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Abstract

Let n > 1 be a positive integer. An integer a is called a primitive λ-root mod n
if gcd(a, n) = 1 and a has the maximum multiplicative order modulo n. Let R(n)
be the number of primitive λ-roots mod n. We show that R(mn) ≥ R(m)R(n)
whenever gcd(m,n) = 1. We also find the necessary and sufficient conditions for the
equality to hold. Additional numerical data about the function R(n) are included
at the end of the paper.

1. Introduction

Throughout the article, we use n and a to denote integers with n > 1, and we use

p and q to denote prime numbers. It is not hard to see that if gcd(a, n) = 1, then

ae ≡ 1 mod n for some positive integers e. The least such integer is called the

multiplicative order of a modn, and is denoted by la(n). Note that la(n) is also the

multiplicative order of the residue class modn containing a in (Z/nZ)∗. For any

fixed modulus n, the largest value of la(n) is denoted by λ(n). An integer a is called

a primitive λ-root modulo n if gcd(a, n) = 1 and la(n) = λ(n). We may also call

the corresponding residue class mod n containing such integers a primitive λ-root

modn. The primitive λ-root modulo n was initially introduced by Carmichael [1] in

1914. He also found that λ(pr) = ϕ(pr), where ϕ is Euler-ϕ function, except when

p = 2 with r > 2, for which case λ(2r) = 1
2ϕ(2

r). When n = 2, 4, pr or 2pr where p

is an odd prime, it is well-known that (Z/nZ)∗ is a cyclic group and λ(n) = ϕ(n).

In this case, any integer a, for which la(n) = ϕ(n), is called a primitive root modn.

Thus a primitive λ-root modn is a primitive root modn in this case. So primitive

λ-root modn is a generalization of the primitive root modn.
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Let us count primitive λ-roots modn from two perspectives. First let us fix the

integer a and count the number of moduli n up to x, for which a is a primitive

λ-root. We denote this number by Na(x). Then let us fix the modulus n and count

the number of primitive λ-roots a modn. We denote the second number by R(n).

Although the functions Na(x) and R(n) count primitive λ-roots from two different

perspectives, they are connected through the average of Na(x). Li [5] proved that,

for x > e3 and y ≥ exp
(
(lnx)3/4

)
, we have

1

y

∑
a≤y

Na(x) =
∑
n≤x

R(n)

n
+O(x · exp(−E(x, y)), (1)

where E(x, y) ≫ 5
16 (lnx)

1
2 for some absolute constant and all y ≥ exp

(
(lnx)3/4

)
.

So the magnitude of
∑

n≤x R(n)/n helps to understand the average order of function

Na(x). Li [3] proved that there exists a positive constant c1 such that
∑

n≤x R(n)/n

≥ c1x on a unbounded set of x, and
∑

n≤x R(n)/n = o(x) on another unbounded

set of x. The behavior of the average order of Na(x) is matched by the behavior of

individual Na(x) in the following sense. Let E denote the set of integers which are a

power with an exponent larger than 1, or a square times either −1 or ±2. According

to the results of Li [4] and Pomerance [6], if a ̸∈ E , the individual Na(x)/x oscillates

between 0 and another positive constant c2 depending on a, as x gets large. In the

estimate of
∑

n≤x R(n)/n, we only used a basic formula for R(n), which will be

presented below. Any other arithmetic properties of R(n) are not only interesting

to the function, but may also be helpful for sharpening or better understanding the

above results.

One objective of the paper is to explore numerically the values of R(n)/n over

a small interval of x to see whether or not there is an oscillation of
∑

n≤x R(n)/n

within such an interval. The result is presented in the last section. The data of

R(n) from the last section also helps us in shaping our main theorem below.

Another objective of the paper is to investigate the multiplicativity of R(n). An

arithmetic function f(n) is called a multiplicative function if f(mn) = f(m)f(n)

whenever gcd(m,n) = 1. If R(n) is a multiplicative function, then the estimate

of
∑

n≤x
R(n)
n may be obtained easier, and one may get a sharper estimate for the

above sum and some other functions related to R(n) as one can see in Schoenberg

[9]. Unfortunately, we do not have such privilege to deal with the functions because

one can easily find a counterexample, which shows that R(n) is not a multiplica-

tive function. Then we may ask how likely or unlikely R(mn) = R(m)R(n) when

gcd(m,n) = 1. This is the other question that we want to solve in this paper. To

answer this question, we need to bring up a formula for R(n), for which we need to

introduce several notions.

For n > 1 and prime p, if pv divides n but pv+1 does not divide n, we denote the

division by pv∥n. When n = 2, λ(n) = 1 and R(n) = 1. When n > 2, λ(n) > 1.

Let q be a prime divisor of λ(n). Then for a unique integer v ≥ 1, we have qv∥λ(n).
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Note that the exponent v depends on both q and n. Let ∆q(n) := #{prime p :

pe∥n and qv|λ(pe)} where qv∥λ(n), except the case 23∥n and 2∥λ(n), for which

∆2(n) := 1 + #{prime p : p|n}. It should be pointed out that qv is the maximum

order of the cyclic subgroups of (Z/nZ)∗ with prime power orders for prime q, and

∆q(n) is the number of cyclic subgroups of order qv in the factorization of (Z/nZ)∗
into the direct product of cyclic subgroups of prime power orders. Martin [7] and

Li [2] proved independently that

R(n) = ϕ(n)
∏

q|λ(n)

(
1− 1

q∆q(n)

)
. (2)

We obtain the following result.

Theorem 1. Let m,n > 1 with gcd(m,n) = 1. We have R(mn) ≥ R(m)R(n),

where the equality holds if and only if m = 2 and n is odd, or n = 2 and m is odd.

2. Preliminary Results

From (2), we have
R(n)

ϕ(n)
=

∏
q|λ(n)

(
1− 1

q∆q(n)

)
.

Note that ∆q(n) > 0 if and only if q|λ(n). If q ∤ λ(n), we define ∆q(n) = 0. If

q ∤ λ(n), q does not appear in the product. We can also say that the contribution of

the prime q to the above product is 1. So it is easier and more effective to introduce

a new function for each prime q.

Let

hq(n) =

{
1− 1

q∆q(n) , if ∆q(n) > 0

1, if ∆q(n) = 0.
(3)

It is easy to see that
R(n)

ϕ(n)
=

∏
prime q

hq(n). (4)

Lemma 1. Let m,n > 1 with gcd(m,n) = 1. Then λ(mn) = lcm (λ(m), λ(n)) .

Proof. The result can be deduced easily from the following identity:

λ(n) = lcmpe∥n{λ(pe)},

which is obtained in Carmichael [1].
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Lemma 2. Suppose that m,n > 1 and gcd(m,n) = 1. Then, for any prime divisor

q of λ(mn), we have

hq(mn) ≥ hq(m)hq(n)

where the strict inequality holds if and only if one of the following conditions holds:

(i) ∆q(mn) > ∆q(m) > 0,

(ii) ∆q(mn) > ∆q(n) > 0,

(iii) ∆q(m) > 0, ∆q(n) > 0 and ∆q(mn) is equal to one of the two integers.

Proof. Since q|λ(mn), we have qv∥λ(mn) for some v > 0. By Lemma 1, qv di-

vides one of λ(m) or λ(n). Without loss of generality, let us assume that qv|λ(m).

Actually we have qv∥λ(m). By the definition of ∆q, we have that

∆q(m) := #{prime p : pe∥m and qv|λ(pe)}

except 8∥m and q = 2∥λ(m) or v = 1. In the meantime,

∆q(mn) := #{prime p : pe∥mn and qv|λ(pe)}.

Since gcd(m,n) = 1, we have that ∆q(mn) ≥ ∆q(m) ≥ 1. In the case 8∥m and

2∥λ(m), all the odd prime factors p ofm and nmust be in the arithmetic progression

p ≡ 3 mod 4. Thus,

∆2(mn) = 1 +#{prime p : p|mn}
= 1 +#{prime p : p|m}+#{prime p : p|n}
= ∆2(m) + ∆2(n).

We still have that ∆q(mn) ≥ ∆q(m) ≥ 1. Therefore, for any q|λ(mn), we have

hq(mn) = 1− 1

q∆q(mn)
≥ 1− 1

q∆q(m)
= hq(m) ≥ hq(m)hq(n),

because 1 ≥ hq(n) by the definition of hq.

Next let us deal with the strict inequality. It is not hard to see that if one of

the three conditions holds, then hq(mn) > hq(m)hq(n). Conversely, assume that

hq(mn) > hq(m)hq(n). If the condition (i) or (ii) holds, then we are done. So we

only need to consider the case that both conditions (i) and (ii) fail. Since q|λ(mn),

we can assume that qv∥λ(mn) for some v > 0. By Lemma 1, qv|λ(m) or qv|λ(n).
Without loss of generality, let us assume that qv|λ(m). Then ∆q(m) > 0. Since

condition (i) fails, we must have ∆q(mn) = ∆q(m). Thus hq(mn) = hq(m) =

1− 1/q∆q(m), and inequality hq(mn) > hq(m)hq(n) yields that

1 > hq(n),

which yields that ∆q(n) > 0. We obtain the condition (iii). We have proved the

lemma.
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3. Proof of the Main Theorem

Proof of Theorem 1. Since gcd(m,n) = 1, we have that ϕ(mn) = ϕ(m)ϕ(n). There-

fore, we only need to prove that

R(mn)

ϕ(mn)
≥ R(m)

ϕ(m)

R(n)

ϕ(n)
, (5)

and the sufficient and necessary conditions for the equality.

For each q|λ(mn), we have hq(mn) ≥ hq(m)hq(n) by Lemma 2. We obtain (5)

by identity (4).

Next let us prove the conditions for the equality to hold. If m = 2 and n is odd,

then R(m) = 1 and R(2n) = R(n). So we have R(mn) = R(m)R(n). This can

also be obtained by using the isomorphism between (Z/(2n)Z)∗ and (Z/nZ)∗. The
equality holds similarly for the case where m is odd and n = 2.

Conversely assume that m,n > 2 and gcd(m,n) = 1. We will show that

R(mn) ̸= R(m)R(n). Since we have proved (5), we only need to show that

R(mn) > R(m)R(n), which is equivalent to

R(mn)

ϕ(mn)
>

R(m)

ϕ(m)

R(n)

ϕ(n)
. (6)

Case 1: m > 2 and n > 2 are both odd. In this case, 2 is a divisor of λ(m)

and λ(n). Let us assume that 2v1∥λ(m) and 2v2∥λ(n). Without loss of generality,

we may assume that v1 ≤ v2. If v1 < v2, then 2v2∥λ(mn) by Lemma 1. And

∆2(mn) = ∆2(n) > 0 by the definition of ∆2. But ∆2(m) > 0, so by Lemma 2, we

obtain h2(mn) > h2(m)h2(n). By Lemma 2 again, we have (6). If v1 = v2, then

∆2(mn) = ∆2(m) +∆2(n) because 2v1∥λ(m), 2v1∥λ(n), 2v1∥λ(mn) and gcd(mn) =

1. By Lemma 2, we still obtain h2(mn) > h2(m)h2(n) and (6). Therefore, we have

R(mn) > R(m)R(n).

Case 2: m > 2 and n > 2 have the opposite parity. Without loss of generality, we

can assume that m is even and n is odd. Since m,n > 2, it follow easily that 2 is a

divisor of λ(m) and λ(n). Let v1 and v2 be the same as in case 1. By the definition

of ∆2, we have that

∆2(m) := #{prime p : pe∥m and 2v1 |λ(pe)} (7)

except that 8∥m and 2∥λ(m) (or v1 = 1). This formula can also apply to ∆2(n)

with v1 replaced by v2.

If v1 < v2, then v2 ≥ 2. We can apply (7) to mn and get

∆2(mn) := #{prime p : pe∥mn and 2v2 |λ(pe)}.

Note that we replace v1 in (7) by v2 because 2v2∥λ(mn) = lcm (λ(m), λ(n)) by

Lemma 1. Thus we have ∆2(mn) = ∆2(n) > 0, and in the meantime ∆2(m) > 0.
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By Lemma 2, we obtain (6). Similarly, if v1 > v2, then ∆2(mn) = ∆2(m) > 0, and

obviously ∆2(n) > 0. We still obtain (6).

If v1 = v2, then 2v1∥λ(m), 2v1∥λ(n), and 2v1∥λ(mn). If v1 > 1 or 8 is not

the maximum power of 2 that divides m, we have, by applying (7) to mn, that

∆2(mn) = ∆2(m) + ∆2(n). We obtain (6) by Lemma 2.

If v1 = 1 and 8∥m, then ∆2(mn) = 1 + #{prime p : p|mn} = ∆2(m) + ∆2(n).

By Lemma 2, we obtain Inequality (6). Therefore, we have proved the theorem.

4. Numerical Values R(n) within Small Intervals

One of our objectives is to investigate
∑

n≤x
R(n)
n numerically to see whether or

not it oscillates as x gets large. However, due to the complexity of ∆q(n) and

R(n) as shown in (2), it is impossible to carry out calculations of ∆q(n), R(n),

and
∑

n≤x
R(n)
n by hand. We implemented an algorithm for calculating R(n), and

we ran some computations regarding functions y = R(n)
n , y =

∑
n≤x

R(n)
n and

y = R(mn)−R(m)R(n). Our calculations show that y =
∑

n≤x
R(n)
n does not show

significant oscillations over small intervals of x as one can see in Figure 1.

Figure 1: y=
∑

n≤x
R(n)
n

, 2 ≤ x ≤ 1, 000, 000

Figure 1 shows that y =
∑

n≤x
R(n)
n ≈ kx for some constant k < 1/4. However,

R(n)
n does show violent oscillation between 0 and 1 as in the next figure.
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Figure 2: y=R(n)/n, 2 ≤ n ≤ 1, 000, 000

From Figure 2, it can be implied that the function y =
∑

n≤x
R(n)
n is more like

a linear function. First, it can be noticed that the graph of y = R(n)
n is formed by

points in the region 1 ≤ n ≤ 1, 000, 000 and 0 ≤ y ≤ 1. Secondly, these points are

almost evenly distributed horizontally, but unevenly distributed vertically. However,

they are dense in the vertical zone 0.045 ≤ y ≤ 0.5. This dense zone does not have

any significant vertical shifts or oscillations. Thus, when we take the sum of R(n)/n

for 1 ≤ n ≤ x, function y =
∑

n≤x
R(n)
n ≈ kx for some constant k. This indicates

that we do not see oscillation of 1
x

∑
n≤x

R(n)
n between a positive number and 0 as

x increases from x = 2 to x = 1, 000, 000. Our computer has a hard time verifying

the data of R(n)/n beyond the above range.

However, when we zoom into a smaller interval, the graph of y = R(n)
n contains

some interesting curve patterns as shown in Figure 3, which we cannot explain yet.

Figure 3: y=R(n)/n, 2 ≤ n ≤ 10, 000
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Figure 4 below is a numerical verification of Theorem 1 because all the points of

y = R(mn) − R(m)R(n) with gcd(m,n) = 1 are on or above the mn-plane or the

plane y = 0. It can also be seen that when m = 2 or n = 2, the points on the graph

of the function are on the plane y = 0. Due to visual effects, the lines on the plane

may not look like the line m = 2 and y = 0 or the line n = 2 and y = 0. Figure 5

shows the lines with better visual effects.

Figure 4: y = R(mn)−R(m) ·R(n), 0 ≤ m,n ≤ 200

Figure 5 only shows the points of the graph of the function y = R(mn) −
R(m)R(n) with gcd(m,n) = 1 that are on the plane y = 0. One can see that

R(mn)−R(m)R(n) = 0 if and only if one of m and n is 2 and the other is an odd

number.

Figure 5: y = R(mn)−R(m) ·R(n) and y = 0
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