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Abstract

We consider a parameterized family of Thue equations,

(x−G1(n) y) · · · (x−Gd(n) y)− yd = ±1,

which was first considered by Thomas and shown to have an explicit set of solutions
for n greater than some computable constant. When the parameter functions are
polynomials belonging to an explicitly described family, this is known to be true. We
consider other parameter functions, namely linear recurrence sequences, for which
it is not clear whether a similar result holds, and confirm that it does hold for an
explicitly described family of linear recurrence sequences.

1. Introduction

Thue equations, i.e., integer equations of the form f(x, y) = m for an irreducible

homogeneous polynomial f of degree at least three, are an interesting object of study.

Thue [17] used his improvement of Liouville’s original result on the approximatability

of algebraic numbers to prove that such equations can have at most finitely many

integer solutions. As a result, a large class of Diophantine equations was proved

to be decidable (in contrast to Hilbert’s 10th problem, whose solution famously

showed that the class of all Diophantine equations is undecidable). To the best

of the author’s knowledge, it is currently unknown whether even the class of all

bivariate Diophantine equations is decidable.

However, for Thue equations, we can do even better. Baker [1] used his celebrated

work on lower bounds for linear forms in logarithms to prove Thue’s original result

in an effective way—thus providing an algorithm that gives all solutions to any

given Thue equation (by computing an upper bound on the absolute values of all

solutions); let us call this property effectively solvable.
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Baker’s work has inspired many authors to consider various generalizations of

effectively solvable equations, such as dropping the homogeneity condition for certain

families [4] or considering inequalities [14]. One of the first to successfully approach

parameterized Thue equations (with positive discriminant)—where the coefficients

of the Thue equation are themselves polynomials in one or more variables—was

Thomas [16]. Since then, various authors have considered many parameterized Thue

equations (for a survey, see [11]).

For monic polynomials p2(t), . . . , pd(t) ∈ Z[t], Thomas considered the parameter-

ized family

x(x− p2(n) y) · · · (x− pd(n) y) + u yd = 1, u = ±1, (1)

which he called a split family of Thue equations with factors p2, . . . , pd. This family

always has the trivial solutions

ϵ {(1, 0), (0, u), (p2(n)u, u), . . . , (pd(n)u, u)} ,

where ϵ = 1 for odd d and ϵ = ±1 for even d. He conjectured that if

0 < deg p2 < · · · < deg pd,

then the split family of Thue equations with factors p2, . . . , pd is effectively solvable

and has only the solutions listed above. The condition is necessary because there

are known examples of split families that do not satisfy this condition, which have

additional solutions not covered by Thomas’ set. In the case of cubic split families,

Thomas proved the conjecture under some additional technical conditions, which

restrict the polynomials to a subclass he called regular.

Halter-Koch et al. [7] considered a special case of Thomas’ conjecture where

p2, . . . , pd−1 are distinct integers and pd is an integral parameter. They proved that

in this case, Thomas’ conjecture (for pd larger than some computable constant)

follows from the Lang–Waldschmidt conjecture.

Heuberger and Tichy [9] considered a multivariate version of Equation (1), where

now pi ∈ Z[t1, . . . , tr] and they allowed for a non-zero first polynomial p1. For LH(p),

which they called the homogeneous part of maximal degree in p, they gave the

following conditions:

1. The degrees satisfy deg p1 < · · · < deg pd−2 < deg pd−1 = deg pd.

2. The homogeneous parts of maximal degree of pd−1 and pd are the same, i.e.,

LH(pd−1) = LH(pd), while still pd−1 ̸= pd.

3. For any p ∈ {p1, . . . , pd, pd − pd−1} there exist constants tp, cp such that when-

ever t1, . . . , tr ≥ tp it holds that

|LH(p(t1, . . . , tr))| ≥ cp ·
(

min
k∈{1,...,r}

{tk}
)deg p

.
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They proved the effective solvability for all parameters t1, . . . , tr that satisfy the

following condition, where t0 and τ are computable constants:

t0 ≤ min
k∈{1,...,r}

{tk} , max
k∈{1,...,d}

{tk} ≤
(

min
k∈{1,...,r}

{tk}
)τ

.

Heuberger [10] later improved the result through highly technical but explicit

conditions on terms involving the degrees of the polynomials. In the cubic case, his

conditions are weaker than in Thomas’ original result.

The “polynomial case” has been solved to the extent described above. One way

to extend these investigations is to consider classes of parameter functions other

than polynomials. An explicit cubic split family, parameterized by the Fibonacci

and Lucas sequences, was considered in [12]. The family was proved to be effectively

solvable, and an analog of the conjecture was confirmed. Using a combination of

reduction methods, the bounds on the size of the parameters were reduced sufficiently

for the remaining equations to be checked, fully solving the equation

x(x− Fn y)(x− Ln y)− y3 = ±1.

With the exception of n = 1 and n = 3, only the trivial solutions were found.

In [13], the ideas developed for the polynomial case and adapted to tackle the

exponential case were used to solve the cubic case in general, in a matter analogous to

Thomas’ original work. The conditions on the linear recurrence sequences A(n) and

B(n) (which both have a dominant root) are very mild and become restrictive only if

the dominant roots have the same absolute value. This is possible because the growth

of the solutions can be described by 2× 2 matrices and their determinants, which

allow for very few term cancellations. If we consider families of higher degree, there

is much greater potential for term cancellations, necessitating stricter conditions on

the class of parameter functions.

In light of Heuberger and Tichy’s result [9], our main result is as follows.

Theorem 1. Let (G1(n))n∈N, . . . , (Gd(n))n∈N be d simple linearly recurrent integer

sequences satisfying the following conditions:

1. The sequences G1, . . . , Gd satisfy a dominant root condition, with dominant

roots γ1, . . . , γd and 0 ≤ γ1 < · · · < γd−2 < γd−1 = γd.

2. The constant terms gd−1 and gd corresponding to the dominant roots γd−1 and

γd in the closed formula for Gd−1 and Gd satisfy gd−1 = gd.

3. Both Gd−1 and Gd have second dominant roots δd−1 and δd with corresponding

constant terms hd−1 and hd satisfying |δd−1| < |δd| < γd−2 and γ2
d−2 < γ |δd|.

For each n ∈ N, define the homogeneous polynomial

fn(x, y) = (x−G1(n) y) · · · (x−Gd(n) y)− yd,
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and let x, y, n be integers satisfying |y| ≥ 2 and fn(x, y) = ±1. Then there exists a

computable constant κ, depending on the coefficients of G1, . . . , Gd, such that

max {log |x| , log |y| , n} ≤ κ.

If we consider the properties of the solutions to the equation fn(x, y) = ±1 where

|y| ≤ 1 (see the beginning of Section 3), then the above theorem immediately implies

the following corollary.

Corollary 1. Let G1, . . . , Gd satisfy the conditions in Theorem 1. Then there exists

a computable constant n0 such that, for n ≥ n0, the parameterized Thue equation

(x−G1(n) y) · · · (x−Gd(n) y)− yd = ±1

has only the solutions

{(±1, 0),±(G1(n), 1), . . . ,±(Gd(n), 1)} .

If we compare the conditions in Theorem 1 or those in the result of Heuberger

and Tichy with Thomas’ original conjecture, we notice that the condition requiring

sufficiently different growth of the parameter functions (whether by strictly increasing

degrees or dominant roots) has been modified. Even the cubic case of linear recurrence

sequences suggests that, in some sense, it should be easier if all the dominant roots

are different. However, while Heuberger [10] was able to impose fewer restrictions

and come closer to the original conjecture in the polynomial case, a key part of his

proof is that the variables controlling the growth of the parameter functions—namely,

the degrees of the polynomials—are integers. This contrasts with the situation in

Theorem 1, where the controlling terms are the dominant roots (or their logarithms).

Forcing them to be integers in order to apply similar ideas from [10] would impose

even stricter conditions than those currently in place.

For simplicity, we assume that all dominant roots are positive real numbers.

This is not a restriction—we can apply the theorem to alternating sequences by

considering the positive and negative subsequences separately.

We use the standard O notation to describe asymptotic behavior in terms of

n → ∞ and write f(n) = O (g(n)) if, for some positive constants c and n0, we have

|f(n)| ≤ c g(n) for all n ≥ n0. Similarly, we write f(n) = Ω (g(n)) for the other

inequality, and f(n) = Θ (g(n)) if both f(n) = O (g(n)) and f(n) = Ω (g(n)) hold.

If f(n) does not influence the asymptotic behavior of g(n) and we do not need to

quantify the specifics, we succinctly write f(n) = o (g(n)). For example, we write

x+x−1 = x+o (x) if we do not care that the second addend is precisely x−1. We use

this to prevent some error terms from becoming unnecessarily complicated without

adding conceptual or technical relevance.
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Using this notation, we immediately obtain the following asymptotic bounds

based on the requirements in Theorem 1:

Gi(n) = Ω (γn
i ) , |Gi(n)−Gj(n)| =

{
Ω (|δd|n) if {i, j} = {d− 1, d}
Ω (max {γi, γj}n) otherwise.

(2)

Other, more involved statements about the behavior of the recurrence sequences

and the roots of the polynomial fn will be discussed in a separate section before

proceeding to the proof of Theorem 1 in the next section.

2. Auxiliary Results

We will refer to the dominant roots γd−1 and γd as γ, and the corresponding

constant terms gd−1 and gd as g, since they are equal by the conditions in the

theorem. Let α(1) = α(1)(n), . . . , α(d) = α(d)(n) be the roots of the polynomial fn.

Since fn(x) = fn(x, 1) = (x−G1(n)) · · · (x−Gd(n))− 1, we expect α(1) to be close

to G1(n), α
(2) to be close to G2(n), and so on. We quantify this in the next lemma,

ensuring that we also have an explicit term for the expressions α(i) − Gi(n); the

subsequent errors are of little interest and are relevant only to the proof of the

lemma.

Lemma 1. The roots α(1), . . . , α(d) are all real, and for i = 1, . . . , d and

γϵ = γϵ(i) =

{
γi−1
i ·

∏d−2
k=i+1 γk · γ2 if i ̸∈ {d− 1, d}

γd−2δd otherwise,

we have

α(i) = Gi(n) +
1 +O (γ−n

ϵ )∏d
k=1
k ̸=i

(Gi(n)−Gk(n))
.

Proof. For u = ±1, we plug our approximation for the root α(i) into fn, replacing

the O-term with u γ−n
ϵ . The sign of u determines the sign of the expression, and

the statement then follows from the Intermediate Value Theorem.

Let i ∈ {1, . . . , d}. We then consider the expression f(ξ(i)) + 1 for

ξ(i) = Gi(n) +
1 + u γ−n

ϵ∏d
k=1
k ̸=i

(Gi(n)−Gk(n))
.

The form of our function is f(ξ(i)) + 1 = (ξ(i) −G1(n)) · · · (ξ(i) −Gd(n)), and we

split the product into the factor (ξ(i) −Gi(n)), which is

1 + uγ−n
ϵ∏d

k=1
k ̸=i

(Gi(n)−Gk(n))
,
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and everything else. Note that, by the definition of γϵ(i) and Equation (2), we have

d∏
k=1
k ̸=i

(Gi(n)−Gk(n)) = Ω (γn
ϵ ) .

The remaining product is

d∏
k=1
k ̸=i

(ξ(i) −Gk(n)) =

d∏
k=1
k ̸=i

Gi(n)−Gk(n) +
1 + u γ−n

ϵ∏d
k=1
k ̸=i

(Gi(n)−Gk(n))

 ,

and we view each factor as made up of two addends. The first is (Gi(n)−Gk(n)),

while the second is O (γ−n
ϵ ). If we expand the product, the highest-order term is the

product of all d− 1 factors (Gi(n)−Gk(n)), followed by the sum of terms where

(Gi(n)−Gk(n)) appears d− 2 times and O (γ−n
ϵ ) appears once, and so on.

We explicitly write the two highest-order terms (in the sense described above)

and hide the rest in an error term o (γ−n
ϵ ). Doing this gives

d∏
k=1
k ̸=i

(Gi(n)−Gk(n)) +

d∑
l=2
l ̸=i

∏d
k=1
k ̸=i,l

(Gi(n)−Gk(n))∏d
k=1
k ̸=i

(Gi(n)−Gk(n))

(
1 + u γ−n

ϵ

)
+ o

(
γ−n
ϵ

)
,

and canceling the fraction gives

d∏
k=1
k ̸=i

(Gi(n)−Gk(n)) +

d∑
k,l=1

i̸∈{k,l},k ̸=l

1 + uγ−n
ϵ

(Gi(n)−Gk(n))(Gi(n)−Gl(n))
+ o

(
γ−n
ϵ

)
.

We can also move the terms containing uγ−n
ϵ into the error term o (γ−n

ϵ ), i.e.,

d∏
k=1
k ̸=i

(Gi(n)−Gk(n)) +

d∑
k,l=1

i ̸∈{k,l},k ̸=l

1

(Gi(n)−Gk(n))(Gi(n)−Gl(n))
+ o

(
γ−n
ϵ

)
. (3)

Multiplying by the factor (ξ(i) −Gi(n)), the first product is then 1 + uγ−n
ϵ , while

the product with the sum is again o (γ−n
ϵ ) with the same argument. Putting this

together, we obtain

f(ξ(i)) + 1 = 1 + uγ−n
ϵ + o

(
γ−n
ϵ

)
.

Setting u = 1 and u = −1, we get f(ξ(i)) > 0 and f(ξ(i)) < 0 if n is sufficiently

large, so that the error term can no longer compensate for ±γ−n
ϵ . From this, the

statement follows by the Intermediate Value Theorem.

By combining the previous lemma with Equation (2), we immediately obtain the

following result.
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Lemma 2. Let α(i) and α(j) be two roots of fn. Then we have∣∣∣α(i)
∣∣∣ = Ω(γn

i ) ,
∣∣∣α(i) − α(j)

∣∣∣ = {Ω (|δd|n) if {i, j} = {d− 1, d}
Ω (max {γi, γj}n) otherwise.

The same result holds if we replace α(j) with Gj(n).

Next, we examine the number field Kn = Q
(
α(1)

)
generated by fn. To do this,

we define

η
(i)
j = α(i) −Gj(n) for j = 1, . . . , d,

for each i = 1, . . . , d. This definition immediately gives

η
(i)
1 · · · η(i)d = f(α(i)) + 1 = 1 (4)

for each i = 1, . . . , d. If i = j, then by Lemma 1 and Equation (2) the asymptotic

bound
∣∣∣η(i)i

∣∣∣ = O
((

γ2 · · · γd−2γ
2
)−n

)
holds for any i, since the γϵ defined in the

lemma only swaps some of the factors of γ2 · · · γd−2γ
2 for larger ones. If instead

i ̸= j, then by Lemma 2 we have either
∣∣∣η(i)j

∣∣∣ = Ω(δnd ) or
∣∣∣η(i)j

∣∣∣ = Ω(max {γi, γj}n),
which we summarize in the following equation:

∣∣∣η(i)j

∣∣∣ =

O
((

γ2 · · · γd−2γ
2
)−n

)
if i = j

Ω(δnd ) if {i, j} = {d− 1, d}
Ω(max {γi, γj}n) otherwise.

(5)

We want to make statements about matrices containing logarithms of these η
(i)
j .

To do this, we use the following theorem of Gershgorin [6], sometimes referred to as

Gershgorin’s Circle Theorem,

Theorem 2 ([6]). Let A =
(
aij
)
be an n×n matrix with complex entries and define,

for each row i = 1, . . . , n, the radius

Ri =

n∑
j=1
j ̸=i

|aij | .

Then every eigenvalue λ of A lies in at least one of the disks

{z : |z − aii| ≤ Ri} , i = 1, . . . , n.

Lemma 3. Let k ∈ {1, . . . , d− 1} and let

Bk =


log
∣∣∣η(1)1

∣∣∣ log
∣∣∣η(1)2

∣∣∣ · · · log
∣∣∣η(1)k

∣∣∣
...

...
. . .

...

log
∣∣∣η(k)1

∣∣∣ log
∣∣∣η(k)2

∣∣∣ · · · log
∣∣∣η(k)k

∣∣∣

 ,

then we have detBk = Θ
(
nk
)
.
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Proof. It follows immediately from Lemma 1 that log
∣∣∣η(i)j

∣∣∣ = Θ(n), which implies

that detBk = O
(
nk
)
. We need to prove the other direction: detBk = Ω

(
nk
)
.

Let λ be the smallest eigenvalue of Bk. According to Theorem 2, for at least one

i ∈ {1, . . . , k} it must be that

k∑
j=1
j ̸=i

∣∣∣log ∣∣∣η(i)j

∣∣∣∣∣∣ ≥ ∣∣∣λ− log
∣∣∣η(i)i

∣∣∣∣∣∣ .
From this inequality, it follows that

|λ| ≥
∣∣∣log ∣∣∣η(i)i

∣∣∣∣∣∣− k∑
j=1
j ̸=i

∣∣∣log ∣∣∣η(i)j

∣∣∣∣∣∣ ,
and we can ignore the outer absolute value in the sum since, for each j ̸= i, we have

log
∣∣∣η(i)j

∣∣∣ > 0. If we replace log
∣∣∣η(i)i

∣∣∣ with −
∑d

j=1
j ̸=i

log
∣∣∣η(i)j

∣∣∣ using Equation (4), then

this implies

|λ| ≥
d∑

j=k+1

log
∣∣∣η(i)j

∣∣∣ .
We can bound the sum from below by log

∣∣∣η(i)d

∣∣∣, which is Ω (n) by Lemma 2. If the

smallest eigenvalue λ is Ω (n), then the determinant detBk must be Ω
(
nk
)
, proving

the lemma.

Next, we examine the order O = Z[α(1)] of Kn and its regulator RO. We use the

following estimate by Pohst [15], whose proof, as noted by Heuberger [8], also works

verbatim for non-maximal orders.

Theorem 3 ([15]). Let K be a totally real algebraic number field of degree at least

4, and let D be an order of K with discriminant dD. Let RD be the regulator of D.

Then there exists an explicit constant c, depending only on the degree of K, such that

RD ≥ c log (dD) .

For our order O, Theorem 3 and Lemma 2 immediately give the following corollary.

Corollary 2. We have that

RO = Ω(n) .

If we form the subgroup of O× generated by −1 and η
(i)
1 , . . . , η

(i)
d−1, we obtain the

following lemma.
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Lemma 4. Consider the subgroup G = ⟨−1, η
(i)
1 , . . . , η

(i)
d−1⟩ of O× = Z[α(1)]× with

regulator RG and index I. Then we have

RG = Θ
(
nd−1

)
, I = O

(
nd−2

)
.

Proof. The estimate for the regulator follows from Lemma 3 with k = d− 1. The

estimate for the index follows from the relation I = RG/RO and Corollary 2.

3. Proof of Main Theorem

Proof of Theorem 1. Let x, y, and n be integers satisfying fn(x, y) = ±1. Note that

for y = 0 this implies xd = ±1, which leads to the solution (x, y, n) = (±1, 0, n) for

every n ∈ N. If instead y = ±1, then fn(x, y) = ±1 implies either

(x−G1(n) y) · · · (x−Gd(n) y) = 0,

from which we get the solutions (±Gi(n), 1, n) for every n ∈ N and i = 1, . . . , d, or

(x−G1(n) y) · · · (x−Gd(n) y) = ±2.

Since the d factors on the left are all distinct integers, there are no solutions if d ≥ 4.

These are all solutions for which |y| ≤ 1, and from now on, we can (and must)

assume that |y| ≥ 2.

We will refer to the terms x− α(i)y as β(i) and call (x, y) a solution of type j if∣∣∣β(j)
∣∣∣ = min

{∣∣∣β(1)
∣∣∣ , . . . , ∣∣∣β(d)

∣∣∣} ,

which, by the triangle inequality for i ̸= j, implies that

2
∣∣∣β(i)

∣∣∣ ≥ ∣∣∣β(i) − β(j)
∣∣∣ = ∣∣∣y (α(j) − α(i)

)∣∣∣ . (6)

Analogous to Lemma 1 and/or in view of Lemma 2, we define the “correct” error

term as γϵ(j), where

γϵ(j) =

{
γj−1
j ·

∏d−2
i=j+1 γi · γ2 if j ̸∈ {d− 1, d}

γd−2δd otherwise.

Moreover, the factor γ appears at least twice in any case. Combining this with

β(1) · · ·β(d) = fn(x, y) = ±1 gives

∣∣∣β(j)
∣∣∣ ≤ d∏

i=1
i ̸=j

2

|y|
∣∣α(j) − α(i)

∣∣ = O

(
1

|y| γϵ(j)n

)
. (7)
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Furthermore, if we add and then subtract Gj(n) y from β(i), for i ̸= j, we get

log
∣∣∣β(i)

∣∣∣ = log
∣∣∣−α(i)y + β(j) + α(j)y

∣∣∣
= log

∣∣∣−η
(i)
j y + β(j) + η

(j)
j

∣∣∣ .
Together with Equations (7) and (5), this gives a representation for log

∣∣β(i)
∣∣:

log
∣∣∣β(i)

∣∣∣ = log |y|+ log
∣∣∣η(i)j

∣∣∣+O

(
1

|y| γϵ(j)n

)
i ∈ {1, . . . , d} \ {j} . (8)

A second representation is obtained via the group G = ⟨−1, η
(i)
1 , . . . , η

(i)
d−1⟩. Since

β(i) ∈ Z[α(1)]×, there exist integers b1, . . . , bd−1, such that, for the index I =

[Z[α(1)]× : G], the relation

log
∣∣∣β(i)

∣∣∣ = b1
I
log
∣∣∣η(i)1

∣∣∣+ · · ·+ bd−1

I
log
∣∣∣η(i)d−1

∣∣∣ i ∈ {1, . . . , d} \ {j} (9)

holds. By comparing both representations, we want to derive a lower bound for

log |y|.

3.1. Double-Exponential Lower Bound

We solve Equation (9) using Cramer’s rule and get

R
bk
I

= uk log |y|+ vk +O

(
nd−2

|y| γϵ(j)n

)
(10)

for 1 ≤ k ≤ d− 1, where

uk = det
(
log
∣∣∣η(i)1

∣∣∣ , . . . , log ∣∣∣η(i)k−1

∣∣∣ , 1, log ∣∣∣η(i)k+1

∣∣∣ , . . . , log ∣∣∣η(i)d−1

∣∣∣)
i ̸=j

,

vk = det
(
log
∣∣∣η(i)1

∣∣∣ , . . . , log ∣∣∣η(i)k−1

∣∣∣ , log ∣∣∣η(i)j

∣∣∣ , log ∣∣∣η(i)k+1

∣∣∣ , . . . , log ∣∣∣η(i)d−1

∣∣∣)
i ̸=j

.

If we consider, for some λ0, λ1, . . . , λd−1, the linear combinations

b = λ0I +

d−1∑
k=1

λkbk, u =

d−1∑
k=1

λkuk, v = λ0R+

d−1∑
k=1

λkvk,

then this preserves Identity (10) in the sense that

R
b

I
= u log |y|+ v +O

(
nd−2

|y| γϵ(j)n

)
. (11)

We now distinguish between different cases for the type j and show that, for a

suitable u, log |y| grows exponentially in n.
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Case 1: j ≤ d− 2. If j ≤ d− 2, then the column
(
log
∣∣∣η(i)j

∣∣∣)
i̸=j

appears twice in

vk, so vk = 0 for all k ≠ j. If we choose λ0 = · · · = λd−2 = 0 and λd−1 = 1, then

Equation (11) is

R
bd−1

I
= ud−1 log |y|+ vd−1 +O

(
nd−2

|y| γϵ(j)n

)
, (12)

and since d− 1 ̸= j, we have vd−1 = 0.

In ud−1, we subtract the penultimate row, i = d − 1, from the last row, i = d.

Writing l
(i)
i′ for log

∣∣∣η(i)i′

∣∣∣ and li′ for the corresponding column vector (excluding by

context the last two rows), we have

ud−1 =

∣∣∣∣∣∣∣
l1 · · · ld−2 1

l
(d−1)
1 · · · l

(d−1)
d−2 1

l
(d)
1 − l

(d−1)
1 · · · l

(d)
d−2 − l

(d−1)
d−2 0

∣∣∣∣∣∣∣ .
The entries in the last row are very small for all i = 2, . . . , d− 2: We use Lemma 1,

factor out the dominant term gγn, and write log |1 + x| = x + O
(
x2
)
, since the

remaining terms surely have absolute value less than 1 for sufficiently large n. This

gives

l
(d)
i − l

(d−1)
i = log

∣∣∣∣ α(d) −Gi(n)

α(d−1) −Gi(n)

∣∣∣∣
= log

∣∣∣∣∣∣
gγn

(
1 + hd

g

(
δd
γ

)n
− Gi(n)

gγn + o
(∣∣∣ δdγ ∣∣∣n))

gγn
(
1 + hd−1

g

(
δd−1

γ

)n
− Gi(n)

gγn + o
(∣∣∣ δd−1

γ

∣∣∣n))
∣∣∣∣∣∣

=
hd

g

(
δd
γ

)n

− Gi(n)

gγn
− hd−1

g

(
δd−1

γ

)n

+
Gi(n)

gγn

+ o

(∣∣∣∣δdγ
∣∣∣∣n)+O

(
max {|δd| , γi}2n

γ2n

)
,

and the same holds true for i = 1 if we set γ1 = 0. By Condition (3) in Theorem 1,

we have γ2n
d−2 = o (γnδnd ), i.e., the O-term is absorbed by the o-term. Succinctly put,

we can say that

l
(d)
i − l

(d−1)
i =

hd

g

(
δd
γ

)n

+ o

(∣∣∣∣δdγ
∣∣∣∣n) . (13)

We expand ud−1 along the last row and separate the explicit term, which we can

then factor, from o (|δd/γ|n) in l
(d)
i − l

(d−1)
i , shifting the latter into the error term.

The minors, other than the last one, which has coefficient 0 in the expansion, are all

of order O
(
nd−3

)
by Equation (5), and thus

ud−1 =
hd

g

(
δd
γ

)n
∣∣∣∣∣∣

l1 · · · ld−2 1

l
(d−1)
1 · · · l

(d−1)
d−2 1

1 · · · 1 0

∣∣∣∣∣∣+ o

(
nd−3

∣∣∣∣δdγ
∣∣∣∣n) .
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We then subtract the last row from the penultimate row l
(d−1)
1 times. Using

the same arguments as above, except that now the δd−1 terms cancel, we have for

i = 2, . . . , d− 2 that

l
(d−1)
i − l

(d−1)
1 = log

∣∣∣∣α(d−1) −Gi(n)

α(d−1)

∣∣∣∣
= −gi

g

(
γi
γ

)n

+ o

(
max {|δd−1| , γi}n

γn

)
, (14)

and for i = 1 the entry is 0. We expand along the penultimate row. All minors

in which the factor is l
(d−1)
i − l

(d−1)
1 can be shifted into an error term. Explicitly

writing only the last minor (with factor 1) gives

ud−1 =
hd

g

(
δd
γ

)n(
−
∣∣∣∣l1 · · · ld−2

1 · · · 1

∣∣∣∣+O

(
nd−3

(
γd−2

γ

)n))
+ o

(
nd−3

∣∣∣∣δdγ
∣∣∣∣n) .

We then multiply the last row by the constant l
(d)
1 +l

(d−1)
1 = log

∣∣α(d)
∣∣+log

∣∣α(d−1)
∣∣,

which is of order Θ (n). For each i = 2, . . . , d− 2, going from l
(d)
1 to l

(d)
i introduces

an error of

log

∣∣∣∣ α(d)

α(d) −Gi(n)

∣∣∣∣ = − log

∣∣∣∣1− Gi(n)

α(d)

∣∣∣∣ = O

(∣∣∣∣Gi(n)

α(d)

∣∣∣∣) = O

((
γi
γ

)n)
.

Similarly, we can go from l
(d−1)
1 to l

(d−1)
i . Taken together, this means that∣∣∣∣l1 · · · ld−2

1 · · · 1

∣∣∣∣ = Θ

(
1

n

) ∣∣∣∣ l1 · · · ld−2

l
(d)
1 + l

(d−1)
1 · · · l

(d)
d−2 + l

(d−1)
d−2

∣∣∣∣+O

(
nd−3

(
γi
γ

)n)
.

If we now add all the other rows to the last one, the entries sum to −l
(j)
i according

to Equation (4). This means that∣∣∣∣l1 · · · ld−2

1 · · · 1

∣∣∣∣ = −Θ

(
1

n

) ∣∣∣∣ l1 · · · ld−2

l
(j)
1 · · · l

(j)
1

∣∣∣∣+O

(
nd−3

(
γi
γ

)n)
.

After suitably swapping rows, the determinant is exactly the one from Lemma 3

for k = d− 2, and is thus of order Θ
(
nd−2

)
. We can absorb the error term and get

that ∣∣∣∣l1 · · · ld−2

1 · · · 1

∣∣∣∣ = ±Θ
(
nd−3

)
,

and thus

|ud−1| = Θ

(
nd−3

∣∣∣∣δdγ
∣∣∣∣n)+ o

(
nd−3

∣∣∣∣δdγ
∣∣∣∣n) = Θ

(
nd−3

∣∣∣∣δdγ
∣∣∣∣n) .
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Returning to Equation (12) and plugging in our asymptotic expression for ud−1

gives

R
|bd−1|
I

= Θ

(
nd−3

∣∣∣∣δdγ
∣∣∣∣n) log |y|+O

(
nd−2

|y| γϵ(j)n

)
.

Since γϵ(j) contains the factor γ at least twice, the error term cannot asymptotically

cancel the Θ-term, i.e.,

R
|bd−1|
I

= Θ

(
nd−3

∣∣∣∣δdγ
∣∣∣∣n) log |y| .

In particular, the left-hand side, and thus |bd−1|, is nonzero. Since bd−1 is an integer,

we have |bd−1| ≥ 1. Furthermore, we have R/I = Ω(n) by Lemma 4. Going back to

the above equation, this gives

log |y| = Ω

(
n−(d−4)

∣∣∣∣ γδd
∣∣∣∣n) . (15)

Case 2: j = d − 1 or j = d. For j = d − 1 and k < d − 1, we again have the

column log
∣∣∣η(i)j

∣∣∣
i ̸=j

= lj twice in vk, and thus vk = 0. This is not the case for j = d,

where instead we take v = vd−2 − vd−3. After swapping the antepenultimate and

penultimate columns in vd−3, we can join the determinants, and adding every other

column to the antepenultimate one gives us, by Equation (4),

v =
∣∣l1 · · · ld−4 ld−3 ld ld−1

∣∣− ∣∣l1 · · · ld−4 ld ld−2 ld−1

∣∣
=
∣∣· · · ld−3 ld ld−1

∣∣+ ∣∣· · · ld−2 ld ld−1

∣∣
=
∣∣· · · (ld−3 + ld−2) ld ld−1

∣∣ = ∣∣· · · 0 ld ld−1

∣∣ = 0.

In both cases, setting v = vd−2−vd−3 gives us v = 0. We calculate the corresponding

u = ud−2 − ud−3, which, with the analogue of the above calculation, gives us

u =
∣∣l1 · · · ld−4 (ld−3 + ld−2) 1 ld−1

∣∣
=
∣∣· · · −ld 1 ld−1

∣∣
=
∣∣· · · (ld−1 − ld) 1 ld−1

∣∣ .
The matrix has rows i ∈ {1, . . . , d− 2, d− 1, d} \ {j}, so the penultimate row is

i = d − 2, while the last row is either i = d or i = d − 1, depending on whether

j = d− 1 or j = d. Computing the last entry in the antepenultimate column gives

us by Lemma 2 either

log

∣∣∣∣α(d−1) −Gd−1(n)

α(d−1) −Gd(n)

∣∣∣∣ = −Θ(n) or log

∣∣∣∣α(d) −Gd−1(n)

α(d) −Gd(n)

∣∣∣∣ = Θ(n) .
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Thus, up to sign, the entry is Θ (n). The entries in all other rows i ≤ d − 2 are

instead

log

∣∣∣∣α(i) −Gd−1(n)

α(i) −Gd(n)

∣∣∣∣ = −hd

g

(
δd
γ

)n

+ o

(∣∣∣∣δdγ
∣∣∣∣n) = O

(∣∣∣∣δdγ
∣∣∣∣n) ,

analogous to Equation (13). Expanding the determinant u along the antepenultimate

column and shifting all but the last minor into the error term, we obtain

±u = Θ(n)
∣∣l1 · · · ld−4 1 ld−1

∣∣+O

(
nd−3

∣∣∣∣δdγ
∣∣∣∣n) .

The matrix now consists only of the rows i ∈ {1, . . . , d− 2}. We add the penul-

timate column to the last column −l
(1)
d−1 times. For i = 1, the entry is 0, and for

i = 2, . . . , d− 2, this yields

log
∣∣∣η(i)d−1

∣∣∣− log
∣∣∣η(1)d−1

∣∣∣ = −Θ

((
γi
γ

)n)
,

analogous to Equation (14). Expanding along this column, the last entry i = d− 2

dominates and we get

∣∣l1 · · · ld−4 1 ld−1

∣∣ = Θ

((
γd−2

γ

)n) ∣∣l1 · · · ld−4 1
∣∣

+ o

(
nd−4

(
γd−2

γ

)n)
.

We multiply the last column by −l
(d−3)
d−2 − l

(d−3)
d−1 − l

(d−3)
d = Θ(−n). Using the

same argument as in Equation (13), we can go from l
(d−3)
d−2 [ l

(d−3)
d−1 , resp. l

(d−3)
d ]

to l
(i)
d−2 [l

(i)
d−1, resp. l

(i)
d ] while making an error of order |γd−3/γd−2|n [ |γd−3/γ|n].

Taken together, this means that

∣∣l1 · · · ld−4 1
∣∣ =−Θ

(
1

n

) ∣∣l1 · · · ld−4 (−ld−2 − ld−1 − ld)
∣∣

+O

(
nd−4

∣∣∣∣γd−3

γd−2

∣∣∣∣n) .

If we subtract all other columns from the last one, the result sums to ld−3

according to Equation (4). Thus, by Lemma 3, the determinant is Θ
(
nd−3

)
. Put

together, this means that

∣∣l1 · · · ld−4 1
∣∣ = −Θ

(
nd−4

)
+O

(
nd−4

∣∣∣∣γd−3

γd−2

∣∣∣∣n) = −Θ
(
nd−4

)
.
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If we go back one equation further and plug this in, we have

∣∣l1 · · · ld−4 1 ld−1

∣∣ = −Θ

(
nd−4

(
γd−2

γ

)n)
+ o

(
nd−4

(
γd−2

γ

)n)
= −Θ

(
nd−4

(
γd−2

γ

)n)
.

So for u, in conjunction with |δd| < γd−2 from Condition (3), we get that

|u| = Θ

(
nd−3

(
γd−2

γ

)n)
+O

(
nd−3

∣∣∣∣δdγ
∣∣∣∣n) = Θ

(
nd−3

∣∣∣∣γd−2

γd

∣∣∣∣n) .

We plug this along with v = 0 into Equation (11) and get

R
|b|
I

= Θ

(
nd−3

∣∣∣∣γd−2

γ

∣∣∣∣n) log |y|+O

(
nd−2

|y| γϵ(j)n

)
.

Again, γϵ(j) contains the factor γ at least twice, making the error term asymptotically

negligible. So the right-hand side, and hence b, is nonzero. We derive |b| ≥ 1, which,

together with R/I = Ω(n), implies

log |y| = Ω

(
n−(d−4)

(
γ

γd−2

)n)
. (16)

If we compare the two bounds from Equations (15) and (16), the worse one,

Equation (16), holds regardless of the type j of the solution.

3.2. Exponential-Polynomial Upper Bound

Returning to our notation x− α(i)y = β(i) for i ∈ {1, . . . , d}, we can take any three

indices i1, i2, i3 and eliminate both x and y from these equations, giving the relation(
α(i3) − α(i2)

)
β(i1) +

(
α(i1) − α(i3)

)
β(i2) +

(
α(i2) − α(i1)

)
β(i3),

often called Siegel’s equation. A standard application of Baker’s method (e.g., [5])

is to rewrite Siegel’s identity as an S-unit equation and apply lower bounds to

the associated linear form in logarithms. The same approach can also be used for

parameterized Thue equations (e.g., [16], for a survey, also see [11]) to attempt to

derive asymptotic bounds on the size of the solutions. Alternatively, one can use

Bugeaud and Győry’s explicit bounds [3] directly to obtain the same asymptotic

bounds, often with worse numerics due to their greater generality.

Since it is not too much work, we derive an asymptotic polynomial upper bound

for log |y| ourselves, and set (i1, i2, i3) = (j, k, l) in Siegel’s identity for the type j

and some k, l. If j ∈ {d− 1, d}, it is advantageous to choose k, l ̸∈ {d− 1, d}, e.g.,
k = 1, l = 2, whereas if j ≤ d− 2, it is advantageous to choose k = d, l = d− 1.
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Dividing by the second addend and subtracting the third (flipping the sign of

α(k) − α(j)) gives the S-unit equation

α(l) − α(k)

α(j) − α(l)

β(j)

β(k)
+ 1 =

α(j) − α(k)

α(j) − α(l)

β(l)

β(k)
. (17)

From Equations (7) and (6), we obtain

β(j)

β(k)
= O

(
1

|y|2 γϵ(j)n
∣∣α(j) − α(k)

∣∣
)
.

Our choice of k, l ensures optimal conditions in Corollary (2) in the sense that

α(l) − α(k)(
α(j) − α(l)

) (
α(j) − α(k)

) = O

(
max {|δd| , γ2}n

γ2n

)
,

and thus, from Equation (17), we obtain

α(l) − α(k)

α(j) − α(l)

β(j)

β(k)
+ 1 = 1 +O

(
max {|δd| , γ2}n

|y|2 γϵ(j)nγ2n

)
,

where the factor γn appears at least four times in the denominator, and the factor

in the numerator more than cancels out with another factor in γϵ(j)
n. Returning to

Equation (17), we now have for the right-hand side that its logarithm is

log

∣∣∣∣ β(l)

β(k)

∣∣∣∣+ log

∣∣∣∣α(j) − α(k)

α(j) − α(l)

∣∣∣∣ = O

(
max {|δd| , γ2}n

|y|2 γϵ(j)nγ2n

)
. (18)

We want to apply the following lower bound for linear forms in logarithms by

Baker and Wüstholz [2].

Theorem 4 ([2]). Let α1, . . . , αn be real algebraic numbers greater than 1, and let

b1, . . . , bn be integers. Let K be the number field generated by α1, . . . , αn over the

rationals Q, and let d be its degree. Put, for the standard logarithmic Weil height h,

h′(α) =
1

d
max {h(α), |logα| , 1} .

If Λ = b1 logα1 + · · ·+ bn logαn ̸= 0, then

log |Λ| > −c(n, d)h′(α1) · · ·h′(αn)h
′(b),

where b = (b1 : · · · : bn).

The coefficients of our linear form are both 1, so we can disregard their contribu-

tions to the lower bound. To bound the second term in Equation (18), we use the

properties

h(α± β) ≤ h(α) + h(β) + log 2, h(α · β) ≤ h(α) + h(β)
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of the logarithmic Weil height (for an overview of this notion of height and its various

properties, see, for example, Chapter 3 of [18]).

Since α(j), α(k), α(l) are conjugates and therefore of equal height, this gives

h

(
α(j) − α(k)

α(j) − α(l)

)
= O

(
h(α(j))

)
.

Using the connection to the Mahler measure of the minimal polynomial f , combined

with Lemma 1, we can easily conclude that

h(α(j)) = O (n) .

For the height of β(k) and β(l), we use Equation (9) and get

h(β(k)) ≤ h(b1)h(η
(k)
1 ) + · · ·+ h(bd−1)h(η

(k)
d−1).

By plugging in the definition of η
(k)
i , we get

h(η
(k)
i ) ≤ h(α(k)) + h(Gi(n)) + log 2,

and since the height of Gi(n) is also O (n), we get

h(η
(k)
i ) = O (n) .

For the heights h(bi) = max {log |bi| , 0}, we look again at the system of equations (9),

denote it by β = η · 1Ib, and consider its inverse problem η−1β = 1
Ib. We can do this:

for j = d, the matrix η is the matrix from Lemma 3 with k = d− 1 and therefore

has a nonzero determinant. For j ̸= d, we add all the other rows i ≠ j to the row

i = d and obtain the negative of the row i = j by Equation (4). This changes at

most the sign of the determinant and not the invertibility of η. Considering the

system of equations η−1β = 1
Ib, we then take the (column-wise) maximum norm

∥·∥∞, which gives

1

I
∥b∥∞ =

∥∥η−1β
∥∥
∞ ≤

∥∥η−1
∥∥
∞ · ∥β∥∞ .

We have I = O
(
nd−2

)
by Lemma 4, det η = Θ

(
nd−1

)
by Lemma 3, log

∣∣β(i)
∣∣ =

O
(
log |y|+ log

∣∣∣η(i)j

∣∣∣) by Equation (8) and log
∣∣∣η(i)j

∣∣∣ = O (n) by definition and

Lemma 1. Taken together, this gives us

h(bi) = max {log |bi| , 0} = O (max {log log |y| , log n, 0}) ,

and we can assume h(bi) = O (log log |y|), as otherwise we would already have

log |y| = O (n). Combining the bounds for h(bi) and h(η
(k)
i ) gives us

h(β(k)) = O (n log log |y|) ,
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and the same bound holds for h(β(l)).

If we plug everything into Theorem 4 (the asymptotic bounds do not change for

the modified height h′), we get

log

∣∣∣∣log ∣∣∣∣ β(l)

β(k)

∣∣∣∣+ log

∣∣∣∣α(j) − α(k)

α(j) − α(l)

∣∣∣∣∣∣∣∣ = −Ω
(
n2 log log |y|

)
.

Comparing this with the upper bound of Equation (18) gives

n log |y| = O
(
n2 log log |y|

)
,

which implies log |y| = O (n log n): If the implied constant is c, i.e.,

log |y| ≤ c n log log |y| ,

then the assertion is true if, for example, the relation log |y| ≤ 2c n log n holds. If

instead log |y| > 2c n log n, then we have

2c n log n < log |y| ≤ c n log log |y| ,

which gives log n < 1
2 log log |y| and therefore n <

√
log |y|. But going back to the

original inequality, we have

log |y| < c
√

log |y| log log |y| ,

and therefore log |y| = O (1), which is even stronger than the assertion.

In summary, we have the asymptotically almost linear upper bound

log |y| = O (n log n) ,

and by comparing this with the asymptotically exponential lower bound from

Equation (16) we get n = O (1), which in turn implies log |y| = O (1). This

concludes our proof of Theorem 1.
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[14] A. Pethö, On the Resolution of Thue Inequalities, J. Symbolic Comput. 4 (1) (1987), 103-109.

[15] M. Pohst, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory
9 (4) (1977), 459-492.

[16] E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory
34 (2) (1990), 235-250.
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