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Abstract

By combining a couple of Fermat’s congruences, we consider a special type of con-
gruence that is satisfied by either primes or Carmichael numbers. After examining
some characteristic properties of this congruence, we apply it to study possible
conditions for twin primes and Sophie Germain primes.

1. Introduction

As is very familiar to everyone, Fermat’s little theorem states that if n is a prime

and a is an integer coprime to n, then it follows that

an−1 ≡ 1 (mod n). (1.1)

However, the reverse implication is not always true. In fact, a Carmichael number

n, which is composite and square-free, also satisfies (1.1) to every base a coprime

to n. Congruence (1.1) is usually called Fermat’s congruence. As is well-known,

the integers n ≥ 2 satisfying (1.1) to every base a coprime to n are either prime

numbers or Carmichael numbers. Hereafter, by quoting his words mentioned in

Ore [19], we will say that these numbers preserve the ‘Fermat property ’. Especially,

a composite number n that satisfies (1.1) for a specific integer a ≥ 2 is called a

Fermat pseudoprime to base a. Therefore, a Carmichael number n is a Fermat

pseudoprime to every base a coprime to n.

The following criterion is widely known and very useful to identify Carmichael

numbers, established by Korselt [13] in 1899.

Korselt’s Criterion. A composite n > 0 is a Carmichael number if and only if n

is square-free and p− 1 | n− 1 for every prime factor p of n.

A proof of this criterion is not so difficult (see, e.g., [10, p.134] and [8, p.414]).

DOI: 10.5281/zenodo.15091101



INTEGERS: 25 (2025) 2

It would be worth mentioning here that Borwein and Wong [7] discussed some

variations and generalizations of Giuga’s conjecture suggesting that n is a prime if

and only if the congruence ∑
0<a<n

an−1 ≡ −1 (mod n)

holds. As one of results, they showed that n ≥ 2 satisfies the congruence∑
0<a<n

gcd(a,n)=1

an−1 ≡ φ(n) (mod n) (1.2)

if and only if it follows that p − 1 | n − 1 for every prime factor p of n, where φ is

Euler’s totient function. So a square-free integer n ≥ 2 that satisfies (1.2) is either

a prime or a Carmichael number. We will not go into details, but the left-hand side

of (1.2) is closely related to Bernoulli numbers (see, e.g., [1]).

In their celebrated paper [5], Alford, Granville, and Pomerance proved that there

are infinitely many Carmichael numbers (see also Pomerance’s beautiful survey [20]

on this result). Subsequently, it was verified in Harman’s work [12] that there are

more than x1/3 Carmichael numbers for sufficiently large x. This result was recently

improved by Lichtman [15, Corollary 1.2] and it was shown that there are at least

x0.3389 Carmichael numbers for sufficiently large x. A small table of these numbers

up to 512461 can be found in the OEIS [18]: A002997.

Combining a couple of Fermat’s congruences for distinct integers n,m > 0 with

common base a, we now consider a special type of congruence such that

am−1 ≡ am−n − 1

m− n
· n+ am−n ≡ am−n − 1

m− n
·m+ 1 (mod nm). (1.3)

The next theorem describes how (1.3) is concerned with the Fermat property.

Theorem 1.1. The conditions for (1.3) to hold for every integer a coprime to nm

can be stated as follows:

(a) Under the assumption gcd(n,m) = 1, (1.3) holds if and only if both n and m

preserve the Fermat property.

(b) If (1.3) holds, then it follows that gcd(n,m) = 1.

(c) If (1.3) holds, then both n and m preserve the Fermat property.

In view of the above theorem, we can assert that (1.3) is a natural generalization

of Fermat’s congruence (1.1) to a composite modulus nm.

In Section 2, we first discuss some kinds of variations of (1.3) and subsequently

give a proof of Theorem 1.1 in an elementary way. In Section 3, by applying the

characteristic properties of (1.3) stated in the above theorem, we study possible

congruence conditions for twin primes and Sophie Germain primes.
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2. Proof of Theorem 1.1

Before giving a proof of Theorem 1.1, we would like to introduce some variations of

(1.3). At first, we see that multiplying the whole of (1.3) by an leads to

yan+m−1 ≡ am − an

m− n
· n+ am ≡ am − an

m− n
·m+ an (mod nm).

Next, we multiply the whole of (1.3) by an−1 and then use the obvious identity

a(m−1)+(n−1) = (am−1 − 1)(an−1 − 1) + (am−1 + an−1)− 1

in order to transform (1.3) into

(am−1 − 1)(an−1 − 1) ≡ am−1 − an−1

m− n
· n− (an−1 − 1)

≡ am−1 − an−1

m− n
·m− (am−1 − 1) (mod nm),

where the most left-hand side vanishes modulo nm if gcd(n,m) = 1. Further,

adding an−1 − 1 to each side gives

am−1(an−1 − 1) ≡ am−1 − an−1

m− n
· n (mod nm), (2.1)

which is much simpler than the above. Of course, there are several other variations

of (1.3) besides the above.

In addition, let us consider the congruence such that

an−1 − 1 ≡ am−1 − an−1

m− n
· n (mod nm), (2.2)

which is similar to, but slightly different from (2.1). It is clear that if gcd(n,m) = 1,

then (2.2) is actually equivalent to (2.1), and hence to (1.3). In the next section,

we will use (2.2) independently of (1.3) to derive certain congruence conditions for

twin primes and Sophie Germain primes.

Proof of Theorem 1.1. Since condition (c) is just an immediate consequence of (a)

and (b), we will give below only the proofs of (a) and (b).

(a): In the case when gcd(n,m) = 1, we may observe (1.3) for modulo m and for

modulo n independently, thereby (1.3) yields

am−1 ≡ am−n − 1

−n
· n+ am−n ≡ 1 (mod m)

and

am−1 ≡ am−n (mod n), i.e., an−1 ≡ 1 (mod n),
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which verify that both n and m preserve the Fermat property. By following the

opposite process, we can see that the reverse implication is also true.

(b): Next, assume that (1.3) holds for distinct integers n,m with m > n. We will

show that the assumption gcd(n,m) > 1 leads to a contradiction. Letting p be a

prime factor of gcd(n,m), now take an integer a such that a ≡ 1 + p (mod p2),

which is clearly coprime to p. Since p | m, we obtain from (1.3),

am−1 ≡ (1 + p)m−1 ≡
m−1∑
i=0

(
m− 1

i

)
pi ≡ 1 + (m− 1)p

≡ 1− p ≡ (1 + p)d − 1

d
·m+ 1 (mod p2),

(2.3)

where d := m− n > 0. Noting that d ≥ p ≥ 2 and
(
d
j

)
= d

j

(
d−1
j−1

)
for j ≥ 1, we get

(1 + p)d − 1

d
=

1

d

d∑
j=1

(
d

j

)
pj =

d∑
j=1

(
d− 1

j − 1

)
pj

j
≡ 0 (mod p),

which indicates that the fraction term on the last side of (2.3) vanishes modulo p2

because p | m. So (2.3) leads to 1 − p ≡ 1 (mod p2), but this is a contradiction.

Consequently, if (1.3) holds, then we have gcd(n,m) = 1, as desired.

It should be added that if (2.2) holds for every integer a coprime to nm, then

we can show that gcd(n,m) = 1 in much the same way as above. In fact, assuming

gcd(n,m) > 1, let p be any prime factor of gcd(n,m). As above, take a ≡ 1 + p

(mod p2) in (2.2). Since p | n and so (1 + p)n−1 ≡ 1 + (n− 1)p ≡ 1− p (mod p2),

we see that (2.2) provides

1− p ≡ (1 + p(m− 1))− (1 + p(n− 1))

m− n
· n ≡ pn ≡ 0 (mod p2),

which is, however, impossible. So we have gcd(n,m) = 1, which indicates that n

and m satisfying (2.2) preserve the Fermat property as is (1.3).

3. Application

In this section, by applying the characteristics of (1.3) stated in Theorem 1.1, we

derive possible congruence conditions for twin primes and Sophie Germain primes.

In what follows, let us denote by P and C the sets of primes and Carmichael

numbers, respectively. Thus, any element in P ∪C preserves the Fermat property,

as already noted in Section 1.
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3.1. Twin Primes

When both p and p + 2 are prime, they are called twin primes. It is not known

whether there are infinitely many twin primes (the so-called twin prime conjecture).

Although the sum of the reciprocals of all primes diverges to infinity, Viggo Brun

surprisingly proved in 1919 by the Eratosthenes-Legendre sieve method that the

series obtained by adding the reciprocals of twin primes converges to a finite value

known now as Brun’s constant B. That is to say,

B ≡
∑

p, p+2∈P

(
1

p
+

1

p+ 2

)
.

It is known that B equals approximately 1.90216058 (cf. the OEIS [18]: A042165),

but whether the above sum actually consists of infinitely many terms depends on

the irrationality of B. Needless to say, Brun’s result greatly contributed to the

subsequent development of sieve theory.

Apart from the above, we next pick up some elementary results on twin primes.

As is easily seen, all twin prime pairs except (3, 5) are of the form (6k − 1, 6k + 1)

with k ≥ 1. Further, a twin prime pair (n, n+ 2) can be characterized by

4((n− 1)! + 1) ≡ −n (mod n(n+ 2)) (see Clement [9]).

This is a nice generalization of Wilson’s theorem stating that (n−1)! ≡ −1 (mod n)

is valid only for a prime n. In addition, if a pair (n, n+ 2) consists of twin primes,

then it follows that ( [3, Corollary 3.2])

(i) 2n+1 ≡ 3n

2
+ 4 (mod n(n+ 2));

(ii) 3n+1 ≡ 4n+ 9 (mod n(n+ 2));

(iii) 3n+2 + 2n+4 ≡ −5 (mod n(n+ 2)).

(3.1)

Congruence (3.1) (iii) is an easy consequence of (i) and (ii).

The main purpose of this subsection is to generalize (3.1) using the properties of

(1.3) stated in Theorem 1.1 and to prove the following theorem.

Theorem 3.1. Let n ≥ 3 be any given odd integer. Under the assumption that both

n and n+ 2 are not Carmichael numbers, a pair (n, n+ 2) consists of twin primes

if and only if each one of the congruences

(i) 2an+1 ≡ (n+ 2)a2 − n (mod n(n+ 2));

(ii) nan+1 ≡ (n+ 2)an−1 − 2 (mod n(n+ 2))
(3.2)

holds for every integer a coprime to n(n+ 2).
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Proof. If (n, n+ 2) is a twin prime pair, then (1.3) gives, by setting m = n+ 2,

an+1 ≡ a2 − 1

2
· n+ a2 ≡ a2 − 1

2
· (n+ 2) + 1 (mod n(n+ 2)),

which leads to (i) after doubling the whole expression and rearranging the terms

included. Conversely, if (i) holds, then we can deduce Fermat’s congruences modulo

n and modulo n+ 2, because gcd(n.n+ 2) = 1. Thus, n, n+ 2 ∈ P ∪C. However,

the given assumption forces both n and n + 2 to be prime, so (n, n + 2) must be

a pair of twin primes. Next, recall (2.2) for distinct n,m > 0. By removing the

denominator and rearranging the terms, we get

n(am−1 − 1) ≡ m(an−1 − 1) (mod nm) (3.3)

for every integer a coprime to nm. If gcd(n,m) = 1, then (3.3) provides (1.1) for

n and the same one replaced n with m, so n,m ∈ P ∪C. Since gcd(n, n + 2) = 1

for an odd n, setting m = n+ 2 in (3.3) yields (ii). As a result, two congruences in

(3.2) are actually equivalent via (1.1). Further, as is obvious, (3.1) (i) and (ii) are

just the special cases of (3.2) (i) where a = 2 and 3.

Incidentally, the above discussion raises the following question asking about the

existence of “twin” Carmichael numbers.

Question. Is there a case where both n and n+ 2 are Carmichael numbers?

It seems extremely difficult to uncover the truth of this question at this time

for the reason that nothing is known about bounded gaps between consecutive

Carmichael numbers, as far as we know. Recently, Larsen [14] conducted research

on Bertrand’s postulate for Carmichael numbers and proved that for all δ > 0 and

x sufficient large in terms of δ, there are at least e(log x)/(log log x)2+δ

Carmichael

numbers between x and x + x/(log x)1/(2+δ). This result is very interesting and

valuable, but it does not guarantee the existence of twin Carmichael numbers.

3.2. Sophie Germain Primes

A prime number p is called a Sophie Germain prime if 2p + 1 is again a prime.

These types of primes were first discussed by Sophie Germain in connection with

Fermat’s Last Theorem. Indeed, she proved that if p is a Sophie Germain prime,

then there are no integers x, y, z, different from 0 and not multiples of p, such that

xp + yp = zp. For a sketch of its proof, see, e.g., [21, Chapter 4]. It is also known

as Euler’s divisor criterion for Mersenne numbers that if p is an odd prime with

p ≡ 3 (mod 4) and Mp := 2p − 1 is a Mersenne number, then 2p+ 1 divides Mp if

and only if p is Sophie Germain. When p is Sophie Germain, a prime q = 2p + 1
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is called a safe prime for the reason that q − 1 does not have many small factors.

The first few of these pairs (p, q) are given as follows:

(2, 5), (3, 7), (5, 11), (11, 23), (23, 47), (29, 59), (41, 83), (53, 107), (83, 167),

and so on. For more pairs, see the OEIS [18]: A005384 and A005385. It is easy to

see that every Sophie Germain prime except 2 and 3 can be expressed in the form

6n− 1. It is still open whether there are infinitely many of these prime pairs, much

like the twin prime conjecture.

Denote by S the set of Sophie Germain primes and by πSG(x) the number of

Sophie Germain primes not exceeding x. The next heuristic estimate for πSG(x) is

widely known as a reliable result in the literature (see, e.g., [23, Chapter 5.5.5]):

πSG(x) ∼
2Cx

(log x)2
(x → ∞), (3.4)

where C is Hardy-Littlewood’s twin prime constant, namely

C =
∏
p∈P
p>2

p(p− 2)

(p− 1)2
≈ 0.660161 · · · .

Based on the prime number theorem, we can see that the set S has the primitive

density 0. In fact, the relative error between the prime counting function π(x) and

x/ log x approaches 0 as x increases, so (3.4) allows us to derive

lim
x→∞

πSG(x)

π(x)
= lim

x→∞

2C

log x
= 0.

By the way, the explicit values of πSG(10
n) for n = 1, 2, . . . , 14 are listed in the

OEIS [18]: A092816.

Remark. We directly applied the prime number theorem to find the primitive

density of the set S, but the referee of this note kindly pointed out that it is also

possible to get the same conclusion as above based on Selberg’s sieve method (for

reference on this sieve method; see, e.g., [6, 11,24]).

The following excellent result, recently proved, completely denies the existence

of a certain special type of Carmichael number.

Theorem 3.2 (Alahmadi and Luca [4]). For every integer n ≥ 0, there is no

Carmichael number of the form 2np+ 1 with p an odd prime.

By building upon this result, it was further proved in [17] that there is no

Carmichael number of the form 2np2 + 1 with some integer n ≥ 0 and prime p.

With the help of Theorem 3.2, we wish to prove the following theorem.
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Theorem 3.3. A given prime p is Sophie Germain if and only if each one of the

congruences

(i) a2p ≡ (2p+ 1)ap+1 − 2p (mod p(2p+ 1));

(ii) (2p+ 1)ap−1 ≡ pa2p + p+ 1 (mod p(2p+ 1))
(3.5)

holds for every integer a coprime to p(2p+ 1).

Proof. When p = 2, we can confirm by direct calculation that both (i) and (ii) are

valid for all a = 1, 3, 7, 9. Next, assuming that p ≥ 3 is Sophie Germain and taking

n = p and m = 2p+ 1 in (1.3), we get for every integer a as indicated,

a2p ≡ ap+1 − 1

p+ 1
· p+ ap+1 ≡ ap+1 − 1

p+ 1
· (2p+ 1) + 1 (mod p(2p+ 1)). (3.6)

To deduce (i), we have only to multiply the whole of (3.6) by p + 1 and then

use the trivial pa2p ≡ p (mod p(2p + 1)). Conversely, if (i) holds, then, since

gcd(p, 2p + 1) = 1, we get a2p ≡ −2p ≡ 1 (mod 2p + 1), hence 2p + 1 ∈ P ∪ C.

Since Theorem 3.2 asserts that 2p + 1 ̸∈ C, we see that 2p + 1 must be a prime,

thus p ∈ S. Next, by taking n = p and m = 2p + 1 in (2.2) (or by directly taking

these n,m in (3.3)), we have

p(a2p − 1) ≡ (2p+ 1)(ap−1 − 1) (mod p(2p+ 1)), (3.7)

which is just the same as (ii). Conversely, if (ii) holds, then we obtain (1.1) for n = p

and 2p + 1. For the same reason as mentioned above, p must be Sophie Germain.

Note that (i) is actually equivalent to (ii) via (1.1), since both p and 2p+1 preserve

the Fermat property. Such the equivalence relation can be also shown directly using

(3.7), because both sides of this vanish modulo p(2p+ 1).

Given a prime p, let us consider the sequence q1, q2, . . . , qj , . . ., defined by

q1 := p, qj+1 := 2qj + 1 (j ≥ 1).

Let l = l(p) be length of a Sophie Germain prime chain (i.e., a Cunningham prime

chain of the first kind) with the initial term q1 = p. Needless to say, all l integers

q1, q2,, . . . , ql are prime, but ql+1 is not. For example, if p = 2, then we have

the prime chain 2, 5, 11, 23, 47, where 2 · 47 + 1 = 95 is composite, thus l(2) = 5.

Similarly, we have l(3) = 2, l(5) = 4, l(7) = 1, l(11) = 3, l(13) = l(17) = l(19) = 1,

l(23) = 2, and so on. As is self-evident, if the last digit of p is 7, then l(p) = 1

because of 2p+ 1 ≡ 0 (mod 5).

As is easily seen, letting N := (p + 1)/2, the sequence as stated above can be

written as 2jN − 1 (including also the case when p = 2) for j ≥ 1. For numbers of

these forms, very efficient primality testing algorithms are available.

The following corollary reveals the explicit relationships between adjacent terms

of a Sophie Germain prime chain.
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Corollary 3.4. With the above notation, if p = q1 is a Sophie Germain prime

having l = l(p) ≥ 2, then for each j = 1, 2, . . . , l − 1, the congruences

(i) aqj+1−1 ≡ qj+1a
qj+1 − 2qj (mod qjqj+1);

(ii) qj+1a
qj−1 ≡ qja

qj+1−1 + qj + 1 (mod qjqj+1)
(3.8)

hold for every integer a coprime to q1q2 · · · ql.

Proof. To deduce (3.8), replace p in (3.5) with qj for each j = 1, 2, . . . , l− 1, noting

that ql+1 is not a prime.

For an odd prime p, let ordp(2) denote the order of 2 modulo p, i.e., the least

positive exponent such that 2ordp(2) ≡ 1 (mod p). An upper bound for l(p) can be

given as follows.

Theorem 3.5 ( [2, Proposition 3.1]). We have l(p) ≤ ordp(2) for p ∈ S\{2}.

Proof. The proof is quite easy. For brevity, putting k := ordp(2), we get

qk+1 = 2qk + 1 = 22qk−1 + (22 − 1) = · · · = 2kq1 + (2k − 1) ≡ 0 (mod q1),

thus, qk+1 is not a prime and this verifies l(p) ≤ k, as desired.

Since ordp(2) ≤ p − 1 for any p ∈ S\{2}, the above theorem shows that it is

impossible to create an infinite Sophie Germain prime chain starting from p (see

also Löh [16] on this matter). Although not yet resolved, it is expected that there

exists a prime chain of the above type having arbitrarily long length. Various kinds

of conjectures (directly or indirectly) intertwined with this problem, for example,

Dickson’s conjecture on the infinity of primes of linear forms, are introduced in

Ribenboim’s classic book [22].
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