapear

depending on the relationship between φ and a. As a result, as n increases, the

sum
∑

csc
(
φ + aπl/n

)
may become sporadically large [19, Section 2.4.3]. There

1By a closed-form expression for a finite sum we mean a compact summation formula with a
limited number of terms, which does not depend on the length of the sum.
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also are other generalizations and extensions of Sn, which have been treated in the

mathematical literature. For instance, in 1922 Hargreaves [56] extended Watson’s

investigations to the sum of cubes

n−1∑
l=1

csc3
πl

n
, n ∈ N \ {1} ,

and obtained its dominant term when n becomes large:

n−1∑
l=1

csc3
πl

n
=

2

π3

{
n3ζ(3) + 3nζ(2)

(
lnn+ γ − ln

π

2
− 1

6

)}
+ . . . .2 (3)

In 1923, Watson [83] considered more general sums

S(r)
n ≡

n−1∑
l=1

cscr
πl

n
, n, r ∈ N \ {1} , (4)

extended the result of Hargreaves by finding the complete asymptotics of S
(3)
n for

large n, proved that

n−1∑
l=1

cscr
πl

n
∼ 2nrζ(r)

πr
, n, r ∈ N \ {1} , n → ∞ , (5)

and noted that for an even r the above sum should also have a closed-form (note

also the the latter formula is not applicable in the case r = 1, which once again

indicates that the sum S
(1)
n = Sn represents quite a special case).3 Interestingly,

the existence of the closed-form expressions for such sums was noted by Euler over

170 years before Watson. In particular, the formula

n−1∑
l=0

csc2
(
φ+

πl

n

)
= n2 csc2 nφ , n ∈ N , φ ̸= π(k − l/n) ,

where l = 0, 1, . . . , n− 1 and k ∈ Z, may be credited to Euler; see [19, Section 1.1,

pp. 5–6]. Making φ → 0, we immediately get

n−1∑
l=1

csc2
πl

n
= lim

φ→0

{
n2 csc2 nφ− csc2 φ

}
=

n2 − 1

3
, n ∈ N , (6)

2Hargreaves did not study the behavior of the remaining terms, but numerical simulations
suggest that the rest in Hargreaves’ formula (3) should be o(1).

3Note that there are two misprints on p. 580 of [83] in the unnumbered formulas defining

S
(2r+1)
n and S

(2r)
n : both sums should start with m = 1 instead of m = 0.
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which naturally agrees with Watson’s asymptotics (5).4 For higher even powers

r Euler did not explicitly gave closed-form expressions, but indicated a way for

obtaining them.5 It may be also noted that Watson’s results on S
(r)
n were indepen-

dently rediscovered several times, including rediscoveries of particular cases of (5).

For instance, 40 years later Gardner, Fisher and Carlitz obtained Watson’s result

(5), but only for even r [49, 46, 23, 24]. Generalizations similar to (4) also appeared

in works of Berndt, Alzer, Williams, Apostol, Chu, Marini and of some others; see,

for example, [23], [78, p. 267], [48], and the references given therein. A wide class

of sums generalizing Sn,

n−1∑
l=1

cos
2πνl

n
· csc2q πl

n
, ν = 0, 1, . . . , n− 1 , q ∈ N , (7)

was considered and used in some applications by Dowker [37], [38, p. 772, Equation

14], who, among other things, found a closed-form expression for it in terms of

the Bernoulli polynomials of higher order B
(s)
n (x) [39, Equations 4–7], and later, in

terms of the generalized Bernoulli polynomials [40, Equations 1–2]; see Section 1.2

hereafter. Sum (7) is also sometimes reffered to as Dowker’s sum [29, Equation

1.1], [58, Equation 1.5], [48, Equation 4.47]. Somewhat similar generalizations were

also considered by Chu and by some other authors; see, for example, [23] and the

references therein. There exist, of course, many other generalizations of Watson’s

trigonometric sum, but it is worth noting that sums and series with secants and

cosecants are often very difficult to study, even asymptotically. For instance, Chu

[23, p. 137], studying sums similar to (7), remarks that “However, the resulting

expressions will not be reproduced due to their complexity”. Furthermore, one

can recall that we still do not know wherever the Flint Hills series
∑

l−3 csc2 l

converges or not [72, pp. 57–59 and 265–268], [2], [85].

The aim of this paper is to investigate another generalization of Watson’s sum

(1), namely the trigonometric sum

Cn(ν) ≡
n−1∑
l=1

cos
2πνl

n
· csc πl

n
, ν = 0, 1, 2, . . . , n− 1 , (8)

and its particular case

Cn ≡
n−1∑
l=1

(−1)
l+1

csc
πl

n
, (9)

which may be obtained from Cn(ν) by setting ν = 1
2n when n is even. If n is odd,

then by symmetry Cn = 0. Note that the particular case ν = 0 is uninteresting for

4As far as we know, formula (6) has not been given by Euler explicitly in his works, albeit it is
a particular case of his results, so that sometimes it may be attributed to other mathematicians;
see, for example, footnote 9 in [19], or Remark 2 in [3] and the references therein.

5The reader interested in such kinds of expressions may find them, for example, in [22, Chap-
ter 14], [74, Volume 1, Section 4.4.6], [75], [48].
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us, because C(n, 0) = Sn, the latter sum being already mentioned here and being

extensively studied in a series of previous papers. Thus, everywhere below, except

if stated otherwise, we suppose that ν is not congruent to 0 modulo n. We also

remark that a similar sum

n−1∑
l=1

sin
2πνl

n
· csc πl

n
, ν ∈ Z ,

equals 0 by virtue of symmetry. It is also worth noting that formally the sum Cn(ν)

is Dowker’s sum (7) of order q = 1
2 . Besides, it may also be interesting to notice

that formally, the sum Cn(ν) is also, up to one term and normalizing coefficients,

the discrete cosine transform of the sequence of cosecants{
csc

π

n
, csc

2πl

n
, csc

3πl

n
, . . . , csc

(n− 1)πl

n

}
,

and can, therefore, be regarded as the principal value of this transform.6 Furthe-

more, since the similar sum of sines vanishes identically, Cn(ν) also gives, up to

a coefficient, the principal value of the discrete Fourier transform and that of the

discrete Hartley transform. The sums Cn(ν) and Cn are not only interesting from

a theoretical viewpoint, but also occur in applications. For example, the former

appears in an important number-theoretic problem related to the trigonometric

Pólya–Vinogradov sum f(n, k) whose properties still remain little studied.7 In fact,

summing the geometric progression and then using the Fourier series expansion for

|sinx|, we see at once that

f(n, k) ≡
n−1∑
l=1

∣∣∣∣∣
m+k−1∑
r=m

exp

(
2πilr

n

)∣∣∣∣∣ =
n−1∑
l=1

∣∣ sin(πlk/n)∣∣
sin (πl/n)

=
2Sn

π
− 4

π

∞∑
r=1

Cn(rk)

4r2 − 1
,

where n ∈ N\{1}, m ∈ N, and k is a discrete parameter running through a complete

residue system modulo n.

In the present paper, we provide several series and integral representations for

Cn(ν) and Cn, establish their basic properties, obtain their asymptotic expansions

(of two different kinds), and derive very accurate upper and lower bounds for them.

We also obtain two relatively simple approximate formulas containing only a few

terms, which are both quite accurate and can be particularly useful in applications.

Much as in our previous research [19], we find that these sums are closely connected

with the digamma function and the square of the Bernoulli numbers, which is quite

unusual. Finally, we show that there exist summation relations between Cn(ν), the

6The principal value of a sum is defined according to [19, Section 1.2].
7For further reading on the trigonometric sum of Pólya and Vinogradov, see [81, pp. 56 and

173–174], [7, pp. 173–174], [25], [71], [60], [26], [5], [73].
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cosecant and its logarithm, as well as the gamma and digamma functions, namely

n−1∑
ν=1

Ψ
(ν
n

)
csc

πν

n
= − (γ + ln 2n)Sn −

n−1∑
ν=1

Cn(ν) ln csc
πν

n
,

n−1∑
ν=1

Ψ
(ν
n

)
csc

πν

n
= − (γ + ln 2πn)Sn − 2

n−1∑
ν=1

ln Γ
(ν
n

)
Cn(ν) , (10)

n−1∑
ν=1

Ψ
(ν
n

)
Cn(ν) = (γ + n ln 2)Sn − n ln

n−1∏
ν=1

(
csc

πν

n

)csc πν
n

. (11)

These relations complete the advanced summation formulas for the digamma func-

tion, which we obtained earlier in [17, Appendix B, Equations (B.6)–(B.11)] and

in [19, Equations (12)–(15)]. The two latter formulas are particularly beautiful.

Equation (10) relates the values of the digamma function, evaluated at points uni-

formly distributed over the unit interval, to those of the logarithm of the gamma

function evaluated at the same rational points. Formula (11) computes the product

of a sequence of the form aal

l , where each al equals the cosecant of a rational part

of π.

1.2. Notation and Conventions

By definition, the set of natural numbers N does not include zero. The symbol

≡ means “is defined as” and should not be confused with the conguence symbol

from modular arithmetic. Different special numbers are denoted as follows: γ ≡
limn→∞

(
Hn−lnn

)
= 0.5772156649 . . . is the Euler constant, Hn ≡ 1+1/2+. . .+1/n

stands for the nth harmonic number, and Bn denotes the nth Bernoulli number. In

particular B0 = +1, B1 = −1/2, B2 = +1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = +1/42,

B7 = 0, B8 = −1/30, B9 = 0, B10 = +5/66, B11 = 0, B12 = −691/2730 , . . . .8 The

Bernoulli numbers are the particular values of the Bernoulli polynomials, which

are denoted by Bn(x). These polynomials are defined either implicitly via their

generating function

z exz

ez − 1
=

∞∑
n=0

Bn(x)

n!
zn , |z| < 2π ,

or explicitly via the Bernoulli numbers and the binomial coefficients
(
n
k

)
Bn(x) = Bn +

n−1∑
k=0

(
n

k

)
xn−kBk .

8For further values and definitions, see [68, Chapter 2, Section 1], [61, Chapter 1, Section 1.1],
[1, Section 23], Note also that there exist slightly different definitions for the Bernoulli numbers;
see, for example, [53, p. 91], [63, pp. 32, 71], [83, 86], or [8, pp. 3–6].
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Both definitions imply that Bn = Bn(0). Furthermore, the Bn(x) are themselves the

particular case of the Bernoulli polynomials of higher orderB
(s)
n (x), namelyBn(x) =

B
(1)
n (x); see [61, Chapter 1, Section 1.2], [68, Chapters 2 and 6], [65, pp. 127–135],

[21, p. 323, Equation (1.4)], [67], [69], [1, Section 23], [9, Volume III, Section 19.7],

[31, Equation (4)], [18, p. 16, Equation (52)]. We also make use of numerous abbre-

viations for the functions and series. In particular, ⌊z⌋ denotes the integer part of z
and δk,l is the Kronecker delta of discrete variables k and l. Furthermore, tg z, ctg z,

ch z, and sh z stand for the tangent of z, the cotangent of z, the hyperbolic cosine

of z, and the hyperbolic sine of z, respectively. We also denote by Γ(s), Ψ(s), Ψn(s)

and ζ(s) the gamma (Γ) function, the digamma (or Ψ) function, the polygamma

function of order n and the Euler-Riemann zeta (ζ) function of argument s, re-

spectively. In order to be consistent with the previous notation of Watson [83, 84]

and of some other authors, we denote by Sn Watson’s trigonometric sum (1), and

by Cn(ν) and Cn the sums (8) and (9), respectively. Occasionally, we make use of

divergent series; summability, summations methods and their regularity are defined

according to Hardy’s monograph [55]. It is also supposed that the reader possesses,

up to a certain point, a working knowledge of the theory of asymptotic expansions

[27, 36, 43, 44, 45, 70]. The order symbols O, o and the asymptotic equivalence sym-

bol ∼ are defined according to Evgrafov’s and Erdélyi’s books [45, Chapter 1, Sec-

tion 4], [43, Chapter 1]. By the error between the quantity A and its approximated

value B, we mean A − B. Finally, all the figures in the paper were exported from

CAS Maple. The data used to trace the graphs were calculated with 50-digit “preci-

sion”, enabled with the help of the command Digits:=50. Some graphs and results

were also verified independently with the help of Matlab and CAS Mathematica.9

2. Basic Properties

First of all, we note that albeit ν can take only discrete values, if ν was a continuous

complex variable, then Cn(ν) would be analytic in the whole complex plane, except

for the case n → ∞. Furthermore, Cn(ν), defined in (8) only for ν = 0, 1, 2, . . . , n−
1 , can easily be extended to any integer ν by means of the formula

Cn(ν +mn) =

 Sn , ν = 0 , m ∈ Z ,

Cn(ν) , ν = 1, 2, . . . , n− 1 , m ∈ Z ,
(12)

9It should be noted that such a “precision” (50 digits) is not guaranteed at all by Maple.
For instance, by computing the approximation error for the graph in Figure 4 with 8-digit preci-
sion (which should, in principle, be largely sufficient to corectly trace a graph), we first obtained
completely erroneous values. Writing in Maple 12 evalf(ϵ(300,34),8), where ϵ(n, ν) is the ap-
proximation error, returned the value -0.3136e-4, while the correct value is close to -5e-011. In
other words, in some situations, Maple 12 fails to compute correctly even the order of magnitude
when using 8-digit precision.
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In addition, Cn(ν) also has the following basic properties:

Cn(ν) = Cn(n− ν) , C2n−1 = 0 , (13)

−C2n ⩽ C2n(ν) , Cn(ν) ⩽ Sn , 0 < C2n < S2n , (14)

Cn(ν + 1) = Cn(ν) − 2 ctg
(2ν + 1)π

2n
, (15)

Cn(ν + κ) = Cn(ν) − 2

κ∑
l=1

ctg
(2ν + 2l − 1)π

2n
, κ ∈ N , (16)

Cn(ν + κ) = Cn(κ) − 2

ν∑
l=1

ctg
(2κ+ 2l − 1)π

2n
, κ ∈ N , (17)

Cn(2ν) = Cn(ν) − 2

ν∑
l=1

ctg
(2ν + 2l − 1)π

2n
, (18)

Cn(ν)− Cn(κ) = − 2

ν∑
l=κ+1

ctg
(2l − 1)π

2n
, ν > κ , (19)

n−1∑
ν=1

Cn(ν) = −Sn ,

n−1∑
ν=1

C2
n(ν) =

n
(
n2 − 1

)
3

− S2
n , (20)

n−1∑
ν=1

Cn(ν) cos
2πνk

n
= n csc

πk

n
− Sn ,

n−1∑
ν=1

Cn(ν) sin
2πνk

n
= 0 , (21)

n−1∑
ν=1

Cn(ν) ctg
πν

n
= 0 ,

n−1∑
ν=1

ν Cn(ν) = − nSn

2
, (22)

n−1∑
ν=1

Cn(ν) ln sin
πν

n
= (γ + ln 2n)Sn +

n−1∑
r=1

Ψ
( r

n

)
csc

πr

n
, (23)

n−1∑
ν=1

Cn(ν) ln Γ
(ν
n

)
= − (γ + ln 2πn)Sn

2
− 1

2

n−1∑
ν=1

Ψ
(ν
n

)
csc

πν

n
, (24)

n−1∑
ν=1

Cn(ν)Ψ
(ν
n

)
= (γ + n ln 2)Sn − n

n−1∑
ν=1

csc
πν

n
· ln csc πν

n
, (25)
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k = 1, 2, . . . , n−1 , which can be obtained without much difficulty from the definition

of Cn(ν). For instance, the recurrence relationship (15) is obtained as follows:

Cn(ν + 1) =

n−1∑
l=1

cos

(
2πνl

n
+

2πl

n

)
csc

πl

n

=

n−1∑
l=1

cos
2πνl

n
· csc πl

n
· cos 2πl

n
−

n−1∑
l=1

sin
2πνl

n
· csc πl

n
· sin 2πl

n

=

n−1∑
l=1

(
1− 2 sin2

πl

n

)
cos

2πνl

n
· csc πl

n
−

n−1∑
l=1

sin
2πνl

n
· csc πl

n
· sin 2πl

n

=

n−1∑
l=1

(
1− 2 sin2

πl

n

)
cos

2πνl

n
· csc πl

n
− 2

n−1∑
l=1

sin
2πνl

n
· cos πl

n

= Cn(ν) − 2

n−1∑
l=1

sin
(2ν + 1)πl

n
= Cn(ν) − 2 ctg

(2ν + 1)π

2n
, (26)

where at the final step we accounted for the well-known result

n−1∑
l=1

sin
πrl

n
=

{
ctg

πr

2n
, r = 1, 3, 5, . . .

0 , r = 2, 4, 6, . . . .
(27)

Repeatedly using (15) for Cn(ν+2), Cn(ν+3) and so on, we obtain (16). Since the

sum is commutative, we also have (17). The duplication formula (18) is obtained

from (16) by setting κ = ν. Identities (20)–(25) follow from various summation and

orthogonality properties of the cosine. For instance, the second of properties (20)

is obtained by the orthogonality formula

n−1∑
ν=0

cos
2πνk

n
· cos 2πνl

n
=

n

2

{
δk,l + δk,n−l

}
,

where both discrete variables k and l run from 1 to n− 1, as well as with the help

of (6). The summation formulas involving the gamma and the digamma functions

are obtained as follows. Gauss’ digamma theorem states that

Ψ

(
l

n

)
= −γ − ln 2n− π

2
ctg

πl

n
+

n−1∑
ν=1

cos
2πνl

n
· ln sin πν

n
, (28)
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Figure 1: The sum Cn(ν) as a function of n, where n ∈ [2, 300], for two different
values of argument: ν = 16 (solid line) and ν = 73 (dash-dotted line).

where l = 1, 2, . . . , n− 1, n = 2, 3, 4, . . . ; see [17, Equations (B.4b)] or [9, Volume I,

Section 1.7.3, Equation (29)]. Therefore,

n−1∑
ν=1

Cn(ν) ln sin
πν

n
=

n−1∑
l=1

csc
πl

n

n−1∑
ν=1

cos
2πνl

n
· ln sin πν

n

=

n−1∑
l=1

{
Ψ

(
l

n

)
+ γ + ln 2n+

π

2
ctg

πl

n

}
csc

πl

n

= (γ + ln 2n)Sn +

n−1∑
l=1

Ψ

(
l

n

)
csc

πl

n
+

π

2

n−1∑
l=1

cos
πl

n
csc2

πl

n
.

Remarking that the last sum equals 0 by virtue of symmetry, we arrive at (23).

Formula (24) is derived analogously by using Malmsten’s variant of Gauss’ digamma

theorem [17, Equations (B.4c)] instead of (28). Finally, identity (25) follows from

(22) and Gauss’ digamma theorem (28). Note, by the way, that many properties

are related to Watson’s trigonometric sum.

We conclude this section with two graphs of Cn(ν), depicted in Figures 1 and 2.

The former figure displays the graph of Cn(ν) as a function of n for two values

of ν.10 It is quite remarkable to observe, see Figure 1, that when n < ν, as n

approaches the values having common divisors with ν, the sums Cn(ν) reach a local

maximum. It can also be clearly observed, see Figure 2, that Cn(ν) reaches the

minimum when ν = 1
2n = 150, see property (14) and remark that −C300 ≈ −132,

and the maximum at the endpoints, at which C300(ν) becomes equal to S300 ≈ 1113

10We deliberately take values of ν, which lie outside the interval defined earlier, in order to
observe the overall behavior of Cn(ν).
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(we do not show them on the graph, since they are too high). The explanation of

these interesting phenomena is given in Section 4 and follows from Theorem 2. We

also clearly observe that Cn(ν) verifies the first property from (13) and can take

both positive and negative values. Furthermore, it can be seen that the minimum

of |Cn(ν)| occurs at ν = 50 = 1
6n and ν = 250 = 5

6n (empirical studies show that at

these points Cn(ν) is always very small in absolute value, never equal to zero, but

tends to zero as n → ∞, n being a multiple of 6; see also Corollary 4 in Section 6).

3. Integral Representation

Below, we derive an important integral representation for the sum Cn(ν), which is

useful to establish some further properties.

Theorem 1 (Integral Representations for Cn(ν)). The sum Cn(ν), as defined in

(8), can be represented via the following integral, containing the discrete Poisson

kernel:

n−1∑
l=1

cos
2πνl

n
·csc πl

n
=

2n

π

1∫
0

(
1 + xn

)
cos

2πν

n
− xn−1 − x

1 + xn
· dx

x2 − 2x cos
2πν

n
+ 1

.

This integral can also be written in several alternative forms, for example,

n−1∑
l=1

cos
2πνl

n
· csc πl

n
=

(
n− 2ν

)
ctg

2πν

n
− n

π

∞∫
0

ch
[
x
(n
2
− 1

)]
ch

xn

2

(
chx− cos

2πν

n

) dx .

Proof. Let x and φ be real variables such that xeiφ ̸= 1. On summing the geometric

progression

n−1∑
l=1

xleiφl =

n−1∑
l=1

(
xeiφ

)l
=

xneiφn − xeiφ

xeiφ − 1
, n = 2, 3, 4, . . .

and then on separating the real and the imaginary parts, we obtain

n−1∑
l=1

xl cosφl =
xn+1 cosφ(n− 1)− xn cosφn+ x cosφ− x2

x2 − 2x cosφ+ 1
(29)
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Figure 2: The sum C300(ν) as a function of ν, where ν ∈ [0, 300].

and
n−1∑
l=1

xl sinφl =
xn+1 sinφ(n− 1)− xn sinφn+ x sinφ

x2 − 2x cosφ+ 1
, (30)

respectively. Now consider the following well-known result due to Euler11

∞∫
0

xp−1

1 + x
dx = π csc pπ , 0 < Re p < 1 ,

and let p = l/n , where n ∈ N \ {1} and 0 < l < n. Multiplying both sides by

cosφl , where φ = 2πν/n ≡ θ , and then summing the result from l = 1 to l = n−1,

we have, by virtue of (29),

n−1∑
l=1

cos θl · csc πl

n
=

1

π

∞∫
0

1

x(1 + x)

n−1∑
l=1

x
l
n cos θl dx

=
1

π

∞∫
0

x
1
n+1 cos θ − x+ x

1
n cos θ − x

2
n

x
2
n − 2x

1
n cos θ + 1

· dx

x(1 + x)

=
n

π

∞∫
0

yn cos θ − yn−1 + cos θ − y(
1 + yn

)(
y2 − 2y cos θ + 1

) dy

=
2n

π

1∫
0

(
1 + yn

)
cos θ − yn−1 − y(

1 + yn
)(
y2 − 2y cos θ + 1

) dy , (31)

11See, for example, [52, no. 3.222-2], [41, no. 856.02], [66, p. 170, no. 5.3.4.15, and p. 172,
no. 5.3.4.20-1], [82, p. 125, no. 878].
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where we made a change of variable y = x
1
n and then split the interval of integration

into two parts [0, 1] and [1,∞), the integral over [1,∞) being equal to that over

[0, 1]. We, thus, have arrived at the first result of the theorem.

Making once again a change of variable y = e−t in the last integral in (31), we

get

Cn(ν) =
2n

π

1∫
0

(
1 + yn

)
cos θ − yn−1 − y(

1 + yn
)(
y2 − 2y cos θ + 1

) dy

=
n

π

∞∫
0

ch 1
2 tn · cos θ − ch

[
t
(
1
2n− 1

)](
ch t− cos θ

)
ch 1

2 tn
dt .

The final step, of accounting for the elementary integral12

∞∫
0

dt

ch t− cosφ
=


π − φ

sinφ
, 0 < φ < 2π , φ ̸= π ,

1 , φ = π ,

evaluated at φ = θ, yields the second result of the theorem. Note that both results

of the theorem hold for integer ν only, although the above method can be extended

to the continuous values of ν as well, in which case the resulting expression is more

complicated.13

4. Series Representations

In this section, we obtain several series representations for Cn(ν). We begin with

four alternative finite series representations.

Theorem 2 (Finite Series Representations for Cn(ν)). The finite sum Cn(ν) and

Watson’s trigonometric sum Sn are directly related to each other by means of these

four non-exhaustive formulas:

n−1∑
l=1

cos
2πνl

n
· csc πl

n
= Sn − 2

ν∑
l=1

ctg
(2l − 1)π

2n
,

n−1∑
l=1

cos
2πνl

n
· csc πl

n
= Sn − 2

n−1∑
l=1

sin2
πνl

n
· csc πl

n
,

n−1∑
l=1

cos
2πνl

n
· csc πl

n
= −Sn + 2

n−1∑
l=1

cos2
πνl

n
· csc πl

n
,

12See, for example, [52, no. 2.444-2] or [41, no. 859.163].
13The assumption of discrete ν enables us to simplify our calculations in the second line of (31).
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n−1∑
l=1

cos
2πνl

n
· csc πl

n
= Sn − ctg

π

2n
+ ctg

π (2ν + 1)

2n

−2

n−1∑
l=1

ctg
πl

n
· sin πlν

n
· sin πl (ν + 1)

n
.

Proof. The first formula is deduced from property (16). Setting ν = 0, using (12)

and then writing ν instead of κ, yields this formula. The second and third equalities

follow from the elementary trigonometric identity cos 2α = 2 cos2 α−1 = 1−2 sin2 α.

Finally, the fourth equality is obtained from the first one as follows. In view of (27),

the cotangent sum can be written in the form

ν∑
l=1

ctg
(2l − 1)π

2n
=

n−1∑
k=1

ν∑
l=1

sin

(
2πkl

n
− πk

n

)

=

n−1∑
k=1

{[
−
cos

(
2πkν
n + πk

n

)
2 sin πk

n

+
1

2
ctg

πk

n

]
× cos

πk

n

−

[
sin

(
2πkν
n + πk

n

)
2 sin πk

n

− 1

2

]
× sin

πk

n

}
, (32)

by virtue of (29) and (30) evaluated at x = 1 and φ = 2πk/n. Then, employing

twice (27), we obtain

n−1∑
k=1

sin
πk

n
= ctg

π

2n
and

n−1∑
k=1

sin
πk (2ν + 1)

n
= ctg

(2ν + 1)π

2n
.

Inserting latter formulas into (32) yields, after some algebra, the fourth formula of

the theorem.

The last three formulas obtained in the preceding theorem are, in some sense,

similar. As to the first formula Cn(ν) = Sn − 2
ν∑

l=1

ctg (2l−1)π
2n , it is clearly of

different type and deserves to be briefly discussed. First of all, it immediately

implies that Cn(ν) cannot be greater than Sn and lesser than −Cn, properties

that we already gave in Section 2. They follow from the fact that
∑

ctg (2l−1)π
2n

increases while ν remains below 1
2n, decreases when ν > 1

2n (when l > 1
2n, the

lth term sums with the (n − l)th term, which has the same magnitude and the

opposite sign, leading thus to the overall decrease of
∑

ctg (2l−1)π
2n ), and vanishes

as ν reaches n; see, for example, Figure 2. It also explains why as long as n < ν,

the sum Cn(ν) reaches local maxima as n approaches common divisors with ν (see

Figure 1). This is due to the sum of cotangents, which not only vanishes at n = ν,
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but as long as n < ν, is also relatively small whenever gcd(n, ν) > 1. Furthermore,

as noted before, Sn is very well investigated; the study of Cn(ν) can, therefore,

be reduced to that of
∑

ctg (2l−1)π
2n . Note, however, that the investigation of the

cotangent sums often faces considerable difficulties.14 Furthermore, some of such

sums even appear to be directly associated to the study of the Riemann hypothesis

[10, 15, 16, 20, 28, 30, 33, 34, 35, 42, 47, 50, 62, 64, 76, 78].

We now obtain an infinite series representation for the function Cn(ν), which is

useful for the derivation of the asymptotic expansion of Cn(ν) at large n. In order

to derive it, we first need to prove the following Lemma.

Lemma 1. If Re(α + b − β) > 0 , then the following improper integral converges

and can be evaluated via a combination of four digamma functions:

∞∫
0

e−αx chβx

ch bx
dx =

1

4b

{
Ψ

(
3

4
+

α+ β

4b

)
−Ψ

(
1

4
+

α− β

4b

)

+Ψ

(
3

4
+

α− β

4b

)
−Ψ

(
1

4
+

α+ β

4b

)}
.

Proof. Consider the integral

∞∫
0

e−αx chβx

ch bx
dx .

Multiplying the numerator and the denominator of the integrand by 2 sh bx yields

∞∫
0

e−αx chβx

ch bx
dx = 2

∞∫
0

e−αx sh bx chβx

2 ch bx sh bx
dx

= 2

∞∫
0

e−αx sh[x(b+ β)] + sh[x(b− β)]

sh 2bx
dx .

Using the well-known formula15

∞∫
0

e−αx shµx

shmx
dx =

1

2m

{
Ψ

(
1

2
+

α+ µ

2m

)
−Ψ

(
1

2
+

α− µ

2m

)}
,

twice, which holds for Re(α+m− µ) > 0 with m = 2b and µ = b± β, respectively,

we immediately arrive at the required result.

14Despite the fact that they have been regularly studied at least since Euler’s time; see, for
example, [19, Sections 1.1 and 4].

15See [52, no. 3.541-2], [9, Volume I, Section 1.7.2, Equations (14)–(15)].
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Theorem 3 (Infinite Series Representations for Cn(ν)). The finite sum Cn(ν),

defined by (8), admits the series representation

n−1∑
l=1

cos
2πνl

n
· csc πl

n
=

2n

π
ln
(
2 sin

πν

n

)
− 2

π

{
Ψ

(
2

n

)
−Ψ

(
1

n

)}
− 2

π
csc

2πν

n

×
∞∑
l=2

{
Ψ

(
l − 1

2n

)
−Ψ

(
l + 1

2n

)
−Ψ

(
l − 1

n

)
+Ψ

(
l + 1

n

)}
sin

2πνl

n
, (33)

where the last infinite series converges at the same rate as
∑

l−2 sin(2πνl/n) .

Proof. Consider the second formula of Theorem 1 and let θ denote 2πν/n for the

purpose of brevity. Expanding (chx− cos θ)−1 into the uniformly convergent series

1

chx− cos θ
=

2

sin θ

∞∑
l=1

e−xl sin θl , Rex > 0 ,

and using Lemma 1, we see that

Cn(ν) =
(
n− 2ν

)
ctg θ − 2n

π sin θ

∞∑
l=1

sin θl

∞∫
0

e−xl ch
[
x
(
1
2n− 1

)]
ch 1

2xn
dx

=
(
n− 2ν

)
ctg θ − 1

π sin θ

∞∑
l=1

sin θl

{
Ψ

(
1 +

l − 1

2n

)
−Ψ

(
l + 1

2n

)

+Ψ

(
1

2
+

l + 1

2n

)
− Ψ

(
1

2
+

l − 1

2n

)}

=
(
n− 2ν

)
ctg θ − 1

π

{
2 ln 2 + Ψ

(
1

2
+

1

n

)
−Ψ

(
1

n

)}

− 1

π sin θ

∞∑
l=2

sin θl

{
2n

l − 1
+ Ψ

(
l − 1

2n

)
−Ψ

(
l + 1

2n

)

+Ψ

(
1

2
+

l + 1

2n

)
−Ψ

(
1

2
+

l − 1

2n

)}
. (34)

Using two well-known Fourier series in order to evaluate

∞∑
l=2

sin θl

l − 1
= cos θ

∞∑
l=1

sin θl

l
+ sin θ

∞∑
l=1

cos θl

l

=
π − θ

2
cos θ − sin θ · ln

(
2 sin

θ

2

)
, (35)
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and employing thrice the duplication formula for the digamma function

Ψ

(
1

2
+

1

n

)
−Ψ

(
1

n

)
= 2Ψ

(
2

n

)
− 2Ψ

(
1

n

)
− 2 ln 2 ,

Ψ

(
l − 1

2n

)
−Ψ

(
1

2
+

l − 1

2n

)
= 2Ψ

(
l − 1

2n

)
− 2Ψ

(
l − 1

n

)
+ 2 ln 2 ,

Ψ

(
1

2
+

l + 1

2n

)
−Ψ

(
l + 1

2n

)
= −2Ψ

(
l + 1

2n

)
+ 2Ψ

(
l + 1

n

)
− 2 ln 2 ,

the last expression in (34) immediately reduces to (33).

Finally, in order to study the behavior of the general term of series (33) at large

index l, we use the Stirling formula

Ψ(x) = lnx − 1

2x
− 1

2

N−1∑
r=1

B2r

r x2r
− λB2N

2Nx2N
, x > 0 ,

where, as usual, 0 < λ < 1 and N = 2, 3, 4, . . . , N < ∞. For a sufficiently large l,

we, therefore, have:

Ψ

(
l − 1

2n

)
−Ψ

(
l + 1

2n

)
−Ψ

(
l − 1

n

)
+Ψ

(
l + 1

n

)
∼ − n

l2
.

Thus, series (33) converges slightly better than Euler’s series
∑

l−2.

5. Preliminary Asymptotic Studies for Large n

In this part we study the asymptotic behavior of Cn(ν) at large n. The results are

mostly based on the series representations obtained earlier in Theorem 3.

Theorem 4 (Almost Asymptotic Expansion of Cn(ν)). For any n = 2, 3, 4, . . . and

N = 2, 3, 4, . . . , N < ∞ , the sum Cn(ν) admits the expansion

n−1∑
l=1

cos
2πνl

n
· csc πl

n
= − 2n

π
ln
(
2 sin

πν

n

)
+ 2

N−1∑
r=1

(
1− 21−2r

)
π2r−1B2r H2r−1(ν/n)

(2r)!n2r−1

+2λ

(
1− 21−2N

)
π2N−1B2N H2N−1(ν/n)

(2N)!n2N−1
, (36)
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0 < λ < 1, where we denoted for the sake of brevity

H2r−1

(ν
n

)
≡ d2r−1

dφ2r−1
ctgφ

∣∣∣∣
φ=πν/n

= − 1

π2r

{
Ψ2r−1

(ν
n

)
+Ψ2r−1

(
1− ν

n

)}

= (−1)r
(2n)2r−1

r

n∑
s=1

B2r

( s

n

)
cos

2πs ν

n
,

(37)

here the Br(x) are the Bernoulli polynomials and all H2r−1(ν/n) are negative.

We remark that the above theorem provides the expansion of Cn(ν) via the

derivatives of the cotangent. In fact, not only does the tail contain such derivatives,

but also the dominant term which is, up to some coeffcients, the antiderivative of

the cotangent (the only term which does not contain the derivatives of the cotangent

is − 2n ln 2
π ). The above theorem also leads to several important corollaries and has

useful applications. In particular, under some conditions, one can readily deduce

from it several asymptotic formulas for Cn(ν) and Cn at large n.

Corollary 1 (Asymptotic Representation of Cn(ν) at Large n). At large n the

following asymptotic representation holds for the sum Cn(ν):

n−1∑
l=1

cos
2πνl

n
· csc πl

n
∼ − 2n

π
ln
(
2 sin

πν

n

)
,

where ν ̸= 1
6n and ν ̸= 5

6n.

Corollary 2 (Complete Asymptotics of Cn at Large n). Let N = 2, 3, 4, . . . ,

N < ∞ . Then, for n = 2, 4, 6, . . . , the sum Cn, admits the following expansion:

n−1∑
l=1

(−1)l+1 csc
πl

n
=

2n ln 2

π
+ 2

N−1∑
r=1

(−1)r+1
(
22r−1 − 1

)(
22r − 1

)
π2r−1B2

2r

r (2r)!n2r−1

+O
(
n1−2N

)
,

which, as n → ∞, becomes its complete (or full) asymptotics. Writing down the

first few terms, we have

n−1∑
l=1

(−1)l+1 csc
πl

n
=

2n ln 2

π
+

π

12n
− 7π3

1440n3
+

31π5

30 240n5
− 2159π7

4 838 400n7
+ . . . .

If n is odd, then
n−1∑
l=1

(−1)l+1 csc
πl

n
= 0 .



INTEGERS: 25 (2025) 19

Remark 1. The above asymptotic expansion can be compared to that of

n−1∑
l=1

csc
πl

n
=

2n

π

(
ln

2n

π
+ γ

)
− 2

π

N−1∑
r=1

(−1)r+1
(
22r−1 − 1

)
π2rB2

2r

r (2r)!n2r−1
+O

(
n1−2N

)
,

which is probably due to Watson, see [19, Theorems 6a,b], and which also contains

the square of the Bernoulli numbers. It is also interesting that unlike
∑

csc(πl/n)

the asymptotic expansion of
∑

(−1)l+1 csc(πl/n) does not contain Euler’s constant.

Proof. Consider (29) and (30) at x = 1:

n−1∑
l=1

cosφl =
sin

(
nφ− 1

2φ
)

2 sin 1
2φ

− 1

2
,

n−1∑
l=1

sinφl = −
cos

(
nφ− 1

2φ
)

2 sin 1
2φ

+
1

2
ctg

φ

2
.

As n tends to infinity, both series diverge, but if φ is not congruent to 0 (mod 2π),

then they still remain Cesàro summable:

∞∑
l=1

cosφl = − 1

2
(C, 1) ,

∞∑
l=1

sinφl =
1

2
ctg

φ

2
(C, 1) , (38)

since

N∑
n=1

sin
(
nφ− 1

2φ
)
= O(1) and

N∑
n=1

cos
(
nφ− 1

2φ
)
= O(1) ,

as N → ∞, and hence

lim
N→∞

{
1

N

N∑
n=1

sin
(
nφ− 1

2φ
)

2 sin 1
2φ

}
= 0

and similarly for the cosine, respectively. Moreover, formulas (38) can also be

obtained by employing other regular summation methods, such as, for example,

Euler summations (E) and (E, 1), Abel summation (A), Borel summation methods

(B) and (B’), etc.16

Let us now examine the series expansion for the digamma function given in [9,

Volume I, Section 1.17, Equation (5)]. This series possesses the property that the

16Readers interested in a deeper study of the divergent series are kindly invited to refer to
monograph [55]. Note that the use of divergent series for the derivation of asymptotic series is a
frequent practice [27, 36, 43, 44, 70].
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error, due to stopping at any term, is numerically less than the first term neglected.

This means that the same series can also be written in the form

Ψ(x) = − 1

x
− γ +

M−1∑
m=2

(−1)mxm−1ζ(m) + λ(−1)MxM−1ζ(M) , (39)

where 0 < λ < 1 , M = 3, 4, 5, . . . , and which has the advantage of holding for any

x > 0, while [9, Volume I, Section 1.17, Equation (5)] holds in the unit disc only.

Using this expansion, as well as (38) and their formal derivatives with respect to φ,

the second line of (33) becomes:

∞∑
l=2

{
Ψ

(
l − 1

2n

)
−Ψ

(
l + 1

2n

)
−Ψ

(
l − 1

n

)
+Ψ

(
l + 1

n

)}
sin θl

= −2n

∞∑
l=2

sin θl

l2 − 1
− sin θ ·

2N−2∑
m=2

(−1)m
(
1− 21−m

)
ζ(m)

× 2Cm−1(θ) + 2m−1

nm−1
+ RN (λ, n, θ) , (40)

where again for brevity we put θ ≡ 2πν/n, where

Cm−1(θ) =


0 , m = 2r − 1 , r ∈ N ,

(−1)
m
2 −1

2

(
ctg

φ

2

)(m−1)

φ=θ
, m = 2r , r ∈ N ,

(41)

and where RN (λ, n, θ) stands for the remainder. Proceeding with the first sum

similarly to (35), one can easily show that

∞∑
l=2

sin θl

l2 − 1
=

[
1

4
− ln

(
2 sin

θ

2

)]
sin θ . (42)

Furthermore,(
ctg

φ

2

)(2r−1)

φ=θ
=

1

22r−1
· d

2r−1 ctgφ

dφ2r−1

∣∣∣∣
φ= 1

2 θ

≡ H2r−1(ν/n)

22r−1
. (43)

Now, employing again (39), we see that a part of the last sum in (40) reduces to

2N−2∑
m=2

(−1)m
(
1− 21−m

)
ζ(m)n1−m2m−1
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=

2N−2∑
m=2

(−1)m
(
2m−1 − 1

)
ζ(m)n1−m

= Ψ

(
2

n

)
−Ψ

(
1

n

)
− n

2
+ λ

(
22N−2 − 1

)
ζ(2N − 1)n2−2N , (44)

0 < λ < 1. Substituting (43) into (41) and (42) into (40), as well as accounting for

(44), formula (33) from Theorem 3 becomes

Cn(ν) = − 2n

π
ln

(
2 sin

θ

2

)
+

2

π

N−1∑
r=1

(−1)r−1
(
1− 21−2r

)
ζ(2r)

(2n)2r−1
H2r−1(ν/n)

+ 2λ
(−1)N−1

(
1− 21−2N

)
ζ(2N)

π(2n)2N−1
H2N−1(ν/n) , (45)

where again 0 < λ < 1. Finally, using the famous result

ζ(2r) =
(−1)r+1(2π)2rB2r

2 (2r)!
, r ∈ N ,

established by Euler in the first half of the XVIIIth century, we immediately arrive

at the expansion of Theorem 4. The second representation of H2r−1(ν/n) in (37),

that via two polygamma functions, is obtained by differentiating the reflection for-

mula of the digamma function π ctgφ = Ψ(1 − φ/π) − Ψ(φ/π) with respect to φ

(2r − 1) times, and then by setting φ = θ/2 = πν/n. The third representation

of H2r−1(ν/n) directly follows from the relationship between the derivatives of the

cotangent at rational multiples of π and the Bernoulli polynomials; see, for example,

[31, p. 218].

Now, retaining only the dominant term in the asymptotic expansion from The-

orem 4, we obtain the formula given in Corollary 1. Note that it is valid neither

for ν = 1
6n, nor for ν = 5

6n, because at these points the argument of the logarithm

equals 1 independently of n. However, the definition of the asymptotic equivalence

does not imply the possibility of dividing by a quantity, which is identically equal

to 0.

Finally, setting ν = 1
2n, n is even, in the asymptotic expansion from Theorem 4

and remarking that

d2r−1

dφ2r−1
ctgφ

∣∣∣∣
φ= 1

2π

= (−1)r
22r−1

(
22r − 1

)
B2r

r
, r ∈ N , 17

as well as bearing in mind that Cn = 0 for odd n, we arrive at Corollary 2.

17See, for example, [31, Corollary 1].
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6. Bounds, Inequalities, Approximate Equalities, and Asymptotic Ex-
pansion

We already have bounds (14) obtained earlier; however, they are very rough and

for many problems may be too inaccurate. In Theorems 5–6 and in Corollary 3,

we provide both upper and lower bounds for Cn(ν) and Cn, respectively, which

are much more accurate. It may also be useful in some cases to have a suitable

approximation for Cn(ν). In Theorem 7, we give a simple approximation for Cn(ν),

which can be useful for applications. Besides, it is well known that one and the same

function may have asymptotic expansions involving different asymptotic sequences

[43, Chapter 1]; see also [27, 36, 44, 45, 70]. Theorems 8 and 9 give, in this sense,

alternative asymptotic expansions for Cn(ν), which in some situations, may be more

desirable than the expansion obtained in Theorem 4, and which may be used as a

very good approximation for Cn(ν) as well. Since Theorems 7–9 are closely related

to each other, their proofs are given together.

Theorem 5 (Bounds and Inequalities for Cn(ν)). For n = 2, 3, 4 . . . and 1 < ν < n,

the sums Cn(ν) are bounded from below and from above as follows:

− 2n

π
ln
(
2 sin

πν

n

)
+A(n, ν) <

n−1∑
l=1

cos
2πνl

n
·csc πl

n
< − 2n

π
ln
(
2 sin

πν

n

)
+B(n, ν),

where A(n, ν) ≡ − π

12n
csc2

πν

n
and

B(n, ν) ≡ − π

12n
csc2

πν

n
+

7π3

1440n3

{
1 + 2 cos2

πν

n

}
csc4

πν

n
.

Theorem 6 (Bounds and Inequalities for Cn). For n = 2, 4, 6, . . . , the values of

the alternating finite sum
∑

(−1)l+1 csc
(
πl/n

)
always lie in the interval

2n ln 2

π
+

π

12n
− 7π3

1440n3
<

n−1∑
l=1

(−1)l+1 csc
πl

n
<

2n ln 2

π
+

π

12n
.

For n = 3, 5, 7, . . . , this finite sum vanishes.

Corollary 3 (Simple Bounds and Inequalities for Cn). The finite trigonometric

sum
∑

(−1)l+1 csc
(
πl/n

)
obeys the following bounds:

2n ln 2

π
+

0.252

n
<

n−1∑
l=1

(−1)l+1 csc
πl

n
<

2n ln 2

π
+

0.262

n
, n = 4, 6, 8, . . . ,

which are slightly less accurate that those provided by Theorem 6.
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Proof. Differentiating m − 1 times [9, Volume I, Section 1.9, Equation (10)] with

respect to z, we get

Ψm(x) = (−1)m+1 m!

∞∑
l=0

1

(x+ l)m+1
= (−1)m+1 m! ζ(m+ 1, x) , m ∈ N .

Hence, Ψ2r−1(x) > 0 for x > 0. Therefore Ψ2r−1(x) + Ψ2r−1(1 − x) > 0 for

0 < x < 1. Considering now the definition of H2r−1(ν/n) given in Theorem 4, we

see at once that

H2r−1

(ν
n

)
< 0 ,

whence

sgn

[ (
1− 21−2r

)
π2r−1B2r

(2r)!n2r−1
H2r−1

(ν
n

)]
= (−1)r .

Thus, the series on the right-hand side of (36) possesses the usual property con-

cerning the magnitude and sign of the remainder. Setting N = 2 and N = 3 into

(36) and accounting for the sign yields both inequalities stated in Theorem 5. By

a similar line of reasoning, we deduce the result announced in Theorem 6. Finally,

simpler bounds given in Corollary 3 are obtained as follows. We can replace the

lower bound from Theorem 6 by a/n, with a = O(1), if for some n0,

a

n
<

π

12n
− 7π3

1440n3
, n > n0 .

Solving this quadratic inequality for n0 = 4, we obtain

a =
π

12
− 7π3

23 040
= 0.2523 . . . ,

that gives the lower bound. Accounting for the numerical value of π/12, we obtain

the upper bound. Note, lastly, that bounds obtained in Theorem 6 and in Corollary

3 are quite “sharp” in the sense that in both cases as n → ∞ lower and upper bounds

tend to the same value.

Theorem 7 (A Simple Approximation for Cn(ν)). A simple and relatively good

approximation for the sum Cn(ν) is given by the following expression:

n−1∑
l=1

cos
2πνl

n
· csc πl

n
≈ − 2n

π
ln
(
2 sin

πν

n

)
− π

12n
csc2

πν

n
+

7n

480πν4
.

The abve approximation is quite accurate, the right-hand side is asymptotically

equivalent to Cn(ν) at large n, but one should bear in mind that the approximation

error does not tend to zero as n → ∞.
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Theorem 8 (An Asymptotic Expansion and Accurate Approximation for Cn(ν)).

The sum Cn(ν), 1 < ν < n, admits the asymptotic expansion

n−1∑
l=1

cos
2πνl

n
· csc πl

n
= − 2n

π
ln
(
2 sin

πν

n

)
− π

12n
csc2

πν

n
+ nf(ν)

+
7π3

21 600n3
+ o

(
n−3

)
, n → ∞ ,

where

f (ν) = − 1

π

{
4H2ν − 2Hν − 2 ln ν − 4 ln 2− 2γ − 1

12ν2

}
.

The expansion provided by this theorem may also be used as a very accurate

approximation for Cn(ν), whose error rapidly tends to zero as n → ∞.

Theorem 9 (A Cosecant-Free Asymptotic Expansion of Cn(ν)). The sum Cn(ν),

1 < ν < n, admits the following cosecant-free asymptotic expansion

n−1∑
l=1

cos
2πνl

n
· csc πl

n
= − 2n

π
ln
(
2 sin

πν

n

)
+ ng(ν) − π

36n

−
(
120ν2 − 7

)
π3

21 600n3
+ o

(
n−3

)
, n → ∞ ,

where

g (ν) = − 1

π

{
4H2ν − 2Hν − 2 ln ν − 4 ln 2− 2γ

}
.

Similarly to the previous case, this expansion may also be used as an approxi-

mation for Cn(ν), whose error tends to zero as n → ∞.

Corollary 4. Let n be a multiple of 6. If ν = 1
6n or ν = 5

6n, then as n → ∞ the

sum Cn(ν) tends to zero:

lim
n→∞

n−1∑
l=1

cos
πl

3
· csc πl

n
= 0 .

Proof. From the inequalities established in the previous theorem, it follows that

Cn(ν) = − 2n

π
ln
(
2 sin

πν

n

)
− π

12n
csc2

πν

n

+
7λπ3

1440n3

{
1 + 2 cos2

πν

n

}
csc4

πν

n
, (46)

where 0 < λ < 1. Expanding the last term into the power series in n, n → ∞, we

have

7π3

1440n3

{
1 + 2 cos2

πν

n

}
csc4

πν

n
=

7n

480πν4
+

7π3

21 600n3
+O

(
n−5

)
,



INTEGERS: 25 (2025) 25

Figure 3: The difference between Cn(ν) and its approximation, provided by The-
orem 7, as a function of n for ν = 7 (dashed line), ν = 10 (solid line) and ν = 16
(dash-dotted line).

where the expression on the left is clearly positive. Substituting this result into

(46), we obtain

Cn(ν) ≈ − 2n

π
ln
(
2 sin

πν

n

)
− π

12n
csc2

πν

n
+ nf(ν) ,

where f (ν) is a bounded function

0 < f (ν) <
7

480πν4
.

Proceeding analogously with the term corresponding to r = 3 in (36), whose asymp-

totics is

∼ − 31

4032πν6
, n → ∞ ,

we see that at sufficiently large n and fixed ν, the function f(ν) obeys the inequalities

7

480πν4
− 31

4032πν6
< f (ν) <

7

480πν4
.

Numerically, such a correction from below (due to the term with r = 3) is almost

negligible (for example, for ν ⩾ 8 it is less than 1%). Hence, f(ν) is practically

equal to its upper bound, whence we get the approximation stated in Theorem 7.

Obviously, we can also take into account the contribution of higher terms in the

asymptotic expansion from Theorem 4. Remarking that for a sufficiently large n

d2r−1

dφ2r−1
ctgφ

∣∣∣∣
φ=πν

n

= −n2r(2r − 1)!

(πν)2r
+Kr +O

(
n−2

)
, r ∈ N , (47)
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Figure 4: The approximation error for C300(ν) as a function of ν, where ν ∈
[10, 270] (the approximation is given by Theorem 7). For the sake of comparison:
C300(10) ≈ +299, C300(20) = C300(280) ≈ +168, C300(50) = C300(250) ≈ −3 ×
10−3, C300(100) = C300(200) ≈ −105, C300(150) ≈ −132 (see Figure 2 for the
graph of C300(ν)).

where Kr is a constant term, depending neither on n nor on ν, we obtain

f(ν) = − 1

π

N−1∑
r=2

(
1− 21−2r

)
B2r

r ν2r
+ . . . . (48)

Recalling the Stirling formula for the harmonic numbers

Hn = lnn + γ +
1

2n
− 1

2

N−1∑
r=1

B2r

r n2r
− εB2N

2Nn2N
, 0 < ε < 1 ,

we see that (48) is the asymptotic expansion of the difference of two harmonic

numbers with some additional terms, namely

f(ν) = − 1

π

{
N−1∑
r=2

B2r

r ν2r
− 2

N−1∑
r=2

B2r

r (2ν)
2r

}
+ . . .

= − 1

π

{
4H2ν − 2Hν − 2 ln ν − 4 ln 2− 2γ − 1

12ν2

}
≈ 7

480πν4
.

Note that since 7
480πν4 is just an approximation for f(ν), the overall approximation

error, given by Theorem 7, linearly grows with n, but with a very small slope, which

roughly is inversely proportional to ν6. In contrast, the approximation error of the

alternative asymptotic expansion given by Theorem 8 does tend to 0 as n → ∞. In

fact, the latter asymptotic expansion does not contain terms O(1), nor O(n−1) nor

even O(n−2). As to the order n−3, this term is obtained from the constant term
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Figure 5: The difference between Cn(ν) and its approximation, provided by the
asymptotics from Theorem 8, as a function of n for ν = 7 (dashed line), ν = 10
(solid line), and ν = 16 (dash-dotted line).

in (47) K2 = −2/15, and from the corresponding contribution of the sum on the

right-hand side of (36). Note that this term does not depend on ν at all, and thus,

may be regarded as a small bias if we study Cn(ν) at large fixed n. Furthermore,

it can be reasonably expected that by virtue of (47), the remaining terms in the

asymptotics of Cn(ν) should be O
(
n−5

)
, which can readily be verified empirically.

Finally, in some cases, the presence of the square of the cosecant in the asymptotic

expansion of Cn(ν) may be undesirable. In such a situation, we may get rid of it

by expanding the cosecant term into power series

csc2
πν

n
=

n2

π2ν2
+

1

3
+

π2ν2

15n2
+

2π4ν4

189n4
+O

(
n−6

)
, n → ∞.

Inserting this expansion into Theorem 8 yields the cosecant-free expansion stated

in Theorem 9.

We conclude this Section with several graphs, showing how well the approximate

formula, as well as the alternative asymptotics, represent the sum Cn(ν). The dif-

ference between Cn(ν) and its approximation, provided by Theorem 7, is shown in

Figures 3 and 4. Figure 3 displays the approximation error as a function of n for

three different values of the argument ν. Note that the greater the argument ν, the

better the approximation (since the approximation error is proportional roughly

to ν−6). One should also bear in mind that C100(7) ≈ 53, C100(10) ≈ 31 and

C100(16) ≈ 2, so that in all these cases the approximation is rather accurate (and

it remains such at least for moderate values of n18). Thus, we see that the approx-

imation error is very small, and hence this approximation can be used for many

18For example, for n = 10 000 and ν = 7 the approximation error is about −2 × 10−4, while
C10 000(7) ≈ 34 541.



INTEGERS: 25 (2025) 28

Figure 6: The absolute difference between Cn(ν) and its approximation, offered
by the cosecant-free asymptotics from Theorem 9, as a function of n for ν = 7
(dashed line), ν = 10 (solid line), and ν = 16 (dash-dotted line).

versatile purposes and applications. At the same time, as expected, we observe

that it does not tend to zero as n increases; however, even in the worst case, that of

Cn(7), the approximation error is still very small even for large values of n (note that

ν6 = 76 = 117 649). Figure 4 shows the approximation error as a function of ν at

fixed n. Figure 5 displays the error between Cn(ν) and its alternative asymptotics,

offered by Theorem 8 under the same conditions as in Figure 3, i.e., for the same

three arguments ν and in the same interval of n. We see that the error is extremely

small and quickly tends to zero as n increases (compare this graph to Figure 3). In

other words, the asymptotics from Theorem 8 may also be used as a very accurate

approximation for Cn(ν), but the other side of the coin is the complexity of calcu-

lations, which may considerably grow in size or even become prohibitive. Lastly, as

to the less complex approximation for Cn(ν), provided by the cosecant-free asymp-

totics from Theorem 9, we see, Figure 6, that it is less accurate than that provided

by Theorem 8, but the error still tends, though not very quickly, to zero as n → ∞.

At the same time, it remains more accurate than the approximation provided by

Theorem 7.

Finally, as to the result given in Corollary 4, it is a simple consequence of Theo-

rem 8. Setting ν = 1
6n or ν = 5

6n, we see that the leading term in the asymptotics,

provided in Theorem 8, identically vanishes. The remaining terms are o(1), whence

we obtain the stated result. These two cases are the only ones in which the sum

Cn(ν) converges as n → ∞ (in our case, it converges trivially to zero, since there

are no constant terms in the asymptotic expansion of Cn(ν)).
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