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Abstract

We introduce the notion of perpendicularity of arithmetical functions and discuss
a few concrete examples of perpendicularities. Further, we show that the set of
arithmetical functions f with f(1) = 1 forms a real vector space with the Dirichlet
convolution as addition and real power under the Dirichlet convolution as scalar
multiplication. Moreover, we prove that multiplicative functions are perpendicular
to antimultiplicative functions with respect to the natural perpendicularity.

1. Introduction

The following quotation from Graham, Knuth, and Patashnik [5] has already be-

come famous: “Hear us, O Mathematicians of the World! Let us not wait any

longer! We can make many formulas clearer by adopting a new notation now! Let

us agree to write ‘m ⊥ n’, and to say “m is prime to n,” if m and n are relatively

prime.” This announcement was motivated by noting that “Like perpendicular lines

don’t have a common direction, perpendicular numbers don’t have common factors”

[5, p. 115].

Relating perpendicularity of lines to the property of numbers having no common

factors was not only notationally useful but also prophetical. Indeed, let M be a

module over a ring R. A perpendicularity in M is a binary relation ⊥ satisfying for

all x, y, y1, y2 ∈ M , and γ ∈ R,

(A1) x ̸= 0 =⇒ x ̸⊥ x;

(A2) x ⊥ y =⇒ y ⊥ x;
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(A3) x ⊥ z for some z ∈ M ;

(A4) x ⊥ y1, y2 =⇒ x ⊥ (y1 + y2);

(A5) x ⊥ y =⇒ x ⊥ γy.

The axioms A1–A5 define perpendicularity also in a vector space, given that the

scalars γ now establish a field. Further, because an Abelian group is a Z-module,

the above definition makes sense in this context, too. Yet the fifth axiom reads

simply

x ⊥ y =⇒ x ⊥ −y;

cf. [6, 10].

Now, the above-mentioned interpretation of perpendicularity of numbers can be

refined. Graham, Knuth, and Patashnik seem to have meant that, for positive

integers, there is a binary relation ⊥ defined via

a ⊥ b ⇐⇒ ∀p : (νp(a) = 0 ∨ νp(b) = 0). (1)

Here νp(a) is the exponent of p in the canonical factorization of a. In monoid

(Z+, ·), this relation satisfies the axioms A1–A4. This observation can be expressed

by saying that ⊥ is a pre-perpendicularity in (Z+, ·).
If we replace Z+ with the set of positive rational numbers, then ⊥ in (1) satisfies

A1–A5 in this Abelian group [6, Example 10]. Similarly, given a vector space V

and an inner product ⟨·, ·⟩ in V , the above axiom system is satisfied in V by the

binary relation ⊥ defined via

x ⊥ y ⇐⇒ ⟨x, y⟩ = 0.

In this paper, we introduce another kind of perpendicularity arising from number

theory. We show that there are perpendicularities in the sets of arithmetical func-

tions, i.e., real-valued functions of positive integers. We introduce some examples

of them and focus especially on the one that can be called a natural perpendic-

ularity. In this case, we show that multiplicative functions are perpendicular to

antimultiplicative functions.

Let us first consider the usual pointwise addition of arithmetical functions (f +

g)(n) = f(n)+g(n) and the usual pointwise scalar multiplication (af)(n) = a(f(n)).

If we equip the set of all arithmetical functions with the above operations, we end

up with an infinite dimensional vector space which is isomorphic to R∞. Now, an

example of perpendicularities in this vector space can be constructed via

f ⊥ g ⇐⇒ ∀n ∈ Z+ : (f(n) ̸= 0 =⇒ g(n) = 0).

Another and more concrete example can be derived from (1). Namely, for every

positive rational a, there is an arithmetical function

fa(n) = νpn
(a),
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where pn is the n-th prime. Then

fa ⊥ fb ⇐⇒ ∀n : (fa(n) = 0 ∨ fb(n) = 0)

is a perpendicularity in the Abelian group consisting of functions of this kind with

the binary operation

fa(n) + fb(n) = fab(n).

There is another and, perhaps, a more novel approach to construct perpendicu-

larities of arithmetical functions. If we exclude those arithmetical functions f for

which f(1) ̸= 1, then we can build on the Dirichlet convolution as addition and real

power under the Dirichlet convolution as scalar multiplication. We proceed via two

steps: we first study this set of arithmetical functions as an additive Abelian group

(Section 3) and, thereafter, we turn it into a vector space by inserting the above

scalar multiplication (Section 4).

To contextualize the present study, we summarize shortly some axiomatic stud-

ies of perpendicularity in algebraic structures. In the 1970s, Davis [3] investigated

orthogonal relations on Abelian groups. His approach aimed at studying a concept

of disjointness in the context of groups. Four decades later, Haukkanen, Mattila,

Merikoski, and Tossavainen [6] introduced the above axiomatization of perpendic-

ularity on Abelian groups and explored, e.g., the maximality of various perpendic-

ularities. In more recent articles, they have investigated, among other things, the

cardinality of the set of maximal perpendicularities in certain groups and, on the

other hand, conditions on the existence of a unique maximal perpendicularity. An-

other question they have touched upon is whether all maximal perpendicularities

arise from an inner product or not, and how this question is related to the dimension

of an Abelian group or a vector space. For more information about recent results,

see [9, 10].

2. Multiplicative and Antimultiplicative Functions

An arithmetical function f is said to be multiplicative if f(1) = 1 and f(mn) =

f(m)f(n) whenever (m,n) = 1. Multiplicative functions is perhaps the most im-

portant subclass of arithmetical function. For example, Euler’s totient function ϕ

and divisor functions σm are multiplicative.

The Dirichlet convolution of two arithmetical functions f and g is defined as

(f ⋆ g)(n) =
∑
d|n

f(d)g(n/d).

The function δ, defined as δ(1) = 1 and δ(n) = 0 otherwise, serves as the identity

under the Dirichlet convolution. An arithmetical function f possesses a Dirichlet
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inverse f (−1) if and only if f(1) ̸= 0. A function of this kind is referred to as a unit

(under the Dirichlet convolution). The Dirichlet inverse of a unit is unique and is

given recursively as

f (−1)(1) =
1

f(1)
, f (−1)(n) =

−1

f(1)

∑
d|n
d>1

f(d)f (−1)(n/d) (n > 1).

An arithmetical function f is said to be completely multiplicative if f(1) = 1 and

f(mn) = f(m)f(n) for all positive integers m and n. The Dirichlet inverse of a

completely multiplicative is given as f (−1) = µf , where µ is the Möbius function

(defined as the Dirichlet inverse of the constant function 1). The Möbius function

µ is the multiplicative function such that µ(p) = −1 and µ(pk) = 0 for all primes p

and integers k ≥ 2. The power function Nm defined as Nm(n) = nm is completely

multiplicative. In particular, we let N denote the function N1. Then N
(−1)
m = µNm

and N (−1) = µN . For further material on multiplicative functions we refer to

[1, 8, 14].

Antimultiplicative functions have not been studied much in the literature [4].

They, however, seem to play a substantial role in the linear algebra of arithmetical

functions. An arithmetical function f is said to be antimultiplicative if f(1) = 1

and f(pk) = 0 whenever pk is a prime power with k > 0. For example, the function

f(n) = |ω(n)− 1| is antimultiplicative, where ω(n) is the number of distinct prime

divisors of n with ω(1) = 0. The identity function δ is a trivial example of an

antimultiplicative function. Further examples are given in Examples 5 and 6 below.

3. Perpendicularity in the Abelian Group (U1, ⋆)

Let A denote the set of all arithmetical functions, and let U denote the set of units

in A under the Dirichlet convolution, that is, the set of arithmetical functions f

with f(1) ̸= 0. Then U is an Abelian group under the Dirichlet convolution. The

set of units f with f(1) = 1 is denoted by U1, and the sets of multiplicative and

antimultiplicative functions are denoted by UM and UA, respectively.

In this section, we introduce some perpendicularities of arithmetical functions in

the Abelian group (U1, ⋆). To that end, we first record a proposition whose proof

can be found in [4].

Proposition 1. We have

UM ≤ U1, UA ≤ U1, U1 ≤ U,

where ≤ means the subgroup relation. In addition,

UM ∩ UA = {δ}.
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Proposition 2. The Abelian group (U1, ⋆) can be written as a direct product (or,

equivalently, a direct sum)

U1 = UM ⊕ UA.

Proof. It is known [4] that each f ∈ U1 can be written uniquely as f = g ⋆ h, where

g ∈ UM and h ∈ UA.

Now we are ready to record two examples of perpendicularities. We leave it to

the readers to check that these relations satisfy the axioms of perpendicularity in

an Abelian group.

Example 1. The trivial perpendicularity is

g ⊥triv h ⇐⇒ (g = δ) ∨ (h = δ).

This is minimal in the poset of all perpendicularities.

Example 2. The natural perpendicularity is

g ⊥0 h ⇐⇒ (g ∈ UM ∧ h ∈ UA) ∨ (g ∈ UA ∧ h ∈ UM ) ∨ (g = δ) ∨ (h = δ),

that is,

⊥0=⊥triv ∪{(g, h), (h, g) : g ∈ UM , h ∈ UA}.

On the basis of Proposition 2, we can write f ∈ U1 in the form f = g ⋆ h, where

g ∈ UM and h ∈ UA. We say that g ∈ UM is the multiplicative component of f and

h ∈ UA is the antimultiplicative component of f . As defined above, g ⊥0 h. We

next present some concrete examples.

Example 3. If f ∈ U1 is multiplicative, then its multiplicative component is f itself

and antimultiplicative component is δ. Similarly, if f ∈ U1 is antimultiplicative,

then its multiplicative component is δ and antimultiplicative component is f itself.

In both cases, f ⊥0 δ.

Remark 1. Let f be an arithmetical function with f(1) = 1. Its multiplicative

component g and antimultiplicative component h can be constructed as follows.

Begin with the equations h(pk) = 0 for all primes p and integers k > 0 and f(pk) =

(g⋆h)(pk) =
∑k

i=0 g(p
i)h(pk−i) for all primes p and integers k ≥ 0. These equations

imply that g(pk) = f(pk) for all primes p and integers k ≥ 0, and this determines

the multiplicative function g completely. Further, the antimultiplicative function h

is given as h = f ⋆ g(−1).

We illustrate this procedure in Examples 4, 5, 6, and 7.

Example 4. Let

f(n) =

{
1 if n = 1;

µ(n) + ω(n)− 1 if n > 1.
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Then f(1) = 1 and thus f ∈ U1. Now,

g(pk) = f(pk) =


1 if k = 0;

−1 + 1− 1 = −1 if k = 1;

0 + 1− 1 = 0 if k > 1,

and therefore the multiplicative component g of f is the Möbius function µ and

the antimultiplicative component h of f is the summation function of f , h(n) =

(f ⋆ g(−1))(n) =
∑

d|n f(d). Now, g ⊥0 h.

Example 5. Consider the arithmetical function f = Nω defined as f(n) = nω(n)

for all positive integers n. Then f(1) = 1 and thus f ∈ U1. Now,

g(pk) = f(pk) = (pk)1 = pk,

and thus the multiplicative component of f is g(n) = n = N(n). The antimulti-

plicative component h of f is

h = f ⋆ g(−1) = Nω ⋆ N (−1) = Nω ⋆ (µN).

Thus, g ⊥0 h.

Example 6. Consider the function f = NEm , that is, f(n) = nEm(n), where

Em(n) = mω(n), see [17]. Then f(1) = 1 and thus f ∈ U1. Now,

g(pk) = f(pk) = (pk)m
1

,

and thus the multiplicative component of f is g(n) = nm = Nm(n). The antimulti-

plicative component h of f is

h = f ⋆ g(−1) = NEm ⋆ N (−1)
m = NEm ⋆ (µNm).

Thus, g ⊥0 h.

4. Perpendicularity in the Vector Space U1

In Section 3, we investigated perpendicularity in the Abelian group (U1, ⋆). We here

insert a (real) scalar multiplication in this Abelian group to obtain a vector space

structure. We thus interpret the Dirichlet convolution as the addition of the vector

space U1. Therefore, it is natural that the power under the Dirichlet convolution

serves as the scalar multiplication.

The integer power f (n) of f ∈ U with respect to the Dirichlet convolution is

defined in the natural manner: f (n) = f ⋆ f ⋆ · · · ⋆ f (n times) for n > 0, f (n) = δ

for n = 0, f (n) = f (−1) ⋆ f (−1) ⋆ · · · ⋆ f (−1) (−n times) for n < 0.
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Define scalar multiplication from Z× U1 to U1 as

(n, f) → f (n).

Then U1 becomes a Z-module. To obtain a vector space, we need rational or real

powers of arithmetical functions under the Dirichlet convolution. Rational powers

could be defined utilizing a classic algebraic approach, see [4, 13]. However, we go

directly to real powers by adopting a discrete mathematics analog of a classic tool

in mathematical analysis. This approach is based on observations made by Rearick

[11, 12]. He defines real powers of arithmetical functions f with f(1) ∈ R+. Let P

denote the set of arithmetical functions f with f(1) ∈ R+. Following Rearick [11],

we define an operator L from P to A such that Lf is the arithmetical function with

(Lf)(1) = log f(1), (2)

and for n > 1,

(Lf)(n) =
∑
ab=n

f(a)(log a)f (−1)(b), (3)

where log denotes the usual real logarithm function.

Rearick [11] showed that the operator L is an isomorphism from P to A. Let E

denote the inverse of L. For f ∈ P and α ∈ R, Rearick [11] defined the real power

f (α) by

f (α) = E(αLf). (4)

It is known [11] that for any integer n, f (n) coincides with f (α) defined by (4) when

α = n.

Rearick presented also slight modifications of L and E in [12] by defining an

operator Log from P to A such that Logf is the arithmetical function with

(Logf)(1) = log f(1), (5)

and for n > 1,

(Logf)(n) =
1

log n

∑
ab=n

f(a)(log a)f (−1)(b). (6)

From (3) it is clear that Lf(n) = (log n)Logf(n) if n > 1. Thus Log is also an

isomorphism. Let Exp denote the inverse of the isomorphism Log. Then the real

power f (α) can also be defined by

f (α) = Exp(αLogf), (7)

where α ∈ R.
It is known [12, Theorem 6] that Exp(αLogf) and E(αLf) are equal. Therefore

f (α) can either be defined by (4) or (7). The advantage of using (7) lies in the fact

that the Exp operator can be written inductively: If f ∈ A,

Expf(1) = exp f(1), (8)
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and for n > 1,

Expf(n) =
1

log n

∑
ab=n
a<n

Expf(a)(log b)f(b). (9)

In (8), exp denotes the usual real exponential function.

Real power also possesses an inductive formula:

f (α)(1) = (f(1))α, (10)

and for n > 1,

f (α)(n) =
α

log n

∑
ab=n
a<n

f (α)(a)(log b)Log f(b). (11)

Note that (11) is obtained by replacing f with αLog f in (9).

Now we are in a position to define scalar multiplication from R × U1 to U1 in

order to obtain a vector space structure on U1.

Theorem 1. The class U1 of arithmetical functions f with f(1) = 1 becomes a

real vector space under the Dirichlet convolution and the scalar multiplication from

R× U1 to U1 defined as

(α, f) → f (α). (12)

Proof. As noted in Section 3, U1 under the Dirichlet convolution is an Abelian

group. It follows from (10) that (12) induces a function from R × U1 to U1. It is

known [7, 11] that the real power f (α) possesses the basic properties

(f (α))(β) = f (αβ), f (α+β) = f (α) ⋆ f (β), (f ⋆ g)(α) = f (α) ⋆ g(α), f (1) = f.

This means that (12) satisfies the vector space axioms.

Theorem 2. The classes UM and UA are subspaces of U1 and U1 = UM ⊕ UA.

Proof. On the basis of Propositions 1 and 2 it suffices to show that UM and UA

are closed under the scalar multiplication (12). It is known [7, 11] that if f is

multiplicative, then the real power f (α) is multiplicative, that is, UM is closed

under the scalar multiplication. We prove that the same holds for antimultiplicative

functions. In fact, assume that f is antimultiplicative, α is a real number and p is

a prime number. Then f(pk) = 0 for all k > 0. We show by induction on k that

f (α)(pk) = 0 for all k > 0. Let k = 1. Then, by (11),

f (α)(p) =
α

log p

∑
ab=p
a<p

f (α)(a)(log b)Log f(b) =
α

log p
f (α)(1)(log p)Log f(p).

By (6),

Logf(p) =
1

log p

∑
ab=p

f(a)(log a)f (−1)(b).
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Since f is antimultiplicative, f (−1) is also antimultiplicative. Therefore f(p) =

f (−1)(p) = 0, and thus Logf(p) = 0. This implies that f (α)(p) = 0. Assume then

that f (α)(pk) = 0 for 1 ≤ k ≤ m. Then, by (11),

f (α)(pm+1) =
α

log pm+1

∑
ab=pm+1

a<pm+1

f (α)(a)(log b)Log f(b)

=
α

log pm+1

m∑
k=1

f (α)(pk)(log pm+1−k)Log f(pm+1−k) = 0.

This shows that f (α)(pk) = 0 for all k > 0. Thus f (α) is antimultiplicative.

Remark 2. The perpendicularities in Section 3 hold also in the vector space U1.

For example, Theorem 2 induces a perpendicularity on U1 such that multiplicative

functions are perpendicular to antimultiplicative functions. More precisely,

g ⊥0 h ⇐⇒ (g ∈ UM ∧ h ∈ UA) ∨ (g ∈ UA ∧ h ∈ UM ) ∨ (g = δ) ∨ (h = δ).

We conclude this paper with an example of finding multiplicative and antimulti-

plicative component of a function in U1.

Example 7. Arithmetic derivative D is the arithmetic function satisfyingD(p) = 1

for all primes p and the Leibniz rule D(mn) = mD(n) + nD(m) for all positive

integers m and n. See e.g. [2, 15, 16]. It is easy to see that D(pk) = kpk−1 for all

primes p and positive integers k. Since D(1) = 0, D /∈ U1. Therefore we consider

its multiplicative analogue f(n) = eD(n) = exp(D(n)). This function satisfies the

property f(mn) = f(m)nf(n)m for all positive integers m and n. This property

may be referred to as a multiplicative analogue of Leibniz rule.

Now, we calculate the multiplicative component g and the antimultiplicative

component h of f . Then

g(pk) = f(pk) = exp(kpk−1).

Let n = pk1
1 pk2

2 · · · pkr
r denote the canonical factorization of n with k1, k2, . . . , kr > 0.

Since g is multiplicative, we obtain

g(n) = exp(k1p
k1−1
1 ) exp(k2p

k2−1
2 ) · · · exp(krpkr−1

r )

= exp(k1p
k1−1
1 + k2p

k2−1
2 + · · ·+ krp

kr−1
r ) = exp(s(n)),

where s is the arithmetical function such that s(1) = 0 and, for n > 1, s(n) =

k1p
k1−1
1 + k2p

k2−1
2 + · · · + krp

kr−1
r . Now, the antimultiplicative component h of f

is h = f ⋆ g(−1), and thus, g ⊥0 h.
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